: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Middle Power LED Series 3030
 LM301Z CRI 70

Features \& Benefits

- 0.3 W class middle power LED
- EMC resin for high reliability
- Standard form factor for design flexibility ($3.0 \times 3.0 \mathrm{~mm}$)

Table of Contents

1. Characteristics 3
2. Product Code Information 4
3. Typical Characteristics Graphs 11
4. Outline Drawing \& Dimension 13
5. Reliability Test Items \& Conditions 14
6. Soldering Conditions

\qquad 15
7. Tape \& Reel ------------------------ 16
8. Label Structure 18
9. Packing Structure 19
10. Precautions in Handling \& Use 22

1. Characteristics

a) Absolute Maximum Rating

Item	Symbol	Rating	Unit	Condition
Ambient / Operating Temperature	Ta	$-40 \sim+85$	${ }^{\circ} \mathrm{C}$	-
Storage Temperature	$\mathrm{T}_{\text {stg }}$	$-40 \sim+100$	${ }^{\circ} \mathrm{C}$	-
LED Junction Temperature	T_{j}	125	${ }^{\circ} \mathrm{C}$	-
Forward Current	I_{F}	400	mA	-
Pulse Forward Current	I_{fp}	600	mA	Duty $1 / 10$, pulse width 10 ms
Assembly Process Temperature	-	$\begin{aligned} & 260 \\ & <10 \end{aligned}$	$\begin{gathered} { }^{\circ} \mathrm{C} \\ \mathrm{~s} \end{gathered}$	-
ESD (HBM)	-	5	kV	-

b) Electro-optical Characteristics ($\mathrm{I}_{\mathrm{F}}=65 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

Item	Nominal CCT (K)	Rank	Bin	Min.	Typ.	Max.	Unit
Forward Voltage (V_{F})		WA	AY	2.6	-	2.7	V
			AZ	2.7	-	2.8	
			A1	2.8	-	2.9	
Reverse Voltage (@ 5 mA)				0.7	-	1.2	V
Color Rendering Index (R_{a})		3		70	-	-	-
Special CRI (R9)				-	-	-	-
Thermal Resistance (junction to solder point)				-	12	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Beam Angle				-	120	-	\bigcirc

Note:

Samsung maintains measurement tolerance of: forward voltage $= \pm 0.1 \mathrm{~V}$, luminous flux $= \pm 5 \%, \mathrm{CRI}= \pm 3$

2. Product Code Information

a）Luminous Flux Bins $\left(\mathrm{I}_{\mathrm{F}}=65 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}\right)$

Nominal CCT （K）	CRI Min．	Product Code	Flux Bin	Flux Range （ Φ_{v}, Im）
3000	70	SPMWH3326MD3WAV ヶ～SA	SA	30．0－33．0
3500	70	SPMWH3326MD3WAU そTSA	SA	$30.5-33.5$
4000	70	SPMWH3326MD3WAT ${ }^{\text {\％S }}$ SA	SA	31．0－34．0
5000	70	SPMWH3326MD3WARネSA	SA	33．0－36．0

Note：

＂出＂can be＂0＂（Whole Bin），＂3＂（MacAdam 3－step），＂Y＂（Kitting）
b) Kitting Rule

1) Y Kitting bin Concept
1. Under agreement between customer and SAMSUNG ELECTRONICS, SAMSUNG can supply kitting bin (VF, Color, Im).
2. A forward voltage (VF) of kitting bin is combined by a pair of same VF rank such as (A2+A2) or (A3+A3).
3. A Chromaticity Coordinates of kitting bin is mixed by kitting procedure.(below kitting simulation)
[Kitting example]

[Binning Information]
VF
c) Color Bins ($\mathrm{I}_{\mathrm{F}}=65 \mathrm{~mA}, \mathrm{~T}_{\mathrm{S}}=25^{\circ} \mathrm{C}$)

Nominal CCT (K)	CRI	Product Code	Color Rank	Chromaticity Bins
3000	70	SPMWH3326MD3WAVOSA	vo (Whole Bin)	VN, VP, VQ, VR, VS, VT, VU
		SPMWH3326MD3WAV3SA	$\begin{gathered} \text { V3 } \\ \text { (MacAdam 3-step) } \end{gathered}$	VU
		SPMWH3326MD3WAVYSA	vy (Kitting)	VN, VP, VQ, VR, VS, VT, VU
3500	70	SPMWH3326MD3WAUOSA	uo (Whole Bin)	UN, UP, UQ, UR, US, UT, UU
		SPMWH3326MD3WAU3SA	$\begin{gathered} \text { U3 } \\ \text { (MacAdam 3-step) } \end{gathered}$	UU
		SPMWH3326MD3WAUYSA	$\begin{gathered} \text { UY } \\ \text { (Kitting) } \end{gathered}$	UN, UP, UQ, UR, US, UT, UU
4000	70	SPMWH3326MD3WATOSA	TO (Whole Bin)	TN, TP, TQ, TR, TS, TT, TU
		SPMWH3326MD3WAT3SA	T3 (MacAdam 3-step)	TU
		SPMWH3326MD3WATYSA	TY (Kitting)	TN, TP, TQ, TR, TS, TT, TU
5000	70	SPMWH3326MD3WAROSA	$\begin{gathered} \text { RO } \\ \text { (Whole Bin) } \end{gathered}$	RN, RP, RQ, RR, RS, RT, RU
		SPMWH3326MD3WAR3SA	$\begin{gathered} \text { R3 } \\ \text { (MacAdam 3-step) } \end{gathered}$	RU
		SPMWH3326MD3WARYSA	$\begin{gathered} \text { RY } \\ \text { (Kitting) } \end{gathered}$	RN, RP, RQ, RR, RS, RT, RU

d) Voltage Bins ($\mathrm{I}_{\mathrm{F}}=65 \mathrm{~mA}, \mathrm{~T}_{\mathrm{S}}=25^{\circ} \mathrm{C}$)

Nominal CCT (K)	CRI Min.	Product Code	Voltage Rank	Voltage Bin	Voltage Range (V)
				AY	$2.6 \sim 2.7$
-	-	-	WA	AZ	$2.7 \sim 2.8$
				A1	2.8 ~ 2.9

f) Chromaticity Region \& Coordinates ($\mathrm{I}_{\mathrm{F}}=65 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

MacAdam	$\begin{aligned} & \text { CCT } \\ & (\mathrm{K}) \end{aligned}$	Center point		Major-axis	Minor-axis	Rotation
		CIE x	CIE y	a	b	Ф
3 step	3000	0.4338	0.4030	0.0083	0.0041	53.22
	3500	0.4073	0.3917	0.0093	0.0041	54.00
	4000	0.3818	0.3797	0.0094	0.0040	53.72
	5000	0.3447	0.3553	0.0082	0.0035	59.62
5 step	3000	0.4338	0.4030	0.0138	0.0068	53.22
	3500	0.4073	0.3917	0.0155	0.0068	54.00
	4000	0.3818	0.3797	0.0157	0.0067	53.72
	5000	0.3447	0.3553	0.0137	0.0058	59.62

Note:

Samsung maintains measurement tolerance of: $\quad C x, C y= \pm 0.005$
e) Chromaticity Region \& Coordinates

CCT	Region	CIE x	CIE y
	1	0.4283	0.4071
	2	0.4382	0.4146
	3	0	0.4437

3. Typical Characteristics Graphs
a) Spectrum Distribution ($\mathrm{I}_{\mathrm{F}}=65 \mathrm{~mA}, \mathrm{~T}_{\mathrm{S}}=25^{\circ} \mathrm{C}$)

CCT : 5000K (70 CRI)

b) Forward Current Characteristics $\left(\mathrm{T}_{\mathrm{s}}=25^{\circ} \mathrm{C}\right)$

c) Temperature Characteristics ($\mathrm{IF}=\mathbf{6 5 m A}$)

d) Color Shift Characteristics (IF $=65 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

e) Derating Curve

f) Beam Angle Characteristics (IF $=65 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

4. Outline Drawing \& Dimension

[TOP VIEW]
[BOTTOM VIEW]

Tolerance : $\pm 0.1 \mathrm{~mm}$

[SIDE VIEW]

[RECOMMENDED PCB SOLDER PAD]

Notes:

1) This LED has built-in ESD protection device(s) connected in parallel to LED chip(s).
2) T_{s} point and measurement method:
(1) Measure one point at the cathode pad, if necessary remove PSR of PCB to reach T_{s} point.
(2) All pads must be soldered to the PCB to dissipate heat properly, otherwise the LED can be damaged.

Precautions:

1) Pressure on the LEDs will influence to the reliability of the LEDs. Precautions should be taken to avoid strong pressure on the LEDs. Do not put stress on the LEDs during heating.
2) Re-soldering should not be done after the LEDs have been soldered. If re-soldering is unavoidable, LED's characteristics should be carefully checked before and after such repair.
3) Do not stack assembled PCBs together. Since materials of LEDs is soft, abrasion between two PCB assembled with LED might cause catastrophic failure of the LEDs.

5. Reliability Test Items \& Conditions

a) Test Items

Test Item	Test Condition	Test Hour / Cycle	Sample No.
Room Temperature Life Test	$25{ }^{\circ} \mathrm{C}, \mathrm{DC} 400 \mathrm{~mA}$	1000 h	22
High Temperature Life Test	$85{ }^{\circ} \mathrm{C}, \mathrm{DC} 400 \mathrm{~mA}$	1000 h	22
High Temperature Humidity Life Test	$60{ }^{\circ} \mathrm{C}, 90 \% \mathrm{RH}, \mathrm{DC} 400 \mathrm{~mA}$	1000 h	22
Low Temperature Life Test	$-40{ }^{\circ} \mathrm{C}, \mathrm{DC} 400 \mathrm{~mA}$	1000 h	22
Powered Temperature Cycle Test	$-45{ }^{\circ} \mathrm{C} / 20 \mathrm{~min} \leftrightarrow 85{ }^{\circ} \mathrm{C} / 20 \mathrm{~min}$, sweep 100 min cycle on/off: each $5 \mathrm{~min}, \mathrm{DC} 150 \mathrm{~mA}$	100 cycles	22
Thermal Cycle	$\begin{gathered} -40 \cong \mathrm{C} / 15 \min \leftrightarrow 100 \cong \mathrm{C} / 15 \mathrm{~min} \\ \rightarrow \text { Hot plate } 180 \cong \mathrm{C} \end{gathered}$	500 cycles	100
High Temperature Storage	$120{ }^{\circ} \mathrm{C}$	1000 h	11
Low Temperature Storage	$-40{ }^{\circ} \mathrm{C}$	1000 h	11
ESD (HBM)		5 times	30
ESD (MM)	$\begin{aligned} & \mathrm{R}_{1}: \quad 10 \mathrm{M} \Omega \\ & \mathrm{R}_{2}: \\ & \mathrm{C}: \\ & \mathrm{C}: \quad 200 \mathrm{pF} \\ & \mathrm{~V}: \quad \pm 0.5 \mathrm{kV} \end{aligned}$	5 times	30
Vibration Test	$20 \sim 2000 \sim 20 \mathrm{~Hz}, 200 \mathrm{~m} / \mathrm{s}^{2}$, sweep 4 min $X, Y, Z 3$ direction, each 1 cycle	4 cycles	11
Mechanical Shock Test	$\begin{gathered} 1500 \mathrm{~g}, 0.5 \mathrm{~ms} \\ 3 \text { shocks each } X-Y-Z \text { axis } \end{gathered}$	5 cycles	11

b) Criteria for Judging the Damage

Item	Symbol	Test Condition$\left(\mathrm{T}_{\mathrm{s}}=25{ }^{\circ} \mathrm{C}\right)$	Limit	
			Min	Max
Forward Voltage	$V_{\text {F }}$	$\mathrm{I}_{\mathrm{F}}=65 \mathrm{~mA}$	Init. Value * 0.9	Init. Value * 1.1
Luminous Flux	Φ_{v}	$\mathrm{I}_{\mathrm{F}}=65 \mathrm{~mA}$	Init. Value * 0.7	Init. Value * 1.1

6. Soldering Conditions
a) Reflow Conditions (Pb free)

Reflow frequency: 2 times max.

b) Manual Soldering Conditions

Not more than 5 seconds @ max. $300^{\circ} \mathrm{C}$, under soldering iron.
7. Tape \& Reel
a) Taping Dimension

Taping Direction

b) Reel Dimension

Notes:

1) Quantity: The quantity/reel is $5,000 \mathrm{pcs}$
2) Cumulative Tolerance: Cumulative tolerance / 10 pitches is $\pm 0.2 \mathrm{~mm}$
3) Adhesion Strength of Cover Tape: Adhesion strength is $0.1-0.7 \mathrm{~N}$ when the cover tape is turned off from the carrier tape at 10° angle to the carrier tape
4) Packaging: P / N, Manufacturing data code no. and quantity are indicated on the aluminum packing bag
8. Label Structure
a) Label Structure

Note: Denoted bin code and product code above is only an example (see description on page 5)

Bin Code:
(a)(b): Forward Voltage bin (refer to page 8)
(c)(d): Chromaticity bin (refer to page 10-13)
(e)f: Luminous Flux bin (refer to page 8)
b) Lot Number

The lot number is composed of the following characters:

AZRUSA

SPMWH3326MD3WAROSAAZRUSA 01 III (1)(2)(3)(5)(6)(8)(9/1 (a)(b) $\mathrm{C} / 5,000 \mathrm{pcs}$ |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII and suyi
(1) (2)(3)(4)(5)(6)(7)(8)(9) $/ 1$ (a)(b)(c) $/ 5,000 \mathrm{pcs}$
(1) : Production site (S: Giheung, Korea, G: Tianjin, China)
(2) : 8 (LED)
(3) : Product state (A: Normal, B: Bulk, C: First Production, R: Reproduction, S: Sample)
(4) : Year (Z: 2015, A: 2016, B: 2017...)
(5) : Month (1~9, A, B, C)
(6)(7)(8)(9): Day $\left(1^{\sim} 9, A, B^{\sim} V\right)$
(a)(b) : Product serial number (001~999)
a) Packing Process (The quantity of PKG on the Reel to be Max 5,000pcs)

Reel

Aluminum Vinyl Packing Bag

Outer Box

Type	Size (mm)			Note
	L	W	H	
7 inch L	245 ± 5	220 ± 5	182 ± 5	Up to 10 reels
7 inch S	245 ± 5	220 ± 5	86 ± 5	Up to 5 reels

b) Packing Process for kitting (The quantity of PKG on the Reel to be Max 5,000pcs)

Reel

Kitting ' A^{\prime}	Kitting 'B'																																																																																										
CFIUus AY, YSA	CMilus AY-YSA																																																																																										
SPMWH3326MD3WA $\begin{aligned} & \text { YSA } \\ & \text { AY }\end{aligned}$	SPMWH3326MD3WA $\begin{aligned} & \text { YSA } \\ & \text { AY }\end{aligned}$																																																																																										
\|																																																	\|	III																																									
G8AW94001 / 1001 / 5,000 pcs	G8AW94001 / 1001 / 5,000 pcs																																																																																										
\|																																									\|																																																		
- minsux	-mpyex																																																																																										

Aluminum Vinyl Packing Bag

Outer Box

Note: " \star " can be Nominal CCT code.

Material: Paper (SW3B(B))

Type	Size (mm)			Note
	L	W	H	
7 inch L	245 ± 5	220 ± 5	182 ± 5	Up to 10 reels

c) Silica Gel \& Humidity Indicator Card inside Aluminum Vinyl Bag

10. Precautions in Handling \& Use

1) For over-current-proof function, customers are recommended to apply resistors to prevent sudden change of the current caused by slight shift of the voltage.
2) This device should not be used in any type of fluid such as water, oil, organic solvent, etc. When washing is required, IPA is recommended to use.
3) When the LEDs illuminate, operating current should be decided after considering the ambient maximum temperature.
4) LEDs must be stored in a clean environment. If the LEDs are to be stored for three months or more after being shipped from Samsung, they should be packed by a sealed container with nitrogen gas injected (shelf life of sealed bags: 12 months, temperature $\left.\sim 40{ }^{\circ} \mathrm{C}, ~ \sim 90 \% R H\right)$.
5) After storage bag is opened, device subjected to soldering, solder reflow, or other high temperature processes must be:
a. Mounted within 672 hours (28 days) at an assembly line with a condition of no more than $30 \varrho^{\circ} \mathrm{C} / 60 \% \mathrm{RH}$, or
b. Stored at $<10 \% \mathrm{RH}$
6) Repack unused products with anti-moisture packing, fold to close any opening and then store in a dry place.
7) Devices require baking before mounting, if humidity card reading is $>60 \%$ at $23 \pm 5{ }^{\circ} \mathrm{C}$.
8) Devices must be baked for $10^{\sim} 24$ hours at $60 \pm 5 \circ{ }^{\circ} \mathrm{C}$, if baking is required.
9) The LEDs are sensitive to the static electricity and surge. It is recommended to use a wrist band or anti-electrostatic glove when handling the LEDs. If voltage exceeding the absolute maximum rating is applied to LEDs, it may cause damage or even destruction to LED devices. Damaged LEDs may show some unusual characteristics such as increase in leak current, lowered turn-on voltage, or abnormal lighting of LEDs at low current.
10) VOCs (Volatile Organic Compounds) can be generated from adhesives, flux, hardener or organic additives used in luminaires (fixtures). Transparent LED silicone encapsulant is permeable to those chemicals and they may lead a discoloration of encapsulant when they exposed to heat or light. This phenomenon can cause a significant loss of light emitted (output) from the luminaires (fixtures). In order to prevent these problems, we recommend users to know the physical properties of the materials used in luminaires, and they must be selected carefully.
11) Risk of sulfurization (or tarnishing)

The LED from Samsung Electronics Co., Ltd. uses a silver-plated lead frame and its surface color may change to black (or dark colored) when it is exposed to sulfur (S), chlorine (Cl) or other halogen compound. Sulfurization of lead frame may cause intensity degradation, change of chromaticity coordinates and, in extreme cases, open circuit. It requires caution. Due to possible sulfurization of lead frame, LED should not be used and stored together with oxidizing substances made of materials such as: rubber, plain paper, lead solder cream, etc.

Legal and additional information.

About Samsung Electronics Co., Ltd.

Samsung Electronics Co., Ltd. inspires the world and shapes the future with transformative ideas and technologies that redefine the worlds of TVs, smartphones, wearable devices, tablets, cameras, digital appliances, printers, medical equipment, network systems, and semiconductor and LED solutions. We are also leading in the Internet of Things space with the open platform SmartThings, our broad range of smart devices, and through proactive cross-industry collaboration. We employ 319,000 people across 84 countries with annual sales of US \$196 billion. To discover more, and for the latest news, feature articles and press material, please visit the Samsung Newsroom at news.samsung.com.

Copyright © 2016 Samsung Electronics Co., Ltd. All rights reserved.
Samsung is a registered trademark of Samsung Electronics Co., Ltd.
Specifications and designs are subject to change without notice. Non-metric
weights and measurements are approximate. All data were deemed correct
at time of creation. Samsung is not liable for errors or omissions. All brand, product,
service names and logos are trademarks and/or registered trademarks of their
respective owners and are hereby recognized and acknowledged.

[^0]
[^0]: Samsung Electronics Co., Ltd
 95, Samsung 2-ro
 Giheung-gu
 Yongin-si, Gyeonggi-do, 446-711
 KOREA

