: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Switching Power Supply Type SPP 1 20W Enclosed type

Universal AC input full range

- Short circuit protection
- Internal input filter
- High efficiency
- High everage efficiency (meet ErP)
- Low stand-by power consumption
- CE, TUV, and cURus approved

Product Description

Enclosed Switching Power Supply meet your needs for AC DC and DC DC power requirements. SPP provide the most flexible OEM system power solutions from 5 V to 24 V at 20 V for industrial control and automation applications.
Most carry fullcertifications and offer wide range universal input, screw terminal connections.
Especially designed where compact dimensions and performance are a must.

Approvals

CARLO GAVAZZI

Ordering Key

Model
Mounting (P1 = Panel)
Output voltage

Output power \qquad
Optional features
Input type: $1=$ single phase

Output Performances

MODEL NO.	INPUT VOLTAGE	OUTPUT POWER	OUTPUT VOLTAGE	OUTPUT CURRENT	EFF. (min.)	EFF. (typ.)	EFF. (avg.)
Single Output Models							
SPP1 05201	88~264 VAC	20 WATTS	+ 5 VDC	4000 mA	81\%	83\%	80\%
SPP1 12201	88~264 VAC	20.4 WATTS	+ 12 VDC	1700 mA	84\%	86\%	83\%
SPP1 15201	88~264 VAC	21 WATTS	+15 VDC	1400 mA	85\%	87\%	84\%
SPP1 24201	88~264 VAC	21.6 WATTS	+24 VDC	900 mA	85\%	87\%	84\%

Output Data All specifications are at nominal values, full load, $25^{\circ} \mathrm{C}$ unless otherwise noticed

Line regulation	$\pm 0.5 \%$
Load regulation	$\pm 1 \%$
Minimum load	0\%
Turn on time (full resistive load) Vi nom, lo nom Vi nom, lo nom with $3500 \mu \mathrm{~F}$	1000 ms 1500 ms
Transient recovery time	2 ms
Ripple and noise	100 mVpp
Output voltage accuracy	+ 1\%
Temperature coefficient	$\pm 0.03 \% /{ }^{\circ} \mathrm{C}$
$\begin{array}{ll}\text { Hold up time } & \mathrm{Vi}=115 \mathrm{VAC} \\ & \mathrm{Vi}=230 \mathrm{VAC}\end{array}$	15 ms 80 ms
Voltage fall time (lonom, Vi nom)	150 ms
Voltage rise time Vi nom, Io nom (full resistive load) Vi nom, lo nom with $\mathbf{3 5 0 0} \mu \mathrm{F}$ CAP	150 ms 500 ms

Voltage trim range		
	5 V Model	4.5-5.5 VDC
	12V Model	10.8-13.2 VDC
	15V Model	13.5-16.5 VDC
	24V Model	21.6-27.6 VDC
Rated continuous loading		
	5V Model	4A @ 5VDC/3.6A @ 5.5VDC
	12V Model	1.7A @ 12VDC/1.5A @ 13.2 VDC
	15 V Model	1.4A@15VDC/1.25A@16.5VDC
	24V Model	0.9A @ 24VDC/0.75A @ 27.6VDC
Reverse voltage		
	5V Model	7.5VDC
	12V Model	18VDC
	15V Model	22VDC
	24V Model	35VDC
Capacitor load		$3500 \mu \mathrm{~F}$

Input Data All specifications are at nominal values, full load, $25^{\circ} \mathrm{C}$ unless otherwise noticed

Rated input voltage Inom	100-240VAC
Voltage range	
AC IN DC IN	$\begin{aligned} & 88-264 V A C \\ & 120-375 V D C \end{aligned}$
Rated input current	
Vi: 115/230 VAC lo nom	390mA / 250 mA
Vi: 88 VAC lo nom	250 mA
Inrush current	
$\mathrm{Vi}=115 \mathrm{VAC}$	20A
$\mathrm{Vi}=230 \mathrm{VAC}$	40A

Power dissipation		
(Vi : 230VAC, lo nom)	5V Model	4.5W
	12V Model	4W
	15V Model	4W
	24V Model	4W
Frequency range		$47-63 \mathrm{~Hz}$
Leakage current		
	Input-Output	0.25 mA
	Input-FG	3.5 mA

Controls and Protections All specifications are at nominal values, full load, $25^{\circ} \mathrm{C}$ unless otherwise noticed

Overload	120-160\%	Over voltage protection	VDC	
Input fuse	T2A/250VAC internal ${ }^{\text {1) }}$		Min.	Max.
Output short circuit	Hiccup mode	5 V Model 12V Model	$\begin{aligned} & 5.75 \\ & 13.8 \end{aligned}$	$\begin{aligned} & 6.75 \\ & 16.2 \end{aligned}$
		15V Model	17.25	20.25
		24V Model	28.8	32.4

General Data All specifications are at nominal values, full load, $25^{\circ} \mathrm{C}$ unless otherwise noticed

Ambient temperature	$-40^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$	MTBF (Bellcore issue 6 @ $40^{\circ} \mathrm{C}, \mathrm{GB}$)	
Derating ($>60^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$)	2.5\%/ ${ }^{\circ} \mathrm{C}$ (see curve)	5 V Model	729000 Hours
Relative humidity	20~95\%RH	12V Model	740000 Hours 746000 Hours
Storage	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24V Model	772000 Hours
Protection degree	IP20	Case material	Plastic: PC, UL94-VO
Cooling	Free air convection	Altitude IEC 60068-2-13	4850m
Insulation voltage		Stand-by power comsumption	0.3W
Input-Output Input-FG	3.000VAC/4242VDC min 1.500VAC/2121VDC min	Dimensions LxWxD mm(inch)	92(3.62) $\times 54(2.13) \times 30(1.18)$
Insulation resistance I/O	$100 \mathrm{M} \Omega \mathrm{min}$ (@ 500VDC)	Weight	140 g
Switching Frequency	65 Khz		

Norms and Standards

Vibration resistance	meet IEC 60068-2-6 ($10-500 \mathrm{~Hz}, 2 \mathrm{G}$, along $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ each Axis, 60 min for each Axis)	CE	EN 61000-6-3, EN 55022 Class B, EN 61000-3-2, EN 61000-3-3, EN 61000-6-2,
Shock resistance	meet IEC 60068-2-27 (15G, 11ms, 3 Axis, 6 faces, 3 times for each face)		EN 55024, EN 61000-4-2, EN 61000-4-3,
UL / cUL	UL60950-1, Recognized		$\begin{aligned} & \text { EN 61000-4-4, } \\ & \text { EN 61000-4-5, } \end{aligned}$
TUV	EN 60950-1 CB scheme		EN 61000-4-6, EN 61000-4-8, EN 61000-4-11, ENV 50204, EN 61204-3

Block Diagrams

Pin Assignement and Front Controls

Pin No.	Designation	Description
$\mathbf{1}$	L	Input terminals (phase conductor, no polarity at DC input)
$\mathbf{2}$	N	Input terminals (neutral conductor, no polarity at DC input)
$\mathbf{3}$	-()	Ground this terminal to minimize high-frequecy emissions
$\mathbf{4}$	-	Negative output terminal
$\mathbf{5}$	$\mathbf{+}$	Positive output terminal
	Vout ADJ	Trimmer-potentiometer for Vout adjustment
	DC ON	Operation indicator LED

Typ. Efficency Curve

Derating Diagram

Typ. Current Limited Curve

Mechanical Drawings mm (inches)

Installation

Ventilation and cooling	Ventilation/Cooling Normal convection
Connector size range Spring terminal	AWG22-12 (0.2~2.5mm²) flexible/solid cable, 10mm stripping at cable connector can withstand torque at maximum 0.90 Nm (8 pound-inches)
General tolerances $\mathbf{m m (i n .)}$	
$0.00(0.00) \div 30.00$ (1.18)	$\pm 0.30(0.01)$
$30.00(1.18) \div 120.00(4.72)$	$\pm 0.50(0.02)$

