## : ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!


## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

# Switching Power Supply Type SPD 100W DIN rail mounting 

CARLO GAVAZZI


## Product Description

This SPD is the most compact 100W power supply on the market. Relay output for "power ready" parallel function and PFC are
included. Performances are unique with high efficiencies and the possibility of being used up to $70^{\circ} \mathrm{C}$ with a little derating.

- Installation on DIN Rail 7.5 or 15 mm
- Short circuit protection
- PFC standard
- Power ready output on 24VDC
- LED indicator for DC power ON
- LED indicator for DC low
- Standard parallel function
- Very compact dimensions
- UL, cUL listed and TUV/CE approved
- Class I Div 2 Groups A, B, C, D approved


## Ordering Key

Model
Mounting ( $\mathrm{D}=$ Din rail )
Output voltage
Output power
Input Type

Input type: 1= single phase

## Approvals

## Output Performances

| MODEL NO. | INPUT <br> VOLTAGE | OUTPUT <br> WATTAGE | OUTPUT <br> VOLTAGE | OUTPUT <br> CURRENT | EFF. <br> (min.) | EFF. <br> (typ.) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Single Output Models |  |  |  |  |  |  |  |
| SPD12100 | $90 \sim 264$ VAC | 100.8 WATTS | +12 VDC | $8,4 \mathrm{~A}$ | $82 \%$ | $84 \%$ |  |
| SPD24100 | $90 \sim 264$ VAC | 100.8 WATTS | +24 VDC | $4,2 \mathrm{~A}$ | $84 \%$ | $86 \%$ |  |
| SPD48100 | $90 \sim 264$ VAC | 100.8 WATTS | +48 VDC | $2,1 \mathrm{~A}$ | $86 \%$ | $88 \%$ |  |

## Output Data

| Line regulation | $\pm 1 \%$ |  |  |
| :---: | :---: | :---: | :---: |
| Load regulation |  | Voltage fall time ( $\mathrm{I}_{\mathrm{o}}$ nom Vi nom) | 150 ms max |
| Non parallel model | $\pm 1 \%$ | Rated continuous loading |  |
| Parallel model | $\pm 5 \%$ | 12V Model | 8.4A @ 12VDC/6.9A @ 14.5VDC |
| Minimum load | OA | 24V Model | 4.2A @ 24VDC/3.5A @ 28.5VDC |
| Turn on time (full resistive load) |  | 48V Model | 2.1A @ 48VDC/1.8A @ 56VDC |
| VI nom, lo nom 12V/24V |  | Reverse voltage |  |
| models with $7000 \mu \mathrm{~F}$ CAP | 1000 ms | 12V Model | VDC 18 |
| VI nom, lo nom 48V |  | 24V Model | VDC 35 |
| models with $3500 \mu \mathrm{~F}$ CAP | 2000 ms | 48V Model | VDC 63 |
| Transient recovery time | 2 ms | Capacitor load | 7000 $\mu \mathrm{F}$ |
| Ripple and noise | 50 mVpp | Voltage rise time |  |
| Output voltage accuracy | $\pm 1 \%$ | Vi nom lo nom | 150 ms |
| Temperature coefficient | $\pm 0.03 \% /{ }^{\circ} \mathrm{C}$ | Vi nom, lo nom 12V/24V |  |
| Hold up time |  | models with 7000 $\mathrm{F}^{\text {F CAP }}$ | 500 ms |
| $\mathrm{Vi}=115 \mathrm{VAC}$ | 15 ms | 48 V model with $3500 \mu \mathrm{~F}$ CAP | 500 ms |
| $\mathrm{Vi}=230 \mathrm{VAC}$ | 30 ms |  |  |

Input Data

| Rated input voltage | 100-240VAC | Power dissipation |  |
| :---: | :---: | :---: | :---: |
| Voltage range |  | (Ni: 230VAC, lo nom) 12V Model | 18.5W |
| AC | 90-264VAC | 24 V Model | 15W |
| DC | 120-375VDC | 48V Model | 14W |
| Rated input current |  | Frequency range | $47-63 \mathrm{~Hz}$ |
| (vi:90vac, lo nom) Typ. | 2.4A | Leakage current |  |
| Inrush current |  | Input-Output | 0.25 mA |
| $\mathrm{Vi}=115 \mathrm{VAC}$ | 30A | Input-FG | 3.5 mA |
| $\mathrm{Vi}=230 \mathrm{VAC}$ | 60A |  |  |

Controls and Protections

| Overload |  | Over voltage protection | VDC |  |
| :---: | :---: | :---: | :---: | :---: |
| 12V Model | 14.5 V to 17.4 V |  | Min. | Max. |
| 24V Model | 30.0 V to 33.0V | 12V Model | 14.5 | 16.5 |
| 48V Model | 60.0 V to 66.0V | 24V Model | 30 | 33 |
| Input fuse | T3.15A/250VAC internal1 ${ }^{11}$ | 48V Model | 60 | 66 |
| Output short circuit | Fold forward |  |  |  |
| Power ready output threshold at start up | $\geq 17.6-19.4 \mathrm{VDC}$ | Internal surge voltage protection (IEC 61000-4-5) | Varistor |  |
| Electrical isolation | 500VDC |  |  |  |
| Contact rating at60VDC | 0.3A |  |  |  |

1) Fuse not replaceable by user

General Data (@ nominal line, full load, $\mathbf{2 5}^{\circ} \mathrm{C}$ )

| Ambient temperature | $-35^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$ |
| :--- | :--- |
| Derating $\left(>61^{\circ} \mathrm{C}\right.$ to $\left.+71^{\circ} \mathrm{C}\right)$ | $2.5 \% / \mathrm{C}$ |
| Ambient humidity | $22-95 \% \mathrm{RH}$ |
| Storage temperature | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| Protection degree | IP 20 |
| Cooling | Free air convection |
| Pollution degree | 2 |
| Switching frequency | $45-60 \mathrm{kHz}$ |
| Vi nom, lo nom |  |
| Isolation voltage | $3,000 / 4,242 \mathrm{VAC} / \mathrm{VDC}$ |
| Input/output | $1,500 / 2,121 \mathrm{VAC} / \mathrm{VDC}$ |
| Input/FG | $500 / 710 \mathrm{VAC} / \mathrm{VDC}$ |
| Output/FG |  |


| Isolation resistance |  |
| :---: | :---: |
| input/output, @500VDC | $100 \mathrm{M} \Omega$ |
| Altitude during operation | 5000m |
| Installation position | Vertical |
| MTB (Bellcore issue 6 @ $40^{\circ} \mathrm{C}, \mathrm{GB}$ ) |  |
|  | 5V Model 498000 Hours |
|  | 12V Model 504000 Hours |
|  | 24V Model 520000 Hours |
|  | 48V Model 531000 Hours |
| Case material | Plastic: PC, UL94-V0 |
| Dimensions LxWxD mm(inch) | $90(3.6) \times 54(2.13) \times 114(4.49)$ |
| Weight | 430 g |

## Norms and Standards

| Vibration resistance | meet IEC 60068-2-6 <br> (Mounting by rail: $10-500 \mathrm{~Hz}$, $2 G$, along $X, Y, Z$ each Axis, 60 min for each Axis) | CE | EN 61000-6-3, EN 55022 <br> Class B, EN 61000-3-2, <br> EN 61000-3-3, <br> EN 61000-6-2, |
| :---: | :---: | :---: | :---: |
| Shock resistance | meet IEC 60068-2-27 <br> ( $15 \mathrm{G}, 11 \mathrm{~ms}, 3$ Axis, 6 faces, <br> 3 times for each face) |  | EN 55024, <br> EN 61000-4-2 Level 4, <br> EN 61000-4-3 Level 3, |
| UL/cUL | UL508 listed, UL60950-1 |  | EN 61000-4-4 Level 4, |
| TUV | EN 60950-1, CB scheme EN 61558-1, EN 61558-217 (meet EN 60204) |  | EN 61000-4-5 L-Level 3, L/N-FG Level 4, <br> EN 61000-4-6 Level 3, |
| ISA | 12.12.01 Class I Div 2 Groups A, B, C, D |  | EN 61000-4-8 Level 4, EN 61000-4-11, <br> ENV 50204 Level 2, <br> EN 61204-3 |

Block Diagram


Pin Assignement and Front Controls

| Pin No. | Designation | Description |
| :--- | :--- | :--- |
| $\mathbf{1}$ | RDY | A normal open relay contact for DC ON level control |
| $\mathbf{2}$ |  | Never connect |
| $\mathbf{3 , 4}$ | V+ | Positive output terminal |
| $\mathbf{5 , 6}$ | V- | Negative output terminal |
| $\mathbf{7}$ | $\left(\begin{array}{l}\text { ( }\end{array}\right.$ | Grounf this terminal to minimize high-frequency emissions |
| $\mathbf{8}$ | $\mathbf{N}$ | Input terminals (neutral conductor, no polarity at DC input) |
| $\mathbf{9}$ | L | Input terminals (phase conductor, no polarity at DC input) |
|  | DC ON | Operation indicator LED |
|  | DC LO | DC LOW voltage indicator LED |
|  | Vout ADJ | Trimmer-potentiometer for Vout adjustment |

## Typ. Efficiency Curve



Derating Diagram


## Typ. Current Limited Curve



## Installation

## Ventilation and cooling

Connector size range Spring terminal

Screw terminal

Normal convection All sides 25 mm free space for cooling is recommended

AWG24-14 (0.2~2mm²) flexible/solid cable, 10 mm stripping at cable and recommends use copper conductors only, $60 / 75^{\circ} \mathrm{C}$ AWG26-12 (0.2~2.5mm²) flexible/solid cable, con nector can withstand torque at max $0,56 \mathrm{Nm}(5 \mathrm{lbs}-\mathrm{in}) .4 \sim 5 \mathrm{~mm}$ stripping at cable and recom mends use copper conductors monly, $60 / 75^{\circ} \mathrm{C}$

Max. torque for terminal Input terminal Output terminal General tollerance mm(in.)
$0.00(0.00) \div 30.00$ (1.18)
30.00 (1.18) $\div 120.00$ (4.72)
0.56 Nm ( $5.0 \mathrm{lb}-\mathrm{in}$ )
$0.56 \mathrm{Nm}(5.01 \mathrm{lb}-\mathrm{in})$

$$
\pm 0.30(0.01)
$$

$$
\pm 0.50(0.02)
$$

Mechanical Drawings mm (inches)


678


