imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

SST-90 LEDs

Features:

• Extremely high optical output:

Over 2,100 White Lumens Over 500 Red Lumens Over 950 Green Lumens Over 200 Blue Lumens

- Extremely high efficiency: Over 100 lumens per watt at 3.15A for white
- High thermal conductivity package junction to case thermal resistance of only 0.64 °C/W
- Large, monolithic chip with uniform emitting area of 9 mm²
- Lumen maintenance of greater than 70% after 60,000 hours
- Environmentally friendly: RoHS compliant
- Variable drive currents: less than 1 A through 9 A
- High reliability
- Electrically isolated thermal path

Applications

- Replacement Lamps
- Architectural Lighting
- Retail Lighting
- Residential Lighting
- Consumer Portable
- Spot Lighting

- High Bay Lighting
- Wide Area Lighting
- Street Lighting
- Medical Lighting
- Emergency Vehicle Lighting
- Displays and Signage

Table of Contents

Technology Overview2
Test Specifications2
White Binning Structure 3
White Chromaticity Bins 4
Monochromatic Binning structure8
Product Shipping & Labeling Information9
Electrical Characteristics . 10
SST-90 W Lifetime & Lumen Maintenance 11
Spectral Characteristics 11
SST-90- RGB Electrical Characteristics
Radiation Patterns 17
Thermal Resistance 17
Mechanical Dimensions 18
Solder Profile 20
Ordering Information 21

Technology Overview

Luminus Big Chip LEDs[™] benefit from a suite of innovations in the fields of chip technology, packaging and thermal management. These breakthroughs allow illumination engineers and designers to achieve solutions that are high brightness and high efficiency.

Photonic Lattice Technology

Luminus' photonic lattice technology enables large area LED chips with uniform brightness over the entire LED chip surface. The optical power and brightness produced by these large monolithic chips enable solutions which replace arc and halogen lamps where arrays of traditional high power LEDs cannot.

For red, green and blue LEDs, the photonic lattice structures extract more light and create radiation patterns that are more collimated than traditional LEDs. Having higher collimation from the source increases optical collection efficiencies and simplifies optical designs.

Packaging Technology

Thermal management is critical in high power LED applications. With a thermal resistance from junction to case of 0.64° C/W. Luminus SST-90 LEDs have the lowest thermal resistance of any LED on the market. This allows the LED to be driven at higher current densities while maintaining a low junction temperature, thereby resulting in brighter solutions and longer lifetimes.

Reliability

Designed from the ground up, Luminus Big Chip LEDs are one of the most reliable light sources in the world today. Big Chip LEDs have passed a rigorous suite of environmental and mechanical stress tests, including mechanical shock, vibration, temperature cycling and humidity, and have been fully qualified for use in extreme high power and high current applications. With very low failure rates and median lifetimes that typically exceed 60,000 hours, Luminus Big Chip LEDs are ready for even the most demanding applications.

Environmental Benefits

Luminus LEDs help reduce power consumption and the amount of hazardous waste entering the environment. All Big Chip LED products manufactured by Luminus are RoHS compliant and free of hazardous materials, including lead and mercury.

Understanding Big Chip LED Test Specifications

Every Luminus LED is fully tested to ensure that it meets the high quality standards expected from Luminus' products.

Testing Temperature

Luminus core board products are typically measured in such a way that the characteristics reported agree with how the devices will actually perform when incorporated into a system. This measurement is accomplished by mounting the devices on a 40°C heat sink and allowing the device to reach thermal equilibrium while fully powered. Only after the device reaches equilibrium are the measurements taken. This method of measurement ensures that Luminus Big Chip LEDs perform in the field just as they are specified.

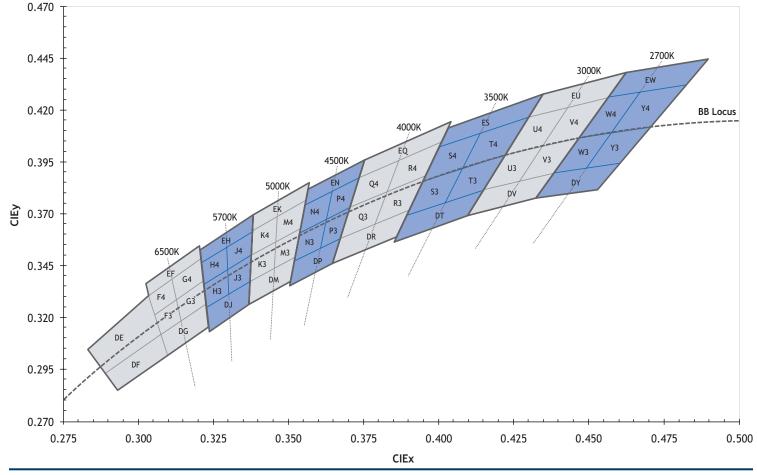
Luminus surface mount LEDs are typically tested with a 20mSec input pulse and a junction temperature of 25°C. Expected flux values in real world operation can be extrapolated based on the information contained within this product data sheet.

Multiple Operating Points (3.15, 6.3, 9.0 A)

The tables on the following pages provide typical optical and electrical characteristics. Since the LEDs can be operated over a wide range of drive conditions (currents from less than 1.0 A to 9.0 A, and duty cycle from <1% to 100%), multiple drive conditions are listed.

SST-90 LEDs are production tested at 3.15 A. The values shown at other 6.3 A and 9.0 A are for additional reference at other possible drive conditions.

SST-90 White Binning Structure


SST-90 white LEDs are tested for luminous flux and chromaticity at a drive current of 3.15 A (350 mA/mm²) and placed into one of the following luminous flux (FF) and chromaticity (WW) bins:

Flux Bins				
Flux Bin (FF)	Minumum Flux (lm) @ 3.15A	Maximum Flux (lm) @ 3.15A		
L2	630	665		
L3	665	700		
М	700	850		
M2	750	800		
M3	800	850		
N	850	1,000		
N2	900	950		
N3	950	1,000		

*Note: Luminus maintains a +/- 6% tolerance on flux measurements.

Chromaticity Bins

Luminus' Standard Chromaticity Bins: 1931 CIE Curve

The following tables describe the four chromaticity points that bound each chromaticity bin. Chromaticity bins are grouped together based on the color temperature.

6500K Chromaticity Bins				
Bin Code (WW)	CIEx	CIEy		
	0.307	0.311		
DG	0.322	0.326		
	0.323	0.316		
	0.309	0.302		
	0.305	0.321		
F3*	0.313	0.329		
15	0.315	0.319		
	0.307	0.311		
	0.303	0.330		
F4*	0.312	0.339		
Г4	0.313	0.329		
	0.305	0.321		
	0.313	0.329		
G3*	0.321	0.337		
65	0.322	0.326		
	0.315	0.319		
	0.312	0.339		
G4*	0.321	0.348		
G4*	0.321	0.337		
	0.313	0.329		
	0.302	0.335		
EF	0.320	0.354		
CF	0.321	0.348		
	0.303	0.330		
	0.283	0.304		
55	0.303	0.330		
DE	0.307	0.311		
	0.289	0.293		
	0.289	0.293		
DE	0.307	0.311		
DF	0.309	0.302		
	0.293	0.285		

5700K Chromaticity Bins		
Bin Code (WW)	CIEx	CIEy
	0.322	0.324
LD	0.337	0.337
	0.336	0.326
	0.323	0.314
	0.321	0.335
H3*	0.329	0.342
П3"	0.329	0.331
	0.322	0.324
	0.321	0.346
114*	0.329	0.354
H4*	0.329	0.342
	0.321	0.335
	0.329	0.342
12*	0.337	0.349
J3*	0.337	0.337
	0.330	0.331
	0.329	0.354
14*	0.338	0.362
J4*	0.337	0.349
	0.329	0.342
	0.320	0.352
EU	0.338	0.368
EH	0.338	0.362
	0.321	0.346

*Sub-bins within ANSI defined quadrangles per ANSI C78.377-2008

5000K Chromaticity Bins			
Bin Code (WW)	CIEx	CIEy	
	0.338	0.368	
EK	0.356	0.384	
EN	0.355	0.376	
	0.338	0.362	
	0.337	0.349	
K3*	0.345	0.355	
C)	0.345	0.343	
	0.337	0.337	
	0.338	0.362	
K4*	0.347	0.369	
N4 ¹	0.345	0.355	
	0.337	0.349	
	0.345	0.355	
M3*	0.353	0.349	
IVI5"	0.352	0.372	
	0.344	0.343	
	0.346	0.369	
M4*	0.355	0.376	
IVI4"	0.353	0.362	
	0.345	0.355	
	0.337	0.337	
DM	0.352	0.349	
DM	0.350	0.337	
	0.336	0.326	

4500K Chromaticity Bins		
Bin Code (WW)	CIEx	CIEy
	0.356	0.384
EN	0.376	0.396
	0.374	0.387
	0.355	0.374
	0.353	0.360
N3*	0.361	0.366
CNI	0.359	0.352
	0.351	0.347
	0.355	0.374
N4*	0.364	0.381
N4"	0.361	0.366
	0.353	0.360
	0.361	0.366
P3*	0.370	0.373
P5"	0.367	0.358
	0.359	0.352
	0.364	0.381
P4*	0.374	0.387
P4" 	0.370	0.373
	0.361	0.366
	0.351	0.347
	0.367	0.358
DP	0.364	0.346
	0.350	0.335

*Sub-bins within ANSI defined quadrangles per ANSI C78.377-2008

4000K Chromaticity Bins				
Bin Code (WW)	CIEx	CIEy		
	0.376	0.396		
EQ	0.404	0.414		
EQ	0.401	0.404		
	0.374	0.387		
	0.370	0.373		
Q3*	0.382	0.380		
Q5"	0.378	0.365		
	0.367	0.358		
	0.374	0.387		
0.4*	0.387	0.396		
Q4*	0.382	0.380		
	0.370	0.373		
	0.382	0.380		
R3*	0.395	0.388		
K5"	0.390	0.372		
	0.378	0.365		
	0.387	0.396		
R4*	0.401	0.404		
Γ(4	0.395	0.388		
	0.382	0.380		
	0.367	0.358		
DD	0.390	0.372		
DR	0.386	0.359		
	0.364	0.346		

3500K Chromaticity Bins		
Bin Code (WW)	CIEx	CIEy
	0.403	0.411
ES	0.435	0.427
ES	0.430	0.417
	0.400	0.402
	0.394	0.385
C2*	0.407	0.392
S3*	0.402	0.375
	0.389	0.369
	0.400	0.402
S4*	0.415	0.409
54"	0.407	0.392
	0.394	0.385
	0.407	0.392
To¥	0.422	0.399
T3*	0.415	0.381
	0.402	0.375
	0.415	0.409
T 4¥	0.430	0.417
T4*	0.422	0.399
	0.407	0.392
	0.389	0.369
DT	0.415	0.381
DT	0.409	0.369
	0.385	0.357

*Sub-bins within ANSI defined quadrangles per ANSI C78.377-2008

3000K Chromaticity Bins			
Bin Code (WW)	CIEx	CIEy	
	0.435	0.427	
EU	0.462	0.437	
LU	0.456	0.426	
	0.430	0.417	
	0.422	0.399	
U3*	0.434	0.403	
03	0.426	0.385	
	0.415	0.381	
	0.430	0.417	
U4*	0.443	0.421	
04*	0.434	0.403	
	0.422	0.399	
	0.434	0.403	
V3*	0.447	0.408	
V S T	0.437	0.389	
	0.426	0.385	
	0.443	0.421	
V4*	0.456	0.426	
V4*	0.447	0.408	
	0.434	0.403	
	0.415	0.381	
DV	0.437	0.389	
DV	0.431	0.377	
	0.409	0.369	

2700K Chromaticity Bins		
Bin Code (WW)	CIEx	CIEy
	0.462	0.437
EW	0.488	0.444
	0.481	0.432
	0.456	0.426
	0.447	0.408
14/2*	0.458	0.410
W3*	0.448	0.392
	0.437	0.389
	0.456	0.426
W4*	0.469	0.429
VV4"	0.458	0.410
	0.447	0.408
	0.458	0.410
V2*	0.70	0.413
Y3*	0.459	0.394
	0.448	0.392
	0.469	0.429
V/4×	0.481	0.432
Y4*	0.470	0.413
	0.458	0.410
	0.437	0.389
DV	0.459	0.394
DY	0.452	0.382
	0.431	0.377

*Sub-bins within ANSI defined quadrangles per ANSI C78.377-2008

SST-90 RGB Bins Structure

SST-90 RGB LEDs are specified for luminous flux and wavelength at a drive current of 3.15 A (0.35 A/mm²) and placed into one of the following luminous flux (FF) and wavelength (WW) bins:

Color	Luminous Flux Bin (FF)	Minimum Flux (lm) @ 3.15A	Maximum Flux (lm) @ 3.15A
Ded	BG	275	350
Red	BH	350	475
Green	CF	640	775
	CG	775	940
	DE	90	120
Blue	DF	120	160
	DG	160	200

Flux Bins

Wavelength Bins

Color	Wavelength Bin (FF)	Minimum Wavelength @ 3.15A	Maximum Wavelength @ 3.15A
	R2	611	615
	R3	615	619
Red	R4	619	623
neu	R5	623	627
	R6	627	631
	R7	631	635
	G2	510	515
	G3	515	520
	G4	520	525
Green	G5	525	530
	G6	530	535
	G7	535	540
	G8	540	545
	B4	450	455
Blue	B5	455	460
	B6	460	465
	B7	465	470
	B8	470	475

Note 1: Luminus maintains a +/- 6% tolerance on flux measurements.

Note 2: Only specific bins are available for large order, contact Luminus sales team for more information.

Product Shipping & Labeling Information

All SST-90 products are packaged and labeled with their respective bin as outlined in the tables and charts from pages 3 to 8. When shipped, each package will only contain one bin. The part number designation is as follows:

S	б ST —	90		WNNX		F11		FF		WW	
---	---------------	----	--	------	--	-----	--	----	--	----	--

Product Family	Chip Area	Color	Package Configuration	Flux Bin	Chromaticity Bin
Surface Mount (Lens)	9.0 mm ²	CCT & CRI See Note 1 below	Internal Code	See page 3 for bins	See page 4-7 for bins

Note 1: WNNX nomenclature corresponds to the following:

W=White

NN = color temperature, where:

65 corresponds to 6500K

X = color rendering index, where:

S (standard) corresponds to a typical CRI of 70

Example 1:

The part number SST-90-W65S-F11-N3-G4 refers to a 6500K standard CRI white, SST-90 emitter, with a flux range from 950 to 1,000 lumens and a chromaticity value within the box defined by the four points (0.313, 0.338), (0.321, 0.348), (0.322, 0.336), (0.312, 0.328).

SST — 90 — X — F11 — FF — WW

Product Family	Chip Area	Color	Package Configuration	Flux Bin	Wavelength Bin
Surface Mount (Lens)	9.0 mm ²	R: Red G: Green B: Blue	Internal Code	See page 8 for bins	See page 8 for bins

Example2:

9

The part number SST-90-R-C11-BJ-R4 refers to a red, SST-90 surface mount, with a flux range of 475-600 lumens and a wavelength range of 619 nm to 623 nm.

Note 2: Some flux and chromaticity/ wavelength bins may have limited availability. Application specific bin kits, consisting of multiple bins, may be available. For ordering information, please refer to page 21 and reference the PDS-001692: SST-90 Binning & Labeling document.

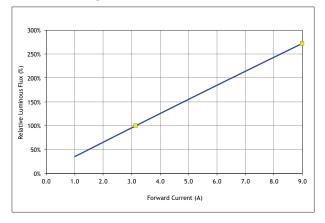
Electrical Characteristics¹

Optical and Electrical Characteristics (T₁ = 25 °C)

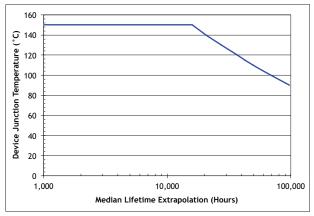
Drive Condition ²	3.15 A	9.0 A		
Parameter	Symbol	Values at Test Currents	Typical Values at Indicated Current ³	Unit
Current Density	j	0.35	1.0	A/mm ²
	V _{F, min}	2.5		V
Forward Voltage	V _{F, typ}	3.25	3.87	V
	V _{F, max}	3.9		V

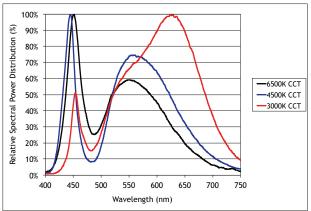
Common Characteristics

Parameter	Symbol	Values	Unit
Viewing Angle	2 θ _{1/2}	100	
Emitting Area		9.0	mm²
Emitting Area Dimensions		3 x 3	mm×mm
Forward Voltage Temperature Coefficient ^₄		-2.45	mV/ºC

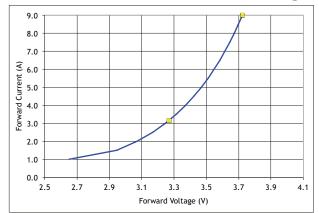

Absolute Maximum Ratings

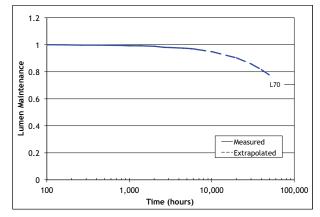
Parameter	Symbol	Values	Unit
Maximum Current ^₅		9.0	А
Maximum Reverse Current		N/A	
Maximum Junction Temperature ⁶	T _{j-max}	150	°C
Storage Temperature Range		-40/+100	۰C


- Note 1: Listed drive conditions are typical for common applications. SST-90 White devices can be driven at currents ranging from <1A to 9A and at duty cycles ranging from <1% to 100%. Drive current and duty cycle should be adjusted as necessary to maintain the junction temperature desired to meet application lifetime requirements.
- Note 2: Unless otherwise noted, values listed are typical.
- Note 3: Forward voltage temperature coefficient at 3.15A. Contact Luminus for value at other drive conditions.
- Note 4: SST-90 White devices are designed for operation to an absolute maximum forward drive current 9A. Product lifetime data is specified at recommended forward drive currents. Sustained operation at absolute maximum currents will result in a reduction of device lifetime compared to recommended forward drive currents. Actual device lifetimes will also depend on junction temperature. Refer to APN-001522: Reliability Application Note for SST-90-W for further information. In pulsed operation, rise time from 10-90% of forward current should be larger than 0.5 microseconds.
- Note 5: Lifetime dependent on LED junction temperature. Thermal calculations based on input power and thermal management system should be performed to ensure T_i is maintained below T_{imax} rating or life will be reduced. Refer to APN-001522 for further information.
- Note 6: CIE measurement uncertainty for white devices is estimated to be +/- 0.01.
- Note 7: Special design considerations must be observed for operation under 1A. Please contact Luminus for further information.
- Note 8: Caution must be taken not to stare at the light emitted from these LEDs. Under special circumstances, the high intensity could damage the eye.


Relative Output Flux vs. Forward Current¹

Mean Lifetime²


Typical Relative Spectral Power⁴

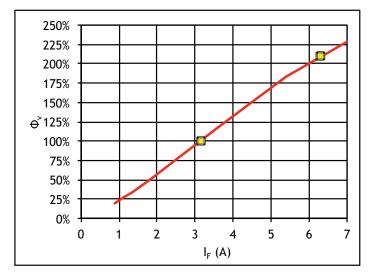

Note 1: Yellow squares indicate typical operating conditions.

- Note 2: Mean expected lifetime in dependence of junction temperature at 0.35 A/mm² in continuous operation. Lifetime defined as time to 70% of initial intensity. Based on lifetime test data of uncoated GaN devices at this time. Data can be used to model failure rate over typical product lifetime (contact Luminus for lifetime reliability test data for 1A/mm² condition).
- Note 3: Lumen maintenance in dependence of time at 0.35 A/mm² in continuous operation with junction temperatures of 100 °C.
- Note 4: Typical spectrum at current density of 0.35 A/mm² in continuous operation.

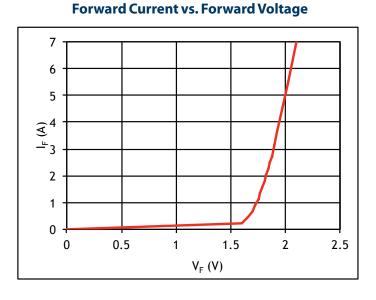
Forward Current vs. Forward Voltage

Lumen Maintenance vs. Time³

Current Derating Curve



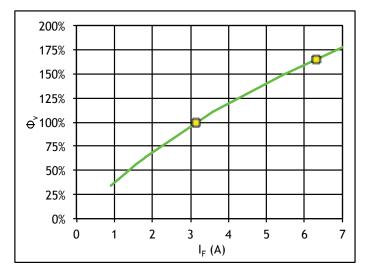
Optical & Electrical Characteristics


	Red						
Drive Condition ²		3.2 A Continuous	6.3 A Continous				
Parameter	Symbol		Values ³	Unit			
Current Density	j	0.35	0.7	A/mm ²			
Forward Voltage	V _{F min}	TBD	-	V			
	V _F	2.0	2.2	V			
	$V_{F max}$	TBD	-	V			
Luminous Flux ⁴	Φ _{V typ}	400	640	lm			
Dominant Wavelength⁵	λ _d	624	624	nm			
FWHM	Δλ _{1/2}	16	19	nm			
Chromaticity	х	0.695	0.699	-			
Coordinates ^{6,7}	у	0.305	0.301	-			

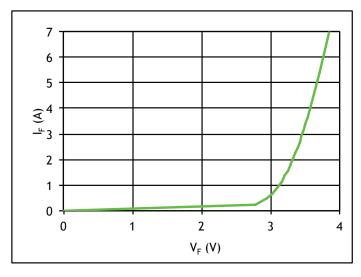
Relative Output Flux vs. Forward Current¹

Yellow squares indicate reference drive conditions

Notes: See page 15



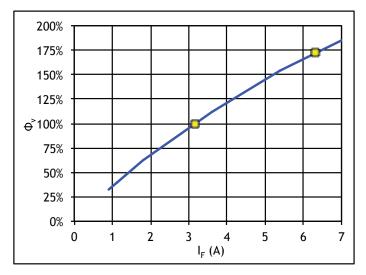
Optical & Electrical Characteristics


	Green					
Drive Condition ²		3.15 A Continuous	6.3 A Continous			
Parameter	Symbol		Values ³	Unit		
Current Density	j	0.35	0.7	A/mm ²		
	V _{E min}	TBD		V		
Forward Voltage	V _F	3.4	3.7	V		
	$V_{F \max}$	TBD		V		
Luminous Flux ⁴	Φ _{V typ}	855	1485	lm		
Dominant Wavelength⁵	λ _d	537	533	nm		
FWHM	Δλ _{1/2}	35	38	nm		
Chromaticity	х	0.205	0.175	-		
Coordinates ^{6,7}	У	0.740	0.730	-		

Relative Output Flux vs. Forward Current¹

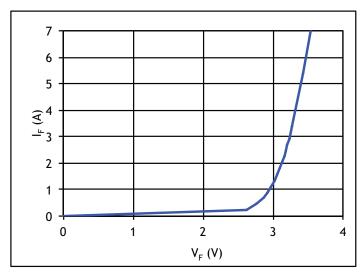
Yellow squares indicate reference drive conditions

Forward Current vs. Forward Voltage


Notes: See page 15

Optical & Electrical Characteristics

	Blue						
Drive Condition ²		3.15 A Continuous	6.3 A Continous				
Parameter	Symbol		Values ³	Unit			
Current Density	j	0.35	0.7	A/mm ²			
	V _{F min}	TBD		V			
Forward Voltage	V _F	3.4	3.6	V			
	$V_{_{Fmax}}$	TBD		V			
Luminous Flux ⁴	Φ _{V typ}	180	315	lm			
Dominant Wavelength⁵	λ _d	465	464	nm			
FWHM	Δλ _{1/2}	21	24	nm			
Chromaticity	х	0.142	0.142	0.142			
Coordinates ^{6,7}	У	0.036	0.038	0.038			


Relative Output Flux vs. Forward Current¹

Yellow squares indicate reference drive conditions

Notes: See page 15

Forward Current vs. Forward Voltage

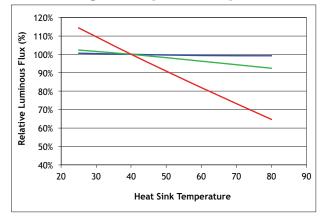
Optical & Electrical Characteristics Notes

- Note 1: All ratings are based on a junction test temperature T_i = 25°C. See Thermal Resistance section for T_i definition.
- Note 2: Listed drive conditions are typical for common applications. SST-90 RGB devices can be driven at currents ranging from <1 A to 6.3 A and at duty cycles ranging from 1% to 100%. Drive current and duty cycle should be adjusted as necessary to maintain the junction temperature desired to meet application lifetime requirements.
- Note 3: Unless otherwise noted, values listed are typical. Devices are production tested and specified at 0.35mA. Other values are for reference only.
- Note 4: Total flux from emitting area at listed dominant wavelength. Reported performance is included to show trends for a selected power level. For specific minimum and maximum values, use bin tables. For product roadmap and future performance of devices, contact Luminus.
- Note 5: Minimum and Maximum Dominant Wavelengths are based on typical values +/- 5nm for Red, +/- 8nm for Green and +/- 6nm for Blue.
- Note 6: In CIE 1931 chromaticity diagram coordinates, normalized to X+Y+Z=1.
- Note 7: For reference only.

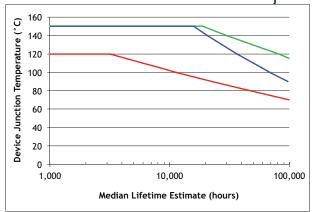
Common Characteristics

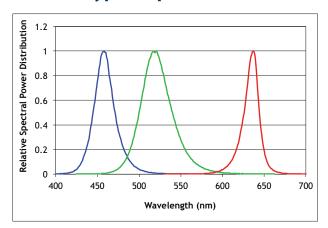
	Symbol	Red	Green	Blue	Unit
Emitting Area		9.0	9.0	9.0	mm ²
Emitting Area Dimensions		3.0x3.0	3.0x3.0	3.0x3.0	mmxmm
Dynamic Resistance	$\Omega_{_{ m dyn}}$	0.03	0.04	0.02	Ω
Thermal Coefficient of Photometric Flux		-0.96	-0.18	-0.007	%/ °C
Thermal Coefficient of Radiometric Flux		-0.52	-0.20	-0.17	%/ °C
Thermal Coefficient of Junction Voltage		-1.3	-4.6	-3.5	mV/ ⁰C

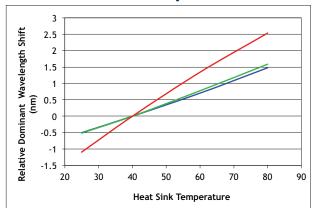
Absolute Maximum Ratings


	Symbol	Red	Green	Blue	Unit
Maximum Current		27	27	27ss	А
Maximum Junction Temperature	T _{jmax}	125	150	150	°C
Storage Temperature Range		-40/+100	-40/+100	-40/+100	°C

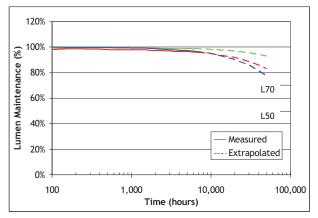
Note 1: SST-90 RGB LEDs are designed for operation to an absolute maximum current as specified above. Product lifetime data is specified at recommended forward drive currents. Sustained operation at or beyond absolute maximum currents will result in a reduction of device life ime compared to recommended forward drive currents. Actual device lifetimes will also depend on junction temperature. Refer to the lifetime derating curves for further information. In pulsed operation, rise time from 10-90% of forward current should be larger than 0.5 microseconds.


Note 2: Lifetime dependent on LED junction temperature. Input power and thermal system must be properly managed to ensure lifetime. See charts on pg 16 for further information.

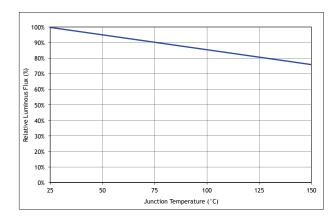

Light Output and Spectral Characteristics Over Heat Sink Temperature



Median Lifetime Estimate vs. T, ¹³

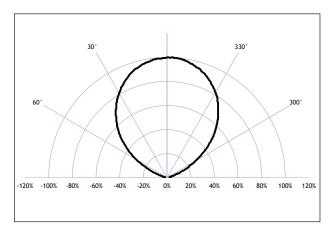


Typical Spectrum¹⁵

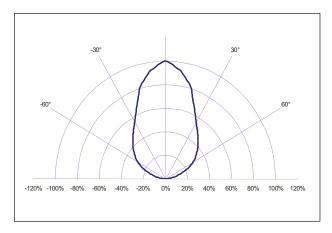


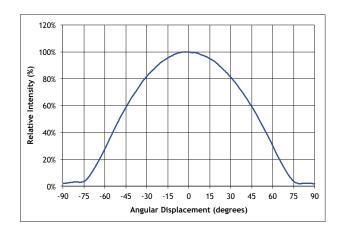
Lumen Maintenance¹⁴

Relative Flux vs. Junction Temperature

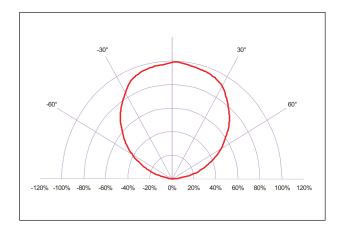


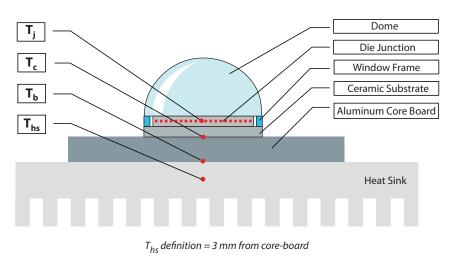
- Note 13. Median lifetime estimate as a function of junction temperature at 0.35A/mm² in continuous operation. Lifetime defined as time to 70% of initial intensity. Based on preliminary lifetime test data. Data can be used to model failure rate over typical product lifetime.
- Note 14. Lumen maintenance vs. time at 0.35A/mm² in continuous operation, Red junction temperature of 70°C, Green junction temperatures of 120°C, Blue junction temperatures of 100°C.
- Note 15. Typical spectrum at current density of 0.35 A/mm² in continuous operation.




Typical Radiation Patterns

Typical Polar Radiation Pattern for White


Typical Polar Radiation Pattern for Blue and Green

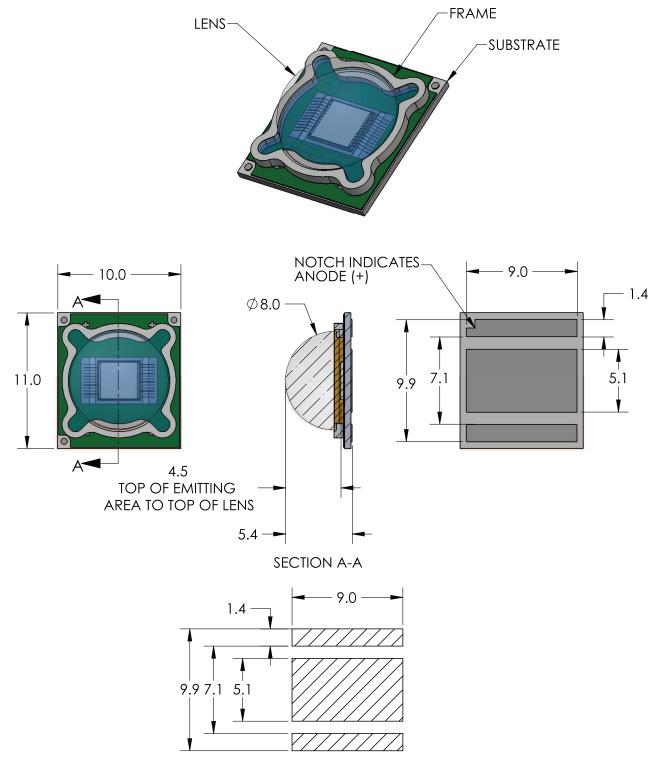


Typical Angular Radiation Pattern for White

Typical Polar Radiation Pattern for Red

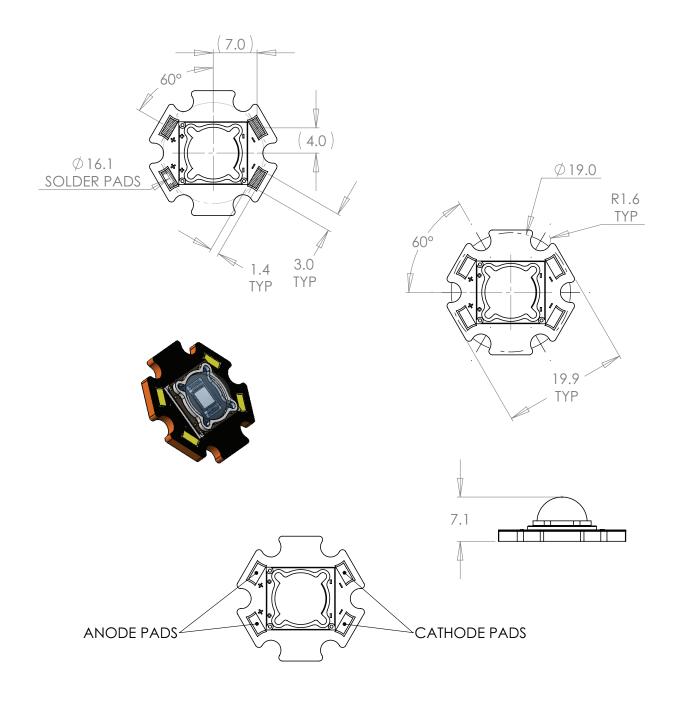
Thermal Resistance

Typical Thermal Resistance


R _{j-c} ¹	0.64 °C/W
R _{j-b} ¹	2.02 °C/W
R _{j-hs} ²	2.15 °C/W

Note 1: Thermal resistance values are based on FEA model results correlated to measured R_{0i-hs} data.

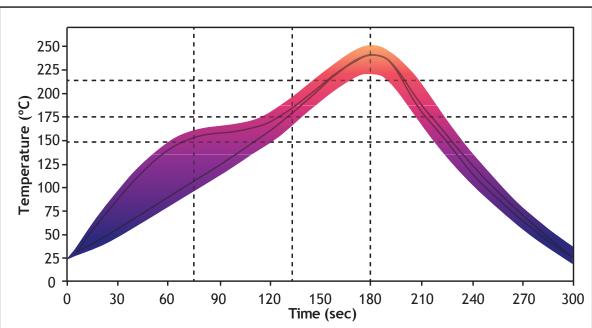
Note 2: Thermal resistance is measured using a SAC305 solder, a Bergquist Al-clad MCPCB, and eGraf 1205 thermal interface material.


Mechanical Dimensions – SST-90 Emitter

For detailed drawing please refer to DWG-001359 documen

Mechanical Dimensions – SST-90 Star Board

Note 1: Recommended mounting screw: M3 or #4


Note 2: All dimensions in millimeters

19

Note 3: All anode pads on board are interconnected. All cathode pads on board are interconnected

Solder Profile

SAC 305 Reflow Profile Window For Low Density Boards

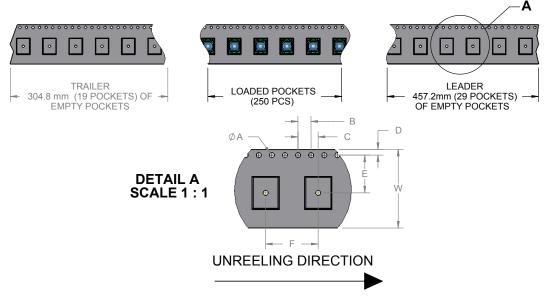
Lead free solder guideline for low density boards

Solder Profile Stage	Lead-Free Solder	Lead-based Solder
Profile length, Ambient to Peak	2.75 - 3.5 minutes	2.75 - 3.5 minutes
Time Maintained Above: Temperature	217 °C	183 °C
Time Maintained Above: Time	30 - 60 seconds	30 - 60 seconds
Cooldown Rate	≤4º C/sec	≤4º C/sec
Cooldown Duration	45 ± 15 sec	45 ± 15 sec

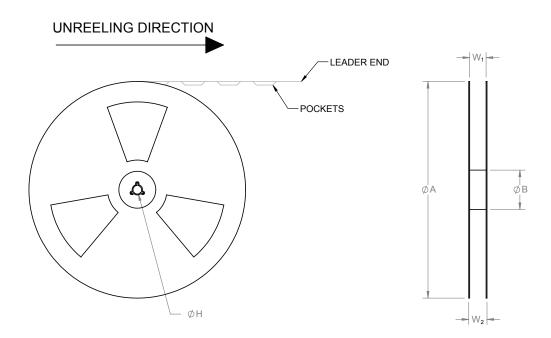
Note 1: Temperatures are taken and monitored at the component copper layer.

Note 2: Optimum profile may differ due to oven type, circuit board or assembly layout.

Note 3: Recommended lead free, no-clean solder: AIM NC254-SAC305.


Note 4: Refer to APN-001473 soldering and handling application note for additional solder profiles and details.

Note 5: MSL-Level 2A



Tape and Reel Drawing

DIMENSIONS ARE IN mm. (INCH)

TAPE DIMENSIONS						
W	ØA	В	С	D	E	F
24.0 (.945)	1.5 (.059)	3.9 (.157)	6.1 (.241)	1.7 (.069)	11.5 (.453)	16.0 (.630)

REEL DIMENSIONS					
ØA	W1	W2	ØВ	ØН	

Ordering Information

Ordering Part Number ^{1,2}	Color	Description
SST-90-WDLS-F11-N2150	6500K White 5700K White	
SST-90-WCLS-F11-GN450	4500K White 4000K White	White Big Chip LED™ SST-90 surface mount device consisting of a 9mm² LED on ceramic substrate, tray pack
SST-90-WWRM-F11-GM750	3000K White 2700K White	
SSR-90-WDLS-R11-N2150	6500K White 5700K White	
SSR-90-WCLS-R11-GN450	4500K White 4000K White	SSR-90 evaluation module consisting of a SST-90 surface mount device mounted on an aluminum star board
SSR-90-WWRM-R11-GM750	3000K White 2700K White	

Note 1:N2150 - denotes a bin kit comprising of all flux and chromaticity bins at the 6500K and 5700K color pointsGN450 - denotes a bin kit comprising of all flux and chromaticity bins at the 4500K and 4000K color pointsGM750 - denotes a bin kit comprising of all flux and chromaticity bins at the 3000K and 2700K color points

Ordering Information

Ordering Part Number ^{1,2,3}	Color	Description
SST-90-R-F11-HH100	Red	Red SST-90 consisting of a 9 mm ² LED on a surface mount substrate
SST-90-G-F11-JG200	Green	Green SST-90 consisting of a 9 mm ² LED on a surface mount substrate
SST-90-B-F11-KF300	Blue	Blue SST-90 consisting of a 9 mm ² LED on a surface mount substrate
SSR-90-R-R11-HH100	Red	Red SSR-90 evaluation module consisting of a SST-90 surface mount device mounted on an aluminum star board
SSR-90-G-R11-JG200	Green	Green SSR-90 evaluation module consisting of a SST-90 surface mount device mounted on an aluminum star board
SSR-90-B-R11-KF300	Blue	Blue SSR-90 evaluation module consisting of a SST-90 surface mount device mounted on an aluminum star board

Note 1: HH100 - denotes a bin kit comprising of all red flux and wavelength bins as specified on page 5 JG200 - denotes a bin kit comprising of all green flux and wavelength bins as specified on page 5

KF300 - denotes a bin kit comprising of all blue flux and wavelength bins as specified on page 5

Note 2: For ordering information on all available bin kits, please see PDS-001692: SST-90 Binning & Labeling document

The products, their specifications and other information appearing in this document are subject to change by Luminus Devices without notice. Luminus Devices assumes no liability for errors that may appear in this document, and no liability otherwise arising from the application or use of the product or information contained herein. None of the information provided herein should be considered to be a representation of the fitness or suitability of the product for any particular application or as any other form of warranty. Luminus Devices' product warranties are limited to only such warranties as accompany a purchase contract or purchase order for such products. Nothing herein is to be construed as constituting an additional warranty. No information contained in this publication may be considered as a waiver by Luminus Devices of any intellectual property rights that Luminus Devices may have in such information. Big Chip LEDsTM is a registered trademark of Luminus Devices, Inc., all rights reserved.

This product is protected by U.S. Patents 6,831,302; 7,074,631; 7,083,993; 7,084,434; 7,098,589; 7,105,861; 7,138,666; 7,166,870; 7,166,871; 7,170,100; 7,196,354; 7,211,831; 7,262,550; 7,274,043; 7,301,271; 7,341,880; 7,344,903; 7,345,416; 7,348,603; 7,388,233; 7,391,059 Patents Pending in the U.S. and other countries.