: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Switching Power Supply Type SPD 5W DIN rail mounting

- Universal AC input full range
- Installation on DIN rail 7.5 or 15 mm
- Short circuit protection
- Overload protection
- High efficiency
- LED indicator for DC power ON
- LED indication for DC Iow
- Internal input filter
- CE, TUV approved and cULus Listed

Product Description

The Switching power supplies SPD series are specially designed to be used in all automation application where the installation is on a DIN rail
and compact dimensions and performance are a must.

Approvals

Output Performances

MODEL NO.	INPUT VOLTAGE	OUTPUT WATTAGE	OUTPUT VOLTAGE	OUTPUT CURRENT	$\begin{aligned} & \text { EFF. } \\ & \text { (min.) } \end{aligned}$	EFF. (typ.)	EFF. (avg.)
Single Output Models							
SPD05	90~264 VAC	5 WATTS	+ 5 VDC	1000 mA	67\%	83\%	69\%
SPD12	90~264 VAC	5 WATTS	+12 VDC	420 mA	70\%	86\%	72\%
SPD15	90~264 VAC	5 WATTS	+15 VDC	340 mA	70\%	87\%	72\%
SPD24	90~264 VAC	5 WATTS	+24 VDC	210 mA	70\%	87\%	72\%

Output Data

Line regulation	$\pm 1 \%$
Load regulation	$\pm 2 \%$
Minimum load	0
Turn on time (full resistive load)	1000 ms max
Transient recovery time	2 ms
Ripple and noise	50 mVpp
Output voltage accuracy	$\pm 1 \%$
Temperature coefficient	$\pm 0.03 \% /{ }^{\circ} \mathrm{C}$
Hold up time $\quad \mathbf{V i = 1 1 5 V A C}$	30 ms
	Vi= 230VAC
130 ms	
Voltage fall time (lonom)	150 ms max

Rated continuous loading	
5V Model	1.0A @ 5VDC/0.85A @ 5.75VDC
12V Model	0.42A @ 12VDC/0.36A @ 13.8VDC
15V Model	0.34A@ 15VDC/0.28A@17.25VDC
24V Model	0.21A @ 24VDC/0.17A@28.8VDC
Reverse voltage	
5V Model	VDC 7.5
12V Model	VDC 18
15V Model	VDC 22
24V Model	VDC 35
Capacitor load	7000 $\mu \mathrm{F}$
Voltage rise time at full resistive load	150 ms max

Input Data

Rated input voltage	100-240VAC	Power dissipation	
Voltage range		(Vi : 230VAC, lo nom) 5V Model	2.2W
AC	90-265VAC	12V Model	1.9W
DC	120-370VDC	15V Model	2.1W
Rated input current		24V Model	1.8 W
(Vi : 115VAC, lo nom) Typ.	115 mA	Frequency range	$47-63 \mathrm{~Hz}$
Max.	200 mA	Leakage current	
Inrush current		Input-Output	0.25 mA
$\mathrm{Vi}=115 \mathrm{VAC}$	10A		3.5 mA
Vi= 230VAC	18A		

Controls and Protections

| Overload | $110-135 \%$ | | Over voltage protection |
| :--- | :--- | :--- | :--- |\quad 125-145\% 0

General Data (@ nominal line, full a, $\mathbf{2 5}^{\circ} \mathrm{C}$)

Ambient temperature	$-20^{\circ} \mathrm{C}$ to $71^{\circ} \mathrm{C}$
Derating ($>61^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$)	$2.5 \% /{ }^{\circ} \mathrm{C}$
Ambient humidity	$20 \sim 95 \% \mathrm{RH}$
Storage	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Protection degree	IP20
Cooling	Free air convection
Insulation voltage	
Input-Output Input-FG	3.000VAC/4242VDC min 1.500VAC/2121VDC min
Insulation resistance I/O	$100 \mathrm{M} \Omega \mathrm{min}$ (@ 500VDC)

MTBF (Bellcore issue 6 @ $40^{\circ} \mathrm{C}$, GB) 5V Model 12V Model 15V Model 24V Model	802000 Hours 805000 Hours 808000 Hours 812000 Hours
Case material	Plastic: PC, UL94-V0
Pollution degree	2
Altitude	4850m
Dimensions LxWxD mm(inch)	90(3.60) $\times 22.5(0.89) \times 114(4.49)$
Weight	120 g

Norms and Standards

Vibration resistance	meet IEC 60068-2-6 (Mounting by rail: $10-500 \mathrm{~Hz}$, 2G, along X, Y, Z each Axis, 60 min for each Axis)	CE	EN 61000-6-3, EN 55022 Class B, EN 61000-3-2, EN 61000-3-3, EN 61000-6-2,
Shock resistance	meet IEC 60068-2-27 (15G, $11 \mathrm{~ms}, 3$ Axis, 6 faces, 3 times for each face)		EN 55024, EN 61000-4-2 Level 4, EN 61000-4-3 Level 3,
UL / cUL	UL508 listed, UL60950-1, UL1310 Class 2 Power (only 5V, 12 V w/o Class 2) Recognized, ISA 12.12.01 (Class 1, Division 2, Groups A, B, C and D)		EN 61000-4-5 L-Level 3 , L/N-FG Level 4, EN 61000-4-6 Level 3, EN 61000-4-8 Level 4, EN 61000-4-11, ENV 50204 Level 2,
TUV	EN 60950-1, CB scheme		EN 61204-3
CCC	GB4943, GB9254, GB17625.1		

Block Diagrams

Pin Assignement and Front Controls

Pin No.	Designation	Description
$\mathbf{1}$	V+	Positive output terminal
$\mathbf{2}$	V-	Negative output terminal
$\mathbf{3}$	$\left(\begin{array}{l}\text { - }\end{array}\right.$	Ground this terminal to minimize high-frequency emission
$\mathbf{4}$	\mathbf{N}	Input terminals (neutral conductor, no polarity at DC input)
$\mathbf{5}$	L	Input terminals (phase conductor, no polarity at DC input)
	ON	Operation indicator LED
	LO	DC LOW indicator LED
	Vout ADJ.	Trimmer-potentiometer for Vout adjustment

Derating Diagram

Typ. Current Limited Curve

Mechanical Drawings mm (inches)

Typ. Efficiency Curve

Installation

Ventilation and cooling	Normal convection All sides 25 mm free space for cooling is recommended
Connector size range Spring terminal	AWG24-14 (0.2~2mm²) flexible/solid cable, 10 mm stripping at cable and recommends use copper conductors only, $60 / 75^{\circ} \mathrm{C}$
Screw terminal	AWG26-12 (0.2~2.5 mm^{2}) flexible/solid cable, connector can withstand torque at max $0,56 \mathrm{Nm}$ ($5 \mathrm{lbs}-\mathrm{in}$). $4 \sim 5 \mathrm{~mm}$ stripping at cable and recommends use copper conductors only, $60 / 75^{\circ} \mathrm{C}$
Max. torque for terminal	
Input terminals	0.56 Nm ($5.0 \mathrm{lb}-\mathrm{in}$)
Output terminals	0.56 Nm ($5.0 \mathrm{lb}-\mathrm{in}$)
General tolerances mm(in.)	
0.00 (0.00) $\div 30.00$ (1.18)	± 0.30 (0.01)
30.00 (1.18) $\div 120.00$ (4.72)	± 0.50 (0.02)

