imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Data Sheet

Low Power Audio Codec

SSM2603

FEATURES

Stereo, 24-bit analog-to-digital and digital-to-analog converters DAC SNR: 100 dB (A-weighted), THD: –80 dB at 48 kHz, 3.3 V ADC SNR: 90 dB (A-weighted), THD: –80 dB at 48 kHz, 3.3 V Highly efficient headphone amplifier

Stereo line input and monaural microphone input Low power

7 mW stereo playback (1.8 V/1.5 V supplies)

14 mW record and playback (1.8 V/1.5 V supplies)

Low supply voltages

Analog: 1.8 V to 3.6 V

Digital core: 1.5 V to 3.6 V

Digital I/O: 1.8 V to 3.6 V

256/384 oversampling rate in normal mode; 250/272 oversampling rate in USB mode

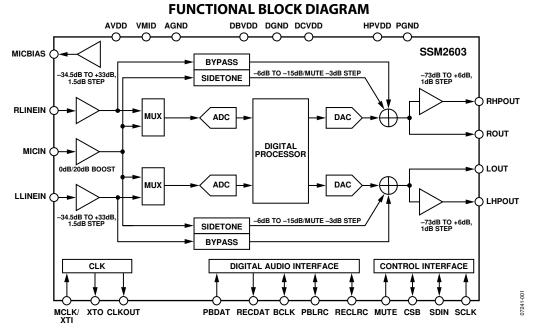
Audio sampling rates: 8 kHz, 11.025 kHz, 12 kHz, 16 kHz, 22.05 kHz, 24 kHz, 32 kHz, 44.1 kHz, 48 kHz, 88.2 kHz, and 96 kHz

28-lead, 5 mm \times 5 mm LFCSP (QFN) package

APPLICATIONS

Mobile phones MP3 players Portable gaming Portable electronics Educational toys

GENERAL DESCRIPTION


The SSM2603 is a low power, high quality stereo audio codec for portable digital audio applications with one set of stereo programmable gain amplifier (PGA) line inputs and one monaural microphone input. It features two 24-bit analog-todigital converter (ADC) channels and two 24-bit digital-toanalog (DAC) converter channels.

The SSM2603 can operate as a master or a slave. It supports various master clock frequencies, including 12 MHz or 24 MHz for USB devices; standard 256 f_8 or 384 f_8 based rates, such as 12.288 MHz and 24.576 MHz; and many common audio sampling rates, such as 96 kHz, 88.2 kHz, 48 kHz, 44.1 kHz, 32 kHz, 24 kHz, 22.05 kHz, 16 kHz, 12 kHz, 11.025 kHz, and 8 kHz.

The SSM2603 can operate at power supplies as low as 1.8 V for the analog circuitry and as low as 1.5 V for the digital circuitry. The maximum voltage supply is 3.6 V for all supplies.

The SSM2603 software-programmable stereo output options provide the user with many application possibilities. Its volume control functions provide a large range of gain control of the audio signal.

The SSM2603 is specified over the industrial temperature range of -40° C to $+85^{\circ}$ C. It is available in a 28-lead, 5 mm × 5 mm lead frame chip scale package (LFCSP).

Figure 1.

Rev. C Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2008–2013 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

SSM2603* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS

View a parametric search of comparable parts.

EVALUATION KITS

• SSM2603 Evaluation Board

DOCUMENTATION

Data Sheet

SSM2603: Low Power Audio Codec Data Sheet

SOFTWARE AND SYSTEMS REQUIREMENTS \square

- SSM2602 Sound CODEC Linux Driver
- SSM2603 Evaluation Board Software

DESIGN RESOURCES

- ssm2603 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all ssm2603 EngineerZone Discussions.

SAMPLE AND BUY

Visit the product page to see pricing options.

TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

Submit feedback for this data sheet.

TABLE OF CONTENTS

Features
Applications1
General Description 1
Functional Block Diagram 1
Revision History
Specifications
Digital Filter Characteristics 4
Timing Characteristics
Absolute Maximum Ratings7
Thermal Resistance
ESD Caution7
Pin Configuration and Function Descriptions
Typical Performance Characteristics
Converter Filter Response9
Digital De-Emphasis
Digital De-Linphasis
Theory of Operation
Theory of Operation
Theory of Operation
Theory of Operation 11 Digital Core Clock 11 ADC and DAC 11
Theory of Operation 11 Digital Core Clock 11 ADC and DAC 11 ADC High-Pass and DAC De-Emphasis Filters 11

REVISION HISTORY

6/13-Rev.	B to Rev. C	
Changes to	Table 87	

4/12-Rev. A to Rev. B

Changes to Figure 1	1
Changes to Stereo Line and Monaural Microphone Inputs	
Section and Figure 20	13
Changes to Table 10	19
Changes to Table 19 and Table 20	23
Updated Outline Dimensions	31
Changes to Ordering Guide	31

8/09—Rev. 0 to Rev. A ~1

0/07 - Rev. 0 to Rev. 11	
Changes to General Description Section and Figure 1 1	
Changes to Specifications Section, Table 1 3	

Digital Audio Interface15
Software Control Interface17
Control Register Sequencing 17
Typical Application Circuits18
Register Map19
Register Map Details
Left-Channel ADC Input Volume, Address 0x00 20
Right-Channel ADC Input Volume, Address 0x01 21
Left-Channel DAC Volume, Address 0x02 22
Right-Channel DAC Volume, Address 0x03 22
Analog Audio Path, Address 0x0423
Digital Audio Path, Address 0x0523
Power Management, Address 0x0624
Digital Audio I/F, Address 0x07 25
Sampling Rate, Address 0x0825
Active, Address 0x0928
Software Reset, Address 0x0F28
ALC Control 1, Address 0x10 29
ALC Control 2, Address 0x11 29
Noise Gate, Address 0x12
Outline Dimensions
Ordering Guide

Changes to Master Clock Tolerance, Frequency Range	
Parameter, Table 2	4
Added Endnote 1, Table 2	4
Changes to Table 6	6
Changes to Figure 6 and Table 9	8
Changes to Digital Core Clock Section	11
Changes to Digital Audio Data Sampling Rate Section	
Changes to Figure 31	18
Added Control Register Sequencing Section	
Change to Table 10	19
Changes to Table 15, Table 16, Table 17, and Table 18	22
Changes to Table 37	
Added Exposed Pad Notation to Outline Dimensions	
±	

2/08—Revision 0: Initial Version

SPECIFICATIONS

 $T_{A} = 25^{\circ}C, AVDD = DVDD = 3.3 V, HPVDD = 3.3 V, 1 \text{ kHz signal}, f_{S} = 48 \text{ kHz}, PGA \text{ gain} = 0 \text{ dB}, 24 \text{ -bit audio data, unless otherwise noted}.$

Parameter	Min	Тур	Max	Unit	Conditions
RECOMMENDED OPERATING CONDITIONS					
Analog Voltage Supply (AVDD)	1.8	3.3	3.6	V	
Digital Core Power Supply	1.5	3.3	3.6	v	
Digital I/O Supply	1.8	3.3	3.6		
Ground (AGND, PGND, DGND)		0		V	
POWER CONSUMPTION		-			
Power-Up					
Stereo Record (1.5 V and 1.8 V)		7		mW	
Stereo Record (3.3 V)		22		mW	
Stereo Playback (1.5 V and 1.8 V)		7		mW	
Stereo Playback (3.3 V)		22		mW	
Power-Down			40	μW	
LINE INPUT				P	
Input Signal Level (0 dB)		1 × AVDD/3.3		V rms	
Input Impedance		200		kΩ	PGA gain = 0 dB
		10		kΩ	PGA gain = $+33$ dB
		480		kΩ	PGA gain = -34.5 dB
Input Capacitance		10		pF	
Signal-to-Noise Ratio (A-Weighted)	70	90		dB	PGA gain = 0 dB, AVDD = 3.3 V
	,,,	84		dB	PGA gain = 0 dB, AVDD = 1.8 V
THD + N		-80		dB	-1 dBFS input, AVDD = 3.3 V
		-75		dB	-1 dBFS input, AVDD = 1.8 V
Channel Separation		80		dB	1 abi 5 input, <i>NVDD</i> = 1.0 V
Programmable Gain	-34.5	0	+33	dB	
Gain Step	54.5	1.5	155	dB	
Mute Attenuation		-80		dB	
MICROPHONE INPUT		00			
Input Signal Level		1 × AVDD/3.3		V rms	
Signal-to-Noise Ratio (A-Weighted)		85		dB	Microphone gain = 0 dB (R_{EXT} = 40 k Ω)
Total Harmonic Distortion		-70		dB	-1 dBFS input, 0 dB gain
Power Supply Rejection Ratio		50		dB	- r dbi 5 input, o db gain
Mute Attenuation		80		dB	
Input Resistance		10		kΩ	
Input Capacitance		10		pF	
MICROPHONE BIAS		10		Pi	
Bias Voltage		0.75 × AVDD		v	
Bias Current Source			3	mA	
Noise in the Signal Bandwidth		40	5	nV/√Hz	20 Hz to 20 kHz
		τυ		11 V/ VIIZ	
Full-Scale Output		1 × AVDD/3.3		V rms	
Signal-to-Noise Ratio (A-Weighted)	85	1 X AVDD/3.5 100		dB	AVDD = 3.3 V
Signal-to-Noise hatio (A-Weighteu)	60	94		UD	AVDD = 3.3 V AVDD = 1.8 V
THD + N		94 80	-70	dB	AVDD = 1.8 V AVDD = 3.3 V
		-80 -75	-70	UD	AVDD = 3.3 V AVDD = 1.8 V
Dower Supply Dejection Datia				dD	AVDD = 1.0 V
Power Supply Rejection Ratio		50		dB	
Channel Separation		80		dB	

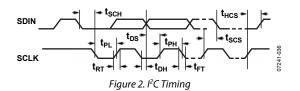
SSM2603

Parameter	Min	Тур	Max	Unit	Conditions
HEADPHONE OUTPUT					
Full-Scale Output Voltage		1 × AVDD/3.3		V rms	
Maximum Output Power		30		mW	$R_L = 32 \Omega$
		60		mW	$R_L = 16 \Omega$
Signal-to-Noise Ratio (A-Weighted)	85	96		dB	AVDD = 3.3 V
		90		dB	AVDD = 1.8 V
THD + N		-65		dB	$P_{OUT} = 10 \text{ mW}$
		-60		dB	$P_{OUT} = 20 \text{ mW}$
Power Supply Rejection Ratio		50		dB	
Mute Attenuation		80		dB	
LINE INPUT TO LINE OUTPUT					
Full-Scale Output Voltage		1 × AVDD/3.3		V rms	
Signal-to-Noise Ratio (A-Weighted)		92		dB	AVDD = 3.3 V
		86		dB	AVDD = 1.8 V
THD + N		-80		dB	AVDD = 3.3 V
		-80		dB	AVDD = 1.8 V
Power Supply Rejection		50		dB	
MICROPHONE INPUT TO HEADPHONE OUTPUT					
Full-Scale Output Voltage		1 × AVDD/3.3		V rms	
Signal-to-Noise Ratio (A-Weighted)		94		dB	AVDD = 3.3 V
		88		dB	AVDD = 1.8 V
Power Supply Rejection Ratio	er Supply Rejection Ratio 50			dB	
Programmable Attenuation	6 15		dB		
Gain Step		3		dB	
Mute Attenuation		80		dB	

 1 The line output is tested by sending a -1 dBFS input from the DAC to the line output.

DIGITAL FILTER CHARACTERISTICS

Table 2.


Parameter	Min	Тур	Max	Unit	Conditions
ADC FILTER					
Pass Band	0		0.445 fs	Hz	±0.04 dB
		0.5 fs		Hz	6 dB
Pass-Band Ripple			±0.04	dB	
Stop Band	0.555 fs			Hz	
Stop-Band Attenuation	-61			dB	f > 0.567 fs
High-Pass Filter Corner Frequency		3.7		Hz	-3 dB
		10.4		Hz	-0.5 dB
		21.6		Hz	–0.1 dB
DAC FILTER					
Pass Band	0		0.445 fs	Hz	±0.04 dB
		0.5 fs		Hz	-6 dB
Pass-Band Ripple			±0.04	dB	
Stop Band	0.555 fs			Hz	
Stop-Band Attenuation	-61			dB	f > 0.565 fs
MASTER CLOCK TOLERANCE ¹					
Frequency Range	8.0		18.5	MHz	
Jitter Tolerance		50		ps	

¹ CLKDIV2 bit (Register R8, Bit D6) is set to 0.

TIMING CHARACTERISTICS

Table 3. I²C[®] Timing

		Limit			
Parameter	t _{MIN}	t _{MAX}	Unit	Description	
tscs	600		ns	Start condition setup time	
tscн	600		ns	Start condition hold time	
t _{PH}	600		ns	SCLK pulse width high	
t _{PL}	1.3		μs	SCLK pulse width low	
f _{sclk}	0	526	kHz	SCLK frequency	
t _{DS}	100		ns	Data setup time	
t _{DH}		900	ns	Data hold time	
t _{RT}		300	ns	SDIN and SCLK rise time	
tft		300	ns	SDIN and SCLK fall time	
t _{HCS}	600		ns	Stop condition setup time	

Table 4. Digital Audio Interface Slave Mode Timing

		Limit		
Parameter	t _{MIN}	t _{MAX}	Unit	Description
t _{Ds}	10		ns	PBDAT setup time from BCLK rising edge
t _{DH}	10		ns	PBDAT hold time from BCLK rising edge
t _{LRSU}	10		ns	RECLRC/PBLRC setup time to BCLK rising edge
t _{LRH}	10		ns	RECLRC/PBLRC hold time to BCLK rising edge
t _{DD}		30	ns	RECDAT propagation delay from BCLK falling edge (external load of 70 pF)
t _{BCH}	25		ns	BCLK pulse width high
t _{BCL}	25		ns	BCLK pulse width low
t _{BCY}	50		ns	BCLK cycle time

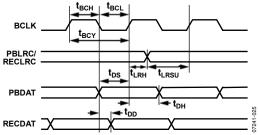


Figure 3. Digital Audio Interface Slave Mode Timing

SSM2603

Table 5. Digital Audio Interface Master Mode Timing

	Li	mit		
Parameter	t _{MIN}	t _{MAX}	Unit	Description
t _{DST}	30		ns	PBDAT setup time to BCLK rising edge
t _{DHT}	10		ns	PBDAT hold time to BCLK rising edge
t _{DL}		10	ns	RECLRC/PBLRC propagation delay from BCLK falling edge
t _{DDA}		10	ns	RECDAT propagation delay from BCLK falling edge
tBCLKR	10		ns	BCLK rising time (10 pF load)
tBCLKF	10		ns	BCLK falling time (10 pF load)
tBCLKDS	45:55:00	55:45:00		BCLK duty cycle (normal and USB mode)

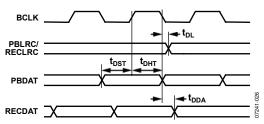
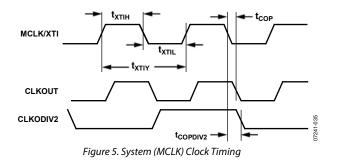



Figure 4. Digital Audio Interface Master Mode Timing

Table 6. Master Clock Timing¹

	L	Limit		
Parameter	t _{MIN}	t _{MAX}	Unit	Description
t _{XTIY}	54		ns	MCLK/XTI clock cycle time
t _{MCLKDS}	40:60	60:40		MCLK/XTI duty cycle
t _{хтін}	18		ns	MCLK/XTI clock pulse width high
t _{XTIL}	18		ns	MCLK/XTI clock pulse width low
t COP		20	ns	CLKOUT propagation delay from MCLK/XTI falling edge
t _{COPDIV2}		20	ns	CLKODIV2 propagation delay from MCLK/XTI falling edge

¹ CLKDIV2 bit (Register R8, Bit D6) is set to 0

ABSOLUTE MAXIMUM RATINGS

At 25°C, unless otherwise noted.

Table 7.

Parameter	Rating
Supply Voltage	5 V
Input Voltage	V _{DD}
Common-Mode Input Voltage	V _{DD}
Storage Temperature Range	–65°C to +150°C
Operating Temperature Range	-40°C to +85°C
Junction Temperature Range	–65°C to +165°C
Lead Temperature (Soldering, 60 sec)	300°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 8. Thermal Resistance

Package Type	θ」Α	θ _{JC-TOP}	Ө JC-BOTTOM	Unit	
28-Lead, 5 mm × 5 mm LFCSP	52.7	31.4	1.52	°C/W	

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

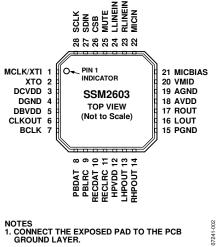


Figure 6. Pin Configuration

Table 9. Pin Function Descriptions

	II Function Desci	1	
Pin No.	Mnemonic	Туре	Description
1	MCLK/XTI	Digital Input	Master Clock Input/Crystal Input.
2	XTO	Digital Output	Crystal Output.
3	DCVDD	Digital Supply	Digital Core Supply.
4	DGND	Digital Ground	Digital Ground.
5	DBVDD	Digital Supply	Digital I/O Supply.
6	CLKOUT	Digital Output	Buffered Clock Output.
7	BCLK	Digital Input/Output	Digital Audio Bit Clock.
8	PBDAT	Digital Input	DAC Digital Audio Data Input, Playback Function.
9	PBLRC	Digital Input/Output	DAC Sampling Rate Clock, Playback Function (from Left and Right Channels).
10	RECDAT	Digital Output	ADC Digital Audio Data Output, Record Function.
11	RECLRC	Digital Input/Output	ADC Sampling Rate Clock, Record Function (from Left and Right Channels).
12	HPVDD	Analog Supply	Headphone Supply.
13	LHPOUT	Analog Output	Headphone Output for Left Channel.
14	RHPOUT	Analog Output	Headphone Output for Right Channel.
15	PGND	Analog Ground	Headphone Ground.
16	LOUT	Analog Output	Line Output for Left Channel.
17	ROUT	Analog Output	Line Output for Right Channel.
18	AVDD	Analog Supply	Analog Supply.
19	AGND	Analog Ground	Analog Ground.
20	VMID	Analog Output	Midrail Voltage Decoupling Input.
21	MICBIAS	Analog Output	Microphone Bias.
22	MICIN	Analog Input	Microphone Input Signal.
23	RLINEIN	Analog Input	Line Input for Right Channel.
24	LLINEIN	Analog Input	Line Input for Left Channel.
25	MUTE	Digital Input	DAC Output Mute, Active Low
26	CSB	Digital Input	2-Wire Control Interface I ² C Address Selection.
27	SDIN	Digital Input/Output	2-Wire Control Interface Data Input/Output.
28	SCLK	Digital Input	2-Wire Control Interface Clock Input.
	Exposed Pad	Thermal Exposed Pad	Connect the exposed pad to the PCB ground layer.

TYPICAL PERFORMANCE CHARACTERISTICS CONVERTER FILTER RESPONSE

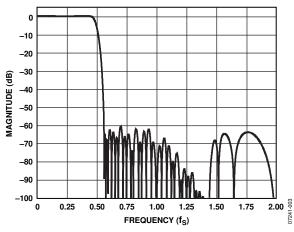
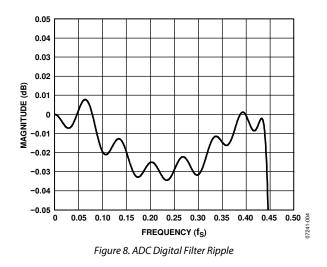



Figure 7. ADC Digital Filter Frequency Response

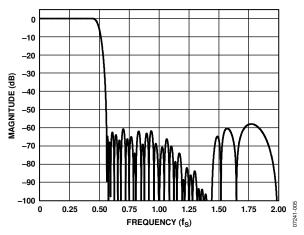
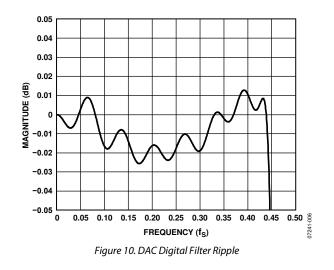



Figure 9. DAC Digital Filter Frequency Response

SSM2603

DIGITAL DE-EMPHASIS

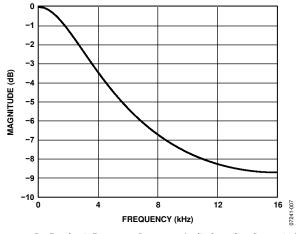
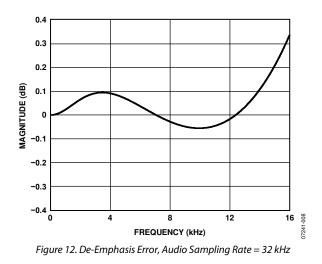



Figure 11. De-Emphasis Frequency Response, Audio Sampling Rate = 32 kHz

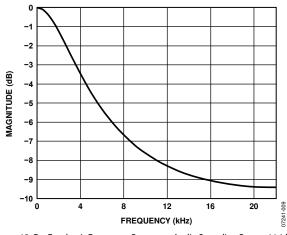


Figure 13. De-Emphasis Frequency Response, Audio Sampling Rate = 44.1 kHz

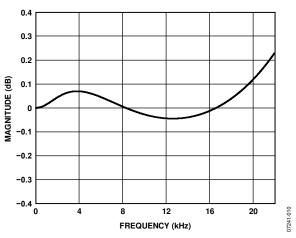


Figure 14. De-Emphasis Error, Audio Sampling Rate = 44.1 kHz

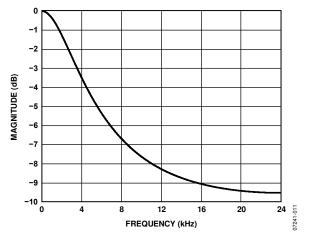


Figure 15. De-Emphasis Frequency Response, Audio Sampling Rate = 48 kHz

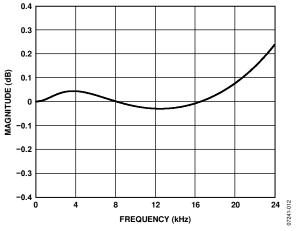


Figure 16. De-Emphasis Error, Audio Sampling Rate = 48 kHz

THEORY OF OPERATION DIGITAL CORE CLOCK

Inside the SSM2603 digital core is one central clock source, called the core clock, that produces a reference clock for all internal audio data processing and synchronization. When using an external clock source to drive the MCLK pin, great care should be taken to select a clock source with less than 50 ps of jitter. Without careful generation of the MCLK signal, the digital audio quality may suffer.

To enable the SSM2603 to generate the central reference clock in a system, connect a crystal oscillator between the MCLK/XTI input pin and the XTO output pin.

To allow an external device to generate the central reference clock, apply the external clock signal directly through the MCLK/XTI input pin. In this configuration, the oscillator circuit of the SSM2603 can be powered down by using the OSC bit (Register R6, Bit D5) to reduce power consumption.

To accommodate applications with very high frequency master clocks, the internal core reference clock of the SSM2603 can be set to either MCLK or MCLK divided by 2. This is enabled by adjusting the setting of the CLKDIV2 bit (Register R8, Bit D6). Complementary to this feature, the CLKOUT pin can also drive external clock sources with either the core clock signal or core clock divided by 2 by enabling the CLKODIV2 bit (Register R8, Bit D7).

When activating the digital core of the SSM2603, it is important for the user to follow this sequence: After activating the desired power-on blocks from Register R6, some delay time should be inserted prior to activating the active bit (Register R9, Bit D0), which enables the digital core.

The delay time is approximated by the following equation:

 $t = C \times 25,000/3.5$

where C is the decoupling capacitor on the VMID pin. For example, if C = 4.7 μ F, t = 34 ms.

ADC AND DAC

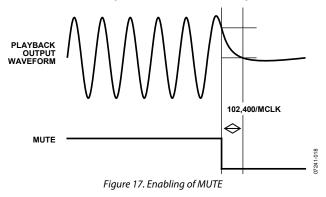
The SSM2603 contains a pair of oversampling Σ - Δ ADCs. The maximum ADC full-scale input level is 1.0 V rms when AVDD = 3.3 V. If the input signal to the ADC exceeds this level, data overloading occurs and causes audible distortion.

The ADC can accept analog audio input from either the stereo line inputs or the monaural microphone input. Note that the ADC can only accept input from a single source, so the user must choose either the line inputs or the microphone input as the source using the INSEL bit (Register R4, Bit D2). The digital data from the ADC output, once converted, is processed using the ADC filters. Complementary to the ADC channels, the SSM2603 contains a pair of oversampling Σ - Δ DACs that convert the digital audio data from the internal DAC filters into an analog audio signal. The DAC output can also be muted by setting the DACMU bit (Register R5, Bit D3) in the control register.

ADC HIGH-PASS AND DAC DE-EMPHASIS FILTERS

The ADC and DAC employ separate digital filters that perform 24-bit signal processing. The digital filters are used for both record and playback modes and are optimized for each individual sampling rate used.

For recording mode operations, the unprocessed data from the ADC enters the ADC filters and is converted to the appropriate sampling frequency, and then is output to the digital audio interface.


For playback mode operations, the DAC filters convert the digital audio interface data to oversampled data, using a sampling rate selected by the user. The oversampled data is processed by the DAC and then is sent to the analog output mixer by enabling the DACSEL (Register R4, Bit D4).

Users have the option of setting up the device so that any dc offset in the input source signal is automatically detected and removed. To accomplish this, enable the digital high-pass filter (see Table 2 for characteristics) contained in the ADC digital filters by using the ADCHPF bit (Register R5, Bit D0).

In addition, users can implement digital de-emphasis by using the DEEMPH bits (Register R5, Bit D1 and Bit D2).

HARDWARE MUTE PIN

MUTE is a hardware mute pin that puts the DAC output of the SSM2603 codec into a silent state. When MUTE is activated and the codec enters a mute state, the playback output voltage settles to VMID. The enabling of MUTE is shown in Figure 17.

AUTOMATIC LEVEL CONTROL (ALC)

The SSM2603 codec has an automatic level control (ALC) that can be activated to suppress clipping and improve dynamic range even if a sudden, loud input signal is introduced. This is achieved by continuously adjusting the PGA gain so that the signal level at the ADC input remains constant.

Decay (Gain Ramp-Up) Time

Decay time is the time taken for the PGA gain to ramp up to 90% of its range. The time for the recording level to return to its target value, therefore, depends on both the decay time and the gain adjustment required. If the gain adjustment is small, the time to return to the target value will be less than the decay time.

Attack (Gain Ramp-Down) Time

Attack time is the time taken for the PGA gain to ramp down through 90% of its range. The time for the recording level to return to its target value, therefore, depends on both the attack time and the gain adjustment required. If the gain adjustment is small, the time to return to the target value will be less than the attack time.

Noise Gate

When the ALC function is enabled but the input signal is silent for long periods, an audible hissing sound may be introduced by a phenomenon called noise pumping. To prevent this occurrence, the SSM2603 employs a noise gate function. A user-selected threshold can be set by using the NGTH bits (Register R18, Bit D3 to Bit D7). When the noise gate is enabled, the ADC output is either muted or held at a constant gain to prevent the noise-pumping phenomenon. For more information about the noise gate settings, see Table 41.

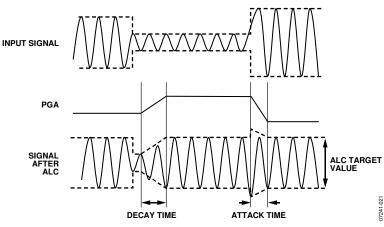


Figure 18. PGA and ALC Decay Time and Attack Time Definitions

ANALOG INTERFACE

Signal Chain

The SSM2603 includes stereo single-ended line and monaural microphone inputs to the on-board ADC. Either the line inputs or the microphone input, but not both simultaneously, can be connected to the ADC by setting the INSEL bit (Register R4, Bit D2). In addition, the line or microphone inputs can be routed and mixed directly to the output terminals via the SIDETONE_EN (Register R4, Bit D5) and BYPASS (Register R4, Bit D3) bits. The SSM2603 also includes line and headphone outputs from the on-board DAC.

Stereo Line and Monaural Microphone Inputs

The SSM2603 contains a set of single-ended stereo line inputs (RLINEIN and LLINEIN) that are internally biased to VMID by a voltage divider placed between AVDD and AGND. The line input signal can be connected to the internal ADC and, if desired, routed directly to the outputs via the bypass path by using the bypass bit (Register R4, Bit D3).

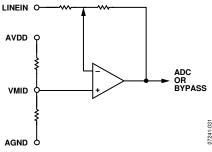
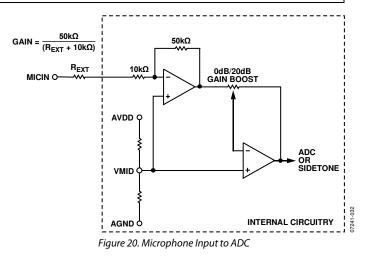



Figure 19. Line Input to ADC

The line input volume can be adjusted from -34.5 dB to +33 dB in steps of +1.5 dB by setting the LINVOL (Register R0, Bit D0 to Bit D5) and RINVOL (Register R1, Bit D0 to Bit D5) bits. Volume control, by default, is independently adjustable on both right and left line inputs. However, the LRINBOTH or RLINBOTH bit, if selected, simultaneously loads both sets of volume control with the same value. The user can also set the LINMUTE (Register R0, Bit D7) and RINMUTE (Register R1, Bit D7) bits to mute the line input signal to the ADC.

The high impedance, low capacitance monaural microphone input pin (MICIN) has two gain stages and a microphone bias level (MICBIAS) that is internally biased to the VMID voltage level by a voltage divider placed between AVDD and AGND. The microphone input signal can be connected to the internal ADC and, if desired, routed directly to the outputs via the sidetone path by using the SIDETONE_EN bit (Register R4, Bit D5).

The first gain stage is composed of a low noise operational amplifier set to an inverting configuration with integrated 50 k Ω feedback and 10 k Ω input resistors. The default microphone input signal gain is 14 dB. An external resistor (R_{EXT}) can be connected in series with the MICIN pin to reduce the first-stage gain of the microphone input signal to as low as 0 dB by using the following equation:

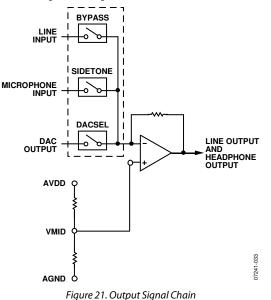
Microphone Input Gain = $50 \text{ k}\Omega/(10 \text{ k}\Omega + R_{EXT})$

The second-stage gain of the microphone signal path is derived from the internal microphone boost circuitry. The available settings are 0 dB and 20 dB and are controlled by the MICBOOST (Register R4, Bit D0) bit. To achieve 20 dB of secondary gain boost, the user can select MICBOOST

In similar functionality to the line inputs, the MUTEMIC bit (Register R4, Bit D1) can be set to mute the microphone input signal to the ADC.

Note that when sourcing audio data from both line and microphone inputs, the maximum full-scale input of the ADC is 1.0 V rms when AVDD = 3.3 V. Do not source any input voltage larger than full scale to avoid overloading the ADC, which causes distortion of sound and deterioration of audio quality. For best sound quality in both microphone and line inputs, gain should be carefully configured so that the ADC receives a signal equal to its full scale. This maximizes the signal-to-noise ratio for best total audio quality.

SSM2603


Bypass and Sidetone Paths to Output

The line and microphone inputs can be routed and mixed directly to the output terminals via the SIDETONE_EN (Register R4, Bit D5) and bypass (Register R4, Bit D3) software control register selections. In both of these modes, the analog input signal is routed directly to the output terminals and is not digitally converted. The bypass signal at the output mixer is the same level as the output of the PGA associated with each line input.

The sidetone signal at the output mixer must be attenuated by a range of -6 dB to -15 dB in steps of -3 dB by configuring the SIDETONE_ATT (Register R4, Bit D6 and Bit D7) control register bits. The selected level of attenuation occurs after the initial microphone signal amplification from the microphone first- and second-stage gains.

Line and Headphone Outputs

The DAC outputs, the microphone (the sidetone path), and the line inputs (the bypass path) are summed at an output mixer. This output signal can be present at both the stereo line outputs and stereo headphone outputs.

The SSM2603 has a set of efficient headphone amplifier outputs, LHPOUT and RHPOUT, that are able to drive 16 Ω or 32 Ω headphone speakers.

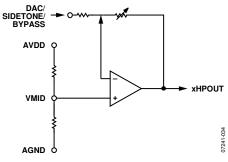


Figure 22. Headphone Output

In similar functionality to the line inputs, the LHPOUT and RHPOUT volumes, by default, are independently adjusted by setting the LHPVOL (Register R2, Bit D0 to Bit D6) and RHPVOL (Register R3, Bit D0 to Bit D6) bits of the headphone output control registers. The headphone outputs can be muted by writing codes less than 0110000 to the LHPVOL and RHPVOL bits. The user is also able to simultaneously load the volume control of both channels by writing to the LRHPBOTH (Register R2, Bit D8) and RLHPBOTH (Register R3, Bit D8) bits of the left- and rightchannel DAC volume registers.

The maximum output level of the headphone outputs is 1.0 V rms when AVDD and HPVDD = 3.3 V. To suppress audible pops and clicks, the headphone and line outputs are held at the VMID dc voltage level when the device is set to standby mode or in the event that the headphone outputs are muted.

The stereo line outputs of the SSM2603, the LOUT and ROUT pins, are able to drive a load impedance of 10 k Ω and 50 pF. The line output signal levels are not adjustable at the output mixer, having a fixed gain of 0 dB. The maximum output level of the line outputs is 1.0 V rms when AVDD = 3.3 V.

DIGITAL AUDIO INTERFACE

The digital audio input can support the following four digital audio communication protocols: right-justified mode, left-justified mode, l²S mode, and digital signal processor (DSP) mode.

The mode selection is performed by writing to the FORMAT bits of the digital audio interface register (Register R7, Bit D1 and Bit D0). All modes are MSB first and operate with data of 16 to 32 bits.

Recording Mode

On the RECDAT output pin, the digital audio interface can send digital audio data for recording mode operation. The digital audio interface outputs the processed internal ADC digital filter data onto the RECDAT output. The digital audio data stream on RECDAT comprises left- and right-channel audio data that is time domain multiplexed.

The RECLRC is the digital audio frame clock signal that separates left- and right-channel data on the RECDAT lines.

The BCLK signal acts as the digital audio clock. Depending on if the SSM2603 is in master or slave mode, the BCLK signal is either an input or an output signal. During a recording operation, RECDAT and RECLRC must be synchronous to the BCLK signal to avoid data corruption.

Playback Mode

On the PBDAT input pin, the digital audio interface can receive digital audio data for playback mode operation. The digital audio data stream on PBDAT comprises left- and right-channel audio data that is time domain multiplexed. The PBLRC is the digital audio frame clock signal that separates left- and right-channel data on the PBDAT lines.

The BCLK signal acts as the digital audio clock. Depending on whether the SSM2603 is in master or slave mode, the BCLK signal is either an input or an output signal. During a playback operation, PBDAT and PBLRC must be synchronous to the BCLK signal to avoid data corruption.

Digital Audio Data Sampling Rate

To accommodate a wide variety of commonly used DAC and ADC sampling rates, the SSM2603 allows for two modes of operation, normal and USB, selected by the USB bit (Register R8, Bit D0).

In normal mode, the SSM2603 supports digital audio sampling rates from 8 kHz to 96 kHz. Normal mode supports 256 f_s and 384 f_s based clocks. To select the desired sampling rate, the user must set the appropriate sampling rate register in the SR control bits (Register R8, Bit D2 to Bit D5) and match this selection to the core clock frequency that is pulsed on the MCLK pin. See Table 29 and Table 30 for guidelines.

In USB mode, the SSM2603 supports digital audio sampling rates from 8 kHz to 96 kHz. USB mode supports 250 f_s and 272 f_s based clocks. USB mode is enabled on the SSM2603 to support the common universal serial bus (USB) clock rate of 12 MHz, or to support 24 MHz if the CLKDIV2 control register bit is activated. The user must set the appropriate sampling rate in the SR control bits (Register R8, Bit D2 to Bit D5). See Table 29 and Table 31 for guidelines.

Note that the sampling rate is generated as a fixed divider from the MCLK signal. Because all audio processing references the core MCLK signal, corruption of this signal, in turn, corrupts the outgoing audio quality of the SSM2603. The BCLK/RECLRC/ RECDAT or BCLK/PBLRC/PBDAT signals must be synchronized with MCLK in the digital audio interface circuit. MCLK must be faster or equal to the BCLK frequency to guarantee that no data is lost during data synchronization.

The BCLK frequency should be greater than

Sampling Rate \times Word Length \times 2

Ensuring that the BCLK frequency is greater than this value guarantees that all valid data bits are captured by the digital audio interface circuitry. For example, if a 32 kHz digital audio sampling rate with a 32-bit word length is desired, BCLK \geq 2.048 MHz.

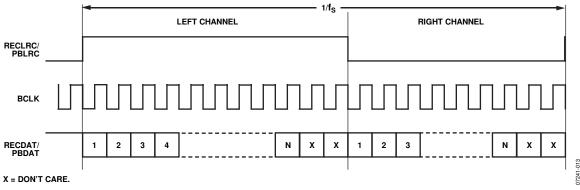


Figure 23. Left-Justified Audio Input Mode

SSM2603

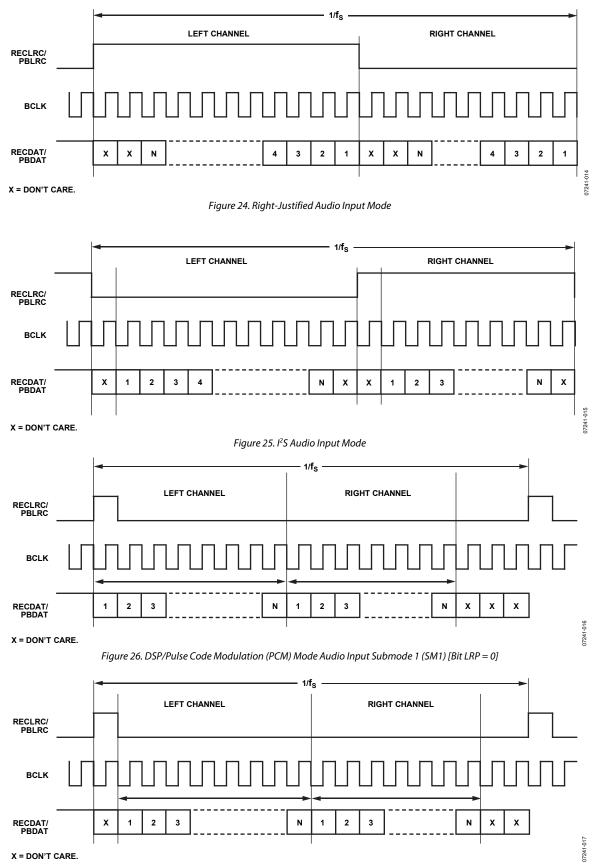


Figure 27. DSP/PCM Mode Audio Input Submode 2 (SM2) [Bit LRP = 1]

SOFTWARE CONTROL INTERFACE

The software control interface provides access to the user-selectable control registers and can operate with a 2-wire (I^2C) interface.

Within each control register is a control data-word consisting of 16 bits, MSB first. Bit B15 to Bit B9 are the register map address, and Bit B8 to Bit B0 are register data for the associated register map.

SDIN generates the serial control data-word, SCLK clocks the serial data, and CSB determines the I²C device address. If the CSB pin is set to 0, the address selected is 0011010; if 1, the address is 0011011.

CONTROL REGISTER SEQUENCING

- 1. Enable all of the necessary power management bits of Register R6 with the exception of the out bit (Bit D4). The out bit should be set to 1 until the final step of the control register sequence.
- 2. After the power management bits are set, program all other necessary registers, with the exception of the active bit [Register R9, Bit D0] and the out bit of the power management register.
- 3. As described in the Digital Core Clock section of the Theory of Operation, insert enough delay time to charge the VMID decoupling capacitor before setting the active bit [Register R9, Bit D0].
- 4. Finally, to enable the DAC output path of the SSM2603, set the out bit of Register R6 to 0.

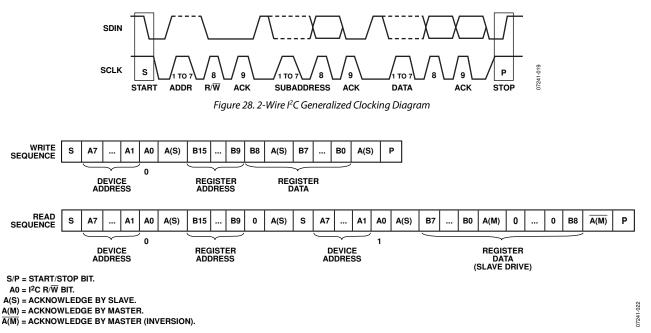
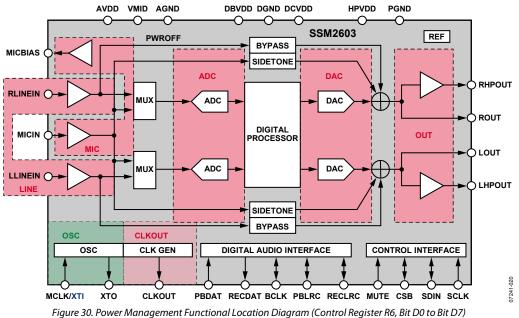



Figure 29. I²C Write and Read Sequences

TYPICAL APPLICATION CIRCUITS

+3.3V_VAA L2 FB L1 EB C23 0.1uF C19 AVDD PVDD DBVDD CVDD R1 INEIN ROU LOL R3 0 C14 +(-ICBIAS LHPOU C IN +(-12510... CLKOUT R6 SB R15 47K AGND COND C7 22pF C8 22pF Y 07241-023 \downarrow

REGISTER MAP

Table 10. Register Map

Reg.	Address	Name	D8	D7	D6	D5	D4	D3	D2	D1	D0	Default
RO	0x00	Left-channel ADC input volume	LRINBOTH	LINMUTE	0	LINVOL[5:0]						010010111
R1	0x01	Right-channel ADC input volume	RLINBOTH	RINMUTE	0	RINVOL[5:0]						
R2	0x02	Left-channel DAC volume	LRHPBOTH	0			LI	HPVOL[6:0]				001111001
R3	0x03	Right-channel DAC volume	RLHPBOTH	0		RHPVOL[6:0]						001111001
R4	0x04	Analog audio path	0	SIDETON	E_ATT[1:0]	SIDETONE_EN	DACSEL	Bypass	INSEL	MUTEMIC	MICBOOST	000001010
R5	0x05	Digital audio path	0	0	0	0	HPOR	DACMU	DEEN	IPH[1:0]	ADCHPF	000001000
R6	0x06	Power management	0	PWROFF	CLKOUT	OSC	Out	DAC	ADC	MIC	LINEIN	010011111
R7	0x07	Digital audio I/F	0	BCLKINV	MS	LRSWAP	LRP	WL[1	:0]	Form	at[1:0]	000001010
R8	0x08	Sampling rate	0	CLKODIV2	CLKDIV2		SR[3	:0]		BOSR	USB	000000000
R9	0x09	Active	0	0	0	0	0	0	0	0	Active	000000000
R15	0x0F	Software reset				Res	set[8:0]					000000000
R16	0x10	ALC Control 1	ALCSE	L[1:0]	MAXGAIN[2:0] ALCL[3:0]						001111011	
R17	0x11	ALC Control 2	0		DC	Y[3:0]			ATH	([3:0]		000110010
R18	0x12	Noise gate	0			NGTH[4:0]			NGG[1:0)]	NGAT	000000000

REGISTER MAP DETAILS

LEFT-CHANNEL ADC INPUT VOLUME, ADDRESS 0x00

Table 11. Left-Channel ADC Input Volume Register Bit Map

D8	D7	D6	D5	D4	D3	D2	D1	D0
LRINBOTH	LINMUTE	0			LINVC	DL[5:0]		

Table 12. Descriptions of Left-Channel ADC Input Volume Register Bits

Bit Name	Description	Settings
LRINBOTH	Left-to-right line input ADC data load control	0 = disable simultaneous loading of left-channel ADC data to right- channel register (default)
		1 = enable simultaneous loading of left-channel ADC data to right- channel register
LINMUTE	Left-channel input mute	0 = disable mute
		1 = enable mute on data path to ADC (default)
LINVOL[5:0]	Left-channel PGA volume control	00 0000 = -34.5 dB
		In 1.5 dB steps
		01 0111 = 0 dB (default)
		In 1.5 dB steps
		01 1111 = 12 dB
		10 0000 = 13.5 dB
		10 0001 = 15 dB
		10 0010 = 16.5 dB
		10 0011 = 18 dB
		10 0100 = 19.5 dB
		10 0101 = 21 dB
		10 0110 = 22.5 dB
		10 0111 = 24 dB
		10 1000 = 25.5 dB
		10 1001 = 27 dB
		10 1010 = 28.5 dB
		10 1011 = 30 dB
		10 1100 = 31.5 dB
		10 1101 to 11 1111= 33 dB

RIGHT-CHANNEL ADC INPUT VOLUME, ADDRESS 0x01

Table 13. Right-Channel ADC Input Volume Register Bit Map

D8	D7	D6	D5	D4	D3	D2	D1	D0
RLINBOTH	RINMUTE	0			RINVC	DL[5:0]		

Table 14. Descriptions of Right-Channel ADC Input Volume Register Bits

Bit Name	Description	Settings
RLINBOTH	Right-to-left line input ADC data load control	0 = disable simultaneous loading of right-channel ADC data to left channel register (default)
		1 = enable simultaneous loading of right-channel ADC data to left- channel register
RINMUTE	Right-channel input mute	0 = disable mute
		1 = enable mute on data path to ADC (default)
RINVOL[5:0]	Right-channel PGA volume control	00 0000 = -34.5 dB
		In 1.5 dB steps
		01 0111 = 0 dB (default)
		In 1.5 dB steps
		01 1111 = 12 dB
		10 0000 = 13.5 dB
		10 0001 = 15 dB
		10 0010 = 16.5 dB
		10 0011 = 18 dB
		10 0100 = 19.5 dB
		10 0101 = 21 dB
		10 0110 = 22.5 dB
		10 0111 = 24 dB
		10 1000 = 25.5 dB
		10 1001 = 27 dB
		10 1010 = 28.5 dB
		10 1011 = 30 dB
		10 1100 = 31.5 dB
		10 1101 to 11 1111 = 33 dB

LEFT-CHANNEL DAC VOLUME, ADDRESS 0x02

Table 15. Left-Channel DAC Volume Register Bit Map

D8	D7	D6	D5	D4	D3	D2	D1	D0
LRHPBOTH	0				LHPVOL[6:0]			

Table 16. Descriptions of Left-Channel DAC Volume Register Bits

Bit Name	Description	Settings
LRHPBOTH	Left-to-right headphone volume load control	0 = disable simultaneous loading of left-channel headphone volume data to right-channel register (default)
		1 = enable simultaneous loading of left-channel headphone volume data to right-channel register
LHPVOL[6:0]	Left-channel headphone volume control	000 0000 to 010 1111 = mute
		011 0000 = -73 dB
		In 1 dB steps
		111 1001 = 0 dB (default)
		In 1 dB steps
		111 1111 = +6 dB

RIGHT-CHANNEL DAC VOLUME, ADDRESS 0x03

Table 17. Right-Channel DAC Volume Register Bit Map

	•	-						
D8	D7	D6	D5	D4	D3	D2	D1	D0
RLHPBOTH	0				RHPVOL[6:0]			

Table 18. Descriptions of Right-Channel DAC Volume Register Bits

Bit Name	Description	Settings					
RLHPBOTH	Right-to-left headphone volume load control	0 = disable simultaneous loading of right-channel headphone volume data to left-channel register (default)					
		1 = enable simultaneous loading of right-channel headphone volume data to left-channel register					
RHPVOL[6:0]	Right-channel headphone volume control	000 0000 to 010 1111 = mute					
		011 0000 = -73 dB					
		In 1 dB steps					
		111 1001 = 0 dB (default)					
		In 1 dB steps					
		111 1111 = +6 dB					

ANALOG AUDIO PATH, ADDRESS 0x04

Table 19. Analog Audio Path Register Bit Map

D8	D7	D6	D5	D4	D3	D2	D1	D0
0	SIDETONE	E_ATT[1:0]	SIDETONE_EN	DACSEL	Bypass	INSEL	MUTEMIC	MICBOOST

Table 20. Descriptions of Analog Audio Path Register Bits

Bit Name	Description	Settings			
SIDETONE_ATT[1:0]	Microphone sidetone gain control.	00 = -6 dB (default)			
		01 = -9 dB			
		10 = -12 dB			
		11 = -15 dB			
SIDETONE_EN	Sidetone enable. Allows attenuated microphone signal to	0 = sidetone disable (default)			
	be mixed at device output terminal.	1 = sidetone enable			
DACSEL	DAC select. Allows DAC output to be mixed at device	0 = do not select DAC (default)			
	output terminal.	1 = select DAC			
Bypass	Bypass select. Allows line input signal to be mixed at	0 = bypass disable			
	device output terminal.	1 = bypass enable (default)			
INSEL	Line input or microphone input select to ADC.	0 = line input select to ADC (default)			
		1 = microphone input select to ADC			
MUTEMIC	Microphone mute control to ADC.	0 = mute on data path to ADC disable			
		1 = mute on data path to ADC enable (default)			
MICBOOST	Primary microphone amplifier gain booster control.	0 = 0 dB (default)			
		1 = 20 dB			

DIGITAL AUDIO PATH, ADDRESS 0x05

Table 21. Digital Audio Path Register Bit Map

	U		0	1				
D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	HPOR	DACMU	DEEM	DEEMPH[1:0]	

Table 22. Descriptions of Digital Audio Path Register Bits

Bit Name	Description	Settings
HPOR	Stores dc offset when high-pass filter is disabled	0 = clear offset (default)
		1 = store offset
DACMU	DAC digital mute	0 = no mute (signal active)
		1 = mute (default)
DEEMPH[1:0]	De-emphasis control	00 = no de-emphasis (default)
		01 = 32 kHz sampling rate
		10 = 44.1 kHz sampling rate
		11 = 48 kHz sampling rate
ADCHPF	ADC high-pass filter control	0 = ADC high-pass filter enable (default)
		1 = ADC high-pass filter disable

POWER MANAGEMENT, ADDRESS 0x06

Table 23. Power Management Register Bit Map

D8	D7	D6	D5	D4	D3	D2	D1	D0
0	PWROFF	CLKOUT	OSC	Out	DAC	ADC	MIC	LINEIN

Table 24. Description of Power Management Register Bits

Bit Name	Description	Settings	
PWROFF	Whole chip power-down control	0 = power up	
		1 = power down (default)	
CLKOUT	Clock output power-down control	0 = power up (default)	
		1 = power down	
OSC	Crystal power-down control	0 = power up (default)	
		1 = power down	
Out	Output power-down control	0 = power up	
		1 = power down (default)	
DAC	DAC power-down control	0 = power up	
		1 = power down (default)	
ADC	ADC power-down control	0 = power up	
		1 = power down (default)	
MIC	Microphone input power-down control	0 = power up	
		1 = power down (default)	
LINEIN	Line input power-down control	0 = power up	
		1 = power down (default)	

Power Consumption

Table 25.

Mode	PWROFF	CLKOUT	osc	Ουτ	DAC	ADC	міс	LINEIN	AVDD (3.3 V)	HPVDD (3.3 V)	DCVDD (3.3 V)	DBVDD (3.3 V)	Unit
Record and Playback	0	0	0	0	0	0	0	0	10.7	2.2	3.6	3.1	mA
Playback Only													
Oscillator Enabled	0	0	0	0	0	1	1	1	5.2	2.2	1.7	1.8	mA
External Clock	0	1	1	0	0	1	1	1	5.1	2.2	1.7	1.7	mA
Record Only													
Line Input, Oscillator Enabled	0	0	0	1	1	0	1	0	4.7	N/A	2.0	1.9	mA
Line Input, External Clock	0	0	1	1	1	0	1	0	4.7	N/A	2.0	1.8	mA
Microphone Input, Oscillator Enabled	0	0	0	1	1	0	0	1	4.8	N/A	2.0	1.9	mA
Microphone Input, External Clock	0	0	1	1	1	0	0	1	4.8	N/A	2.0	1.8	mA
Sidetone (Microphone-to- Line Output)	0	0	1	0	1	1	0	1	2.0	2.2	0.2	1.7	mA
Analog Bypass (Line Input or Line Output)	0	0	1	0	1	1	1	0	2.0	2.2	0.2	1.7	mA
Power-Down	1	1	1	1	1	1	1	1	0.001	<0.001	0.03	0.03	mA