

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

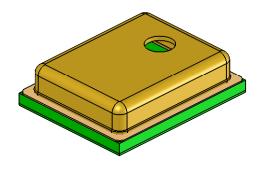
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

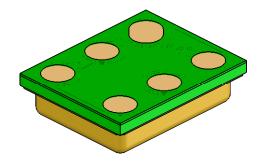
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





Digital "Mini" High SNR SiSonic™ Microphone Specification

Knowles Acoustics 1151 Maplewood Drive Itasca, IL 60143

1. DESCRIPTION AND APPLICATION

Digital "Mini" High SNR SiSonic[™] Microphone 1.1 DESCRIPTION

Specification

Consumer electronics 1.2 APPLICATION

2. PART MARKING

Identification Number Convention

S 1 2 3

4 5 6 7

S: Identification Marking

"S" - Knowles SiSonic Production

"E" - Knowles Engineering Samples

Digits 1-7: Job Identification Number

3. MATERIALS STATEMENT

- 3.1 Meets the requirements of the European RoHS directive, 2002/95/EC as amended.
- 3.2 Meets the requirements of the industry-standard IEC 61249-2-21:2003 for halogenated substances and Knowles Green Materials Standards Policy section on Halogen-Free.
- 3.3 Ozone depleting substances are not used in the product or the processes used to make the product, including compounds listed in annex A, B, and C of the "Montreal Protocol on Substances that deplete the Ozone Layer."

4. TEMPERATURE RANGE

4.1 Operating Temperature Range: -40°C to +100°C

4.2 Storage Temperature Range: -40°C to +100°C

Sheet 2 of 11

5. ABSOLUTE MAXIMUM RATINGS

Parameter	Absolute Maximum Rating	Unit
CLOCK to Ground	-0.3, +5.0	V
SELECT, V _{DD} , DATA to Ground	-0.3, +5.0	V
Input Current	±5	mΑ
DATA Output Short Circuit	Indefinite to Ground or V_{DD}	

Stresses at these Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only. The device may not function when operated at these or any other conditions beyond those indicated under "Acoustic & Electrical Specifications". Exposure beyond those indicated under "Acoustic & Electrical Specifications" for extended periods may affect device reliability.

6. ACOUSTIC & ELECTRICAL SPECIFICATIONS

TEST CONDITIONS: 23 \pm 2°C, 60-70% R.H., V_{DD} = 1.8V, f_{clock} =2.4MHz, no load, unless otherwise specified

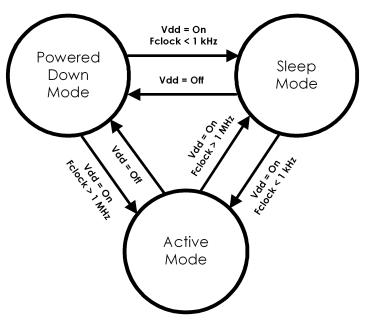
Parameter	Symbol	Condition		Limits		Unit
raidiffelei	Зугноот	Condition	Mn.	Nom.	Max.	OHH
Supply Voltage ¹	V_{DD}		1.6		3.6	V
Current Consumption ^{1,5,6}	I _{DD}				600	μA
Sleep Current 1,6	I _{SLEEP}	f_{clock} < 1 kHz		25	45	μA
Directivity			Omni-directional			
Sensitivity ¹	S	94 dB SPL @ 1kHz	-25	-22	-19	dBFS
Signal to Noise Ratio	SNR	94 dB SPL @ 1kHz, A-weighted		61.5		dB(A)
Total Harmonic Distortion	THD	100 dB SPL @ 1kHz			1	%
loral Hairhorlic Distortion	שווו	110 dB SPL @ 1kHz			10	%
Polarity		Increasing sound pressure	Dec	creasing	densityof	1's
Fall-asleep Time ^{2,3}		V_{DD} = On, f_{clock} < 1kHz			10	ms
Wake-up Time ^{2,4}		V _{DD} = On, f _{clock} ≥ 1 <i>M</i> Hz			10	ms
Short Circuit Output Current	I _{SC}	Grounded output pin		1	10	mA
Output Load	C_{LOAD}				100	рF
Data Format				1/2 Cyc	cle PDM	
Clock Frequency	f _{clock}		1.0		3.25	MHz
Clock Duty Cycle			40		60	%
Clock Rise Time	t _{cr}				10	ns
Clock Fall Time	† _{cf}				10	ns
Logic Input/Output Low	V _{IOL}	l _{out} = 1ma	-0.3		$0.35xV_{DD}$	V
Logic Input/Output High	V_{IOH}	l _{out} = 1ma	$0.65xV_{DD}$		V _{DD} +0.3	V
Delay Time for Valid Data	t _{dv}		18		60	ns
Delay time for High Z	t _{dz}		0		16	ns

^{100%} tested

 $^{^{6}}$ Specified max. values are measured at $V_{DD} = 3.6V$

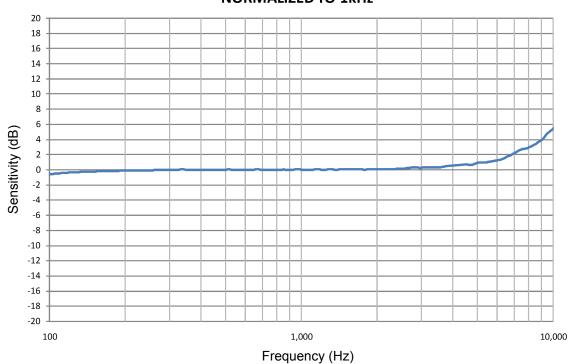
Revision: A Release Level: Active Sheet 3 of 11

² Valid microphone states are: Powered Down mode (mic off), Sleep mode (low current, no output, fast startup), and Active mode (normal operation).


 $^{^3}$ Time from Fclock < 1 kHz to Sleep Current specification is met when transitioning from Active to Sleep mode.

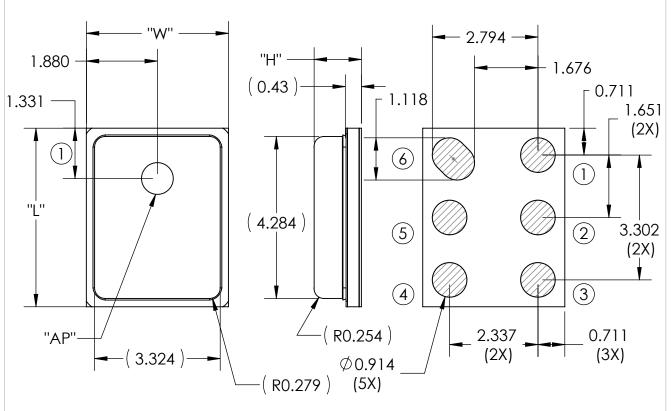
 $^{^4}$ Time from Fclock ≥ 1 MHz to all applicable specifications are met when transitioning from Sleep to Active mode.

⁵ ΔI_{DD} = 0.5 * V_{DD} * C_{LOAD} * F_{CLOCK}



7. MICROPHONE STATE DIAGRAM

8. FREQUENCY RESPONSE CURVE

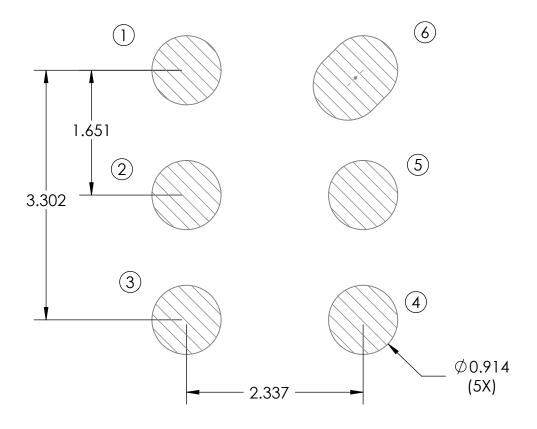

TYPICAL FREE FIELD RESPONSE NORMALIZED TO 1kHz

9. MECHANICAL SPECIFICATIONS

ITEM	DIMENSION	TOLERANCE	UNITS
LENGTH (L)	4.720	±0.100	mm
WIDTH (W)	3.760	±0.100	mm
HEIGHT (H)	1.310	±0.100	mm
ACOUSTIC	Ø0.840	±0.100	po po
PORT (AP)	Ø0.040	±0.100	mm

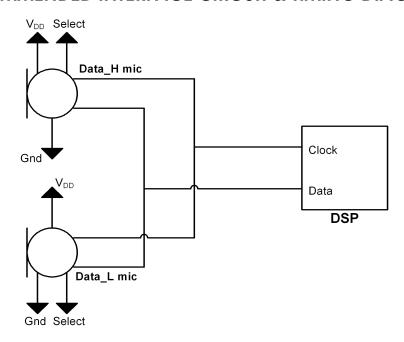
	PIN OUTPUT
PIN#	FUNCTION
1	GROUND (GND)
2	SELECT
3	GROUND (GND)
4	CLOCK (CLK)
5	DATA
6	POWER (V _{DD})

Note:

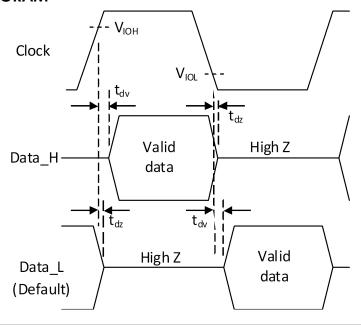

Dimensions are in milimeters unless otherwise specified.

Tolerance ±0.15mm unless otherwise specified.

10. RECOMMENDED CUSTOMER LAND PATTERN

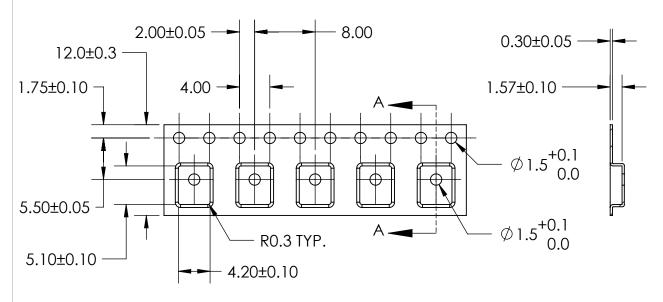


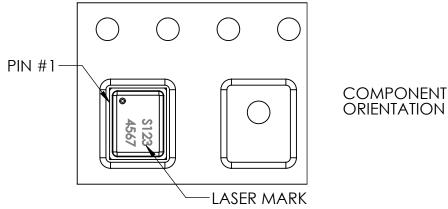
NOTE: Contact Knowles for Solder Stencil Information



11. RECOMMENDED INTERFACE CIRCUIT & TIMING DIAGRAM

LABEL	Select	Drives data after	High-Z after
Data_H	High	Rising clock edge	Falling clock edge
Data_L	Low (default)	Falling clock edge	Rising clock edge

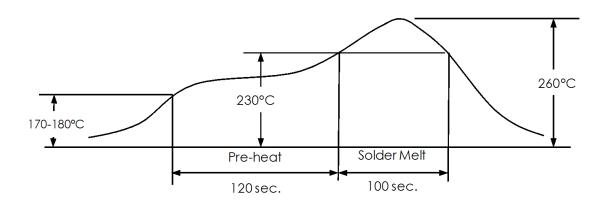

TIMING DIAGRAM



12. PACKAGING DETAIL

MODEL NUMBER	SUFFIX	REEL DIAMETER	QUANTITY PER REEL
SPM1423HM4H-B	-6	13"	4,800

TAPE & REEL	PER EIA-481
II ABFI	LABEL APPLIED TO EXTERNAL PACKAGE & DIRECT TO REEL.


Note:

Dimensions are in milimeters unless otherwise specified.

13. SOLDER REFLOW PROFILE

Stage	Temperature Profile	Time (maximum)
Pre-heat	170 ~ 180°C	120 sec.
Solder Melt	Above 230°C	100 sec.
Peak	260°C maximum	30 sec.

14. ADDITIONAL NOTES

- Shelf life: Twelve (12) months when devices are to be stored in factory supplied, unopened ESD moisture sensitive bag under maximum environmental conditions of 30°C, 70% R.H.
- MSL (moisture sensitivity level) Class 2a.
- Do not pull a vacuum over port hole of the microphone. Pulling a vacum over the
- port hole can damage the device.

 Do not board wash after the reflow process. Board washing and cleaning agents can damage the device. Do not expose to ultrasonic processing or cleaning.
- Do not brush board after the reflow process. Brushing the board with/without (E) solvents can damage the device.
- (F) Do not insert any object in port hole of device at any time as this can damage the
- Number of reflow Recommend no more than 3 cycles. (G)
- Do not apply air pressure into the port hole. Air pressure over psi can damage the device.

Knowles Acoustics, a division of Knowles Electronics, LLC.

Release Level: Active

Sheet 9 of 11

15. RELIABILITY SPECIFICATIONS

Note: After test conditions are performed, the sensitivity of the microphone shall not deviate more than 3dB from its initial value.

Test	Description
Thermal Shock	100 cycles of air-air thermal shock from -40°C to
High Temperature Storage	+125°C with 15 minute soaks. (IEC 68-2-4) +105°C environment for 1,000 hours. (IEC 68-2-2 Test Ba)
Low Temperature Storage	-40°C environment for 1,000 hours. (IEC 68-2-2 Test Aa)
High Temperature Bias	+105°C environment while under bias for 1,000 hours. (IEC 68-2-2 Test Ba)
Low Temperature Bias	-40°C environment while under bias for 1,000 hours. (IEC 68-2-2 Test Aa)
Temperature / Humidity Bias	+85°C/85% R.H. environment while under bias for 1,000 hours. (JESD22-A101A-B)
Vibration	4 cycles lasting 12 minutes from 20 TO 2,000 Hz in X, Y and Z direction with peak acceleration of 20g. (MIL 883E, Method 2007.2, A)
Electrostatic Discharge	3 discharges at +/-8kV direct contact to lid when unit is grounded (IEC 61000-4-2) and 3 discharges at +/-2kV direct contact to I/O pins. (MIL 883E, Method 3015.7)
Reflow	5 reflow cycles with peak temperature of +260°C.
Mechanical Shock	3 pulses of 10,000g in the X, Y and Z direction. (IEC 68-2-27, Test Ea) $$

16. SPECIFICATION REVISIONS

ITIAL RELEASE (C10113410)	02-16-12

The information contained in this literature is based on our experience to date and is believed to be reliable and it is subject to change without notice. It is intended as a guide for use by persons having technical skill at their own discretion and risk. We do not guarantee favorable results or assume any liability in connection with its use. Dimensions contained herein are for reference purposes only. For specific dimensional requirements consult factory. This publication is not to be taken as a license to operate under, or recommendation to infringe any existing patents. This supersedes and voids all previous literature.

