: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Switching Power Supply Type SPD 240W Compact DIN rail mounting

Product Description

The Switching power supplies SPD series are specially designed to be used in all automation application where the
installation is on a DIN rail and compact dimensions and performance are a must.

Approvals

- Universal AC input full range
- Installation on DIN rail 7.5 or 15 mm
- Short circuit protection
- Active PFC as standard
- High efficiency up to 93%
- Power ready output
- LED indicator for DC power ON
- LED indicator for DC low
- Parallel connection feature
- Compact dimensions
- UL, cUL listed and TUV/CE approved
- 150\% peak load capability

Input type: 1C = single phase Compact version
Optional features

Description	Code
Screw terminal	Nil
Plug-in connectors	B

Output Performance

MODEL NO.	INPUT VOLTAGE	OUTPUT POWER	OUTPUT VOLTAGE	OUTPUT CURRENT	EFF. (min.)	EFF. (typ.)
Single Output Models						
SPD 12240 1C X	88~264 VAC	192 WATTS	+12 VDC	16A	89\%	91\%
SPD 24240 1C X	88~264 VAC	240 WATTS	+ 24 VDC	10A	91\%	93\%

Output Dafa (All specifications are at nominal values, full load, $25^{\circ} \mathrm{C}$ unless otherwise noticed)

Line regulation	$\pm 1 \%$	Rated continuous loading	
Load regulation	$\pm 1 \%$	12V Model 24V ModeI	16A@12VDC/13A@14.5VDC 10A@24VDC/8.4A@28.5VDC
Minimum load	0\%	Reverse voltage	
Turn on time Vi nom, lo nom	1000 ms (full resistive load)	12V Model 24V Model	18VDC 35VDC
	1500 ms with $7000 \mu \mathrm{~F}$ CAP	Capacitor load	7000 $\mu \mathrm{F}$
Transient recovery time	2 ms	Temperature coefficient	$\pm 0.03^{\circ} \mathrm{C}$
Ripple and noise	100 mVpp	DC ON indicator threshold at start up (Green LED)	VDC
Output voltage accuracy	0\% $\div+1 \%$		Min. Max.
$\begin{array}{ll}\text { Hold up time } & \mathrm{Vi}=115 \mathrm{VAC} \\ \mathrm{Vi}=230 \mathrm{VAC}\end{array}$	$\begin{aligned} & 25 \mathrm{~ms} \\ & 30 \mathrm{~ms} \end{aligned}$	Vi nom, lo nom $\begin{aligned} & \text { 12V Model } \\ & \\ & 24 \mathrm{~V} \text { Model }\end{aligned}$	$\begin{array}{ll} 10 & 11.2 \\ 17.6 & 19.4 \\ \hline \end{array}$
Voltage fall time (10nom, Vi nom)	150 ms	DC LOW indicator threshold at start up	VDC
Voltage rise time Vi nom, lo nom	150 ms (tull resistive load) 500 ms with $\mathbf{7 0 0 0} \mu \mathrm{F} \mathrm{CAP}$	(Red LED) Vi nom, lo nom 12V Model 24V Model	Min. Max. 10 11.2 17.6 19.4 0.1
Voltage trim range 12V Model 24V Model	11.4-14.5 VDC 22.5-28.5 VDC	Parallel operation	0.1 lo min~0.9 lo max

Input Data (All specifications are at nominal values, full load, $25^{\circ} \mathrm{C}$ unless otherwise noticed)

Rated input voltage Inom	100-240VAC	Power dissipation	
Voltage range AC IN	88-264VAC	$\begin{array}{ll}\text { Ni: } 230 \mathrm{VAC}, \text { lo nom) } & \text { 12V Model } \\ & \text { 24V Model }\end{array}$	$\begin{aligned} & 17 \mathrm{~W} \\ & 16 \mathrm{~W} \end{aligned}$
DC IN	120-375VDC	Frequency range	$47-63 \mathrm{~Hz}$
Rated input current		Leakage current	
Vi: 88VAC lo nom	3.2A Max.	Input-Output	$<0.25 \mathrm{~mA}$
Vi: 115VAC lo nom	2.3A Typ.	Input-FG	$<3.5 \mathrm{~mA}$
Vi: 230VAC lo nom	1.15A Typ.	P.F.C. (Active)	0.97@Vi:230VAC, lo nom
Inrush current			
$\begin{aligned} & \mathrm{Vi}=115 \mathrm{VAC} \\ & \mathrm{Vi}=230 \mathrm{VAC} \end{aligned}$	$\begin{aligned} & 24 A \\ & 48 A \end{aligned}$		

Controls and Protections
(All specifications are at nominal values, full load, $\mathbf{2 5}^{\circ} \mathrm{C}$ unless otherwise noticed)
$\left.\begin{array}{llllll}\hline \begin{array}{l}\text { Overload Vi nom } \\ \text { (see typ current limited curve) }\end{array} & \text { 120\% }-150 \%\end{array}\right)$

Fuse not replaceable by user
General Data (All specifications are at nominal values, full load, $25^{\circ} \mathrm{C}$ unless otherwise noticed)

Ambient temperature	$-40^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$	Pollution degree	2
Derating ($+61^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$)	$2.5 \% /{ }^{\circ} \mathrm{C}$ (see curve)	MTBF (Bellcore issue 6 @ $40^{\circ} \mathrm{C}, \mathrm{GB}$)	
Relative humidity	20 ~ 95\%RH	12V Model	374000 Hours
Storage temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 V	384000 Hours
Protection degree	IP20	Case materia	Metal
Cooling	Free air convection	Altitude	4850 m
Insulation voltage Input-Output Input-Fg	3000VAC/4242VDC min 1500VAC/2121VDC min	Dimensions LxWxD mm(inch) Screw terminal type Detachable connector type	$\begin{aligned} & 124.5(4.9) \times 64(2.52) \times 123.6(4.87) \\ & 143.5(5.65) \times 64(2.52) \times 123.6(4.87) \end{aligned}$
Insulation resistance I/O	100 M 2 min (@ 500VDC)	Weight	860 g
Switching Frequency	90 Khz Typ	Packing	960g

Norms and Standards

Vibration resistance	meet IEC 60068-2-6 (Mounting by rail: Random wave, $10-500 \mathrm{~Hz}, 2 \mathrm{G}$ each long Z, Y, Z axes $10 \mathrm{~min} / \mathrm{cycle}, 60 \mathrm{~min}$.)	CE	EN 61000-6-3, EN 55022 Class B, EN 61000-3-2, EN 61000-3-3, EN 61000-6-2,
Shock resistance	meet IEC 60068-2-27 (4G, 22ms, 3 Axis, 6 faces, 3 times for each face)		EN 55024, EN 61000-4-2 level 4, EN 61000-4-3 level 3
UL/cUL	UL 508 Listed UL 60950-1 Recognized		EN 61000-4-5 L-N level 3 EN 61000-4-6 level 3
TUV	EN 60950-1. CB scheme		EN 61000-4-8 level 4 EN 61000-4-11, ENV 50204 Level 2 EN 61204-3

Block Diagram

Pin Assignement and Front Controls

Pin No.	Designation	Description
$\mathbf{1}$	RDY	A normal open relay contact for DC ON level control Never connect except 24 V model
$\mathbf{2}$	V+	Positive output terminal
$\mathbf{3 . 4}$	V-	Negative output terminal
$\mathbf{5 . 6}$	$\boldsymbol{\dagger}$	Ground this terminal to minimize high-frequency emissions
$\mathbf{7}$	\mathbf{N}	Input terminals (neutral conductor, no polarity at DC input)
$\mathbf{8}$	L	Input terminal (phase conductor, no polarity at DC input)
$\mathbf{9}$	DC ON	Operation indicator LED
LED	DC LO	DC LOW voltage indicator LED
LED	Vout ADJ.	Trimmer-potentiometer for Vout adjustment
Trimmer	Switch	S/P
Single / Parallel select switch		

Derating Curve

Typ. Efficiency curve

Typ. Current Limited Curve

Peak Loading

Mechanical Drawings mm (inches)

Installation

Ventilation and cooling
Normal convection. All sides 25 mm free space for cooling is recommended
Connector size range
Screw terminals:

- Input Terminals
- Output Terminals

Detachable connectors:

- Input Terminals
- Output Terminals

AWG24-10 (0.2~4mm²) flexible / solid cable, max. torque at 1.16 Nm (9 pound-inches). max. torque at 0.616 Nm (5.5 pound-inches). 8 mm stripping at cable end recommends.

AWG24-12 (0.2~2.5 mm²) flexible / solid cable, \max. torque at 0.51 Nm (4.5 pound-inches). max. torque at 0.79 Nm (7 pound-inches). $4 \sim 5 \mathrm{~mm}$ stripping at cable end recommends.

Use copper conductors only, $60 / 75^{\circ} \mathrm{C}$.

