imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Data Sheet

The SST12LF01 is a 2.4 GHz Front-End Module (FEM) that combines a high-performance Low-Noise Amplifier (LNA) and a Power Amplifier (PA). Designed in compliance with IEEE 802.11 b/g/n applications and based on GaAs PHEMT/HBT technology, the SST12LF01 operates within the frequency range of 2.4-2.55 GHz at a very low DC-current consumption. The Transmitter chain has excellent linearity, typically <3% added EVM up to 19 dBm output power, which is essential for 54 Mbps 802.11g operation while meeting 802.11g spectrum mask at 23 dBm. The SST12LF01 is offered in a 24-contact WQFN package.

Features

• Gain:

- Typically 12 dB gain across 2.4-2.5 GHz for Receiver (RX) chain.
- Typically 29 dB gain across 2.4–2.5 GHz over temperature 0°C to +80°C for Transmitter (TX) chain.
- Low-Noise Figure
 - Typical 1.45 dB across 2.4-2.55 GHz
- 50 Ω Input/Output matched along RX chain.
- Rx IIP3
 - ->1 dbm across 2.4-2.55 GHz
- High linear output power:
 - ->26.5 dBm P1dB
 - Meets 802.11g OFDM ACPR requirement up to 23 dBm
 ~3% added EVM up to 19 dBm for

 - 54 Mbps 802.11g signal Meets 802.11b ACPR requirement up to 24 dBm
- High power-added efficiency/Low operating current for both 802.11g/b applications
 - ~22%/210 mA @ P_{OUT} = 22 dBm for 802.11g ~26%/240 mA @ P_{OUT} = 23.5 dBm for 802.11b
- Low idle current
 - ~70 mA I_{CQ}
- Low shut-down current (Typical 2.5 μA)

- Built-in, Ultra-low IREF power-up/down control
 - I_{REF} <4 mA
- High-speed power-up/down
 - Turn on/off time (10%- 90%) <100 ns Typical power-up/down delay with driver delay included <200 ns
- High temperature stability ~1 dB gain/power variation between 0°C to +85°C
- Simple input/output matching
- Single positive power supply
- Packages available - 24-contact WQFN - 4mm x 4mm
- All devices are RoHS compliant

Applications

- WLAN
- Bluetooth
- Wireless Network

Data Sheet

Product Description

The SST12LF01 is a 2.4 GHz Front-End Module (FEM) that combines a high-performance Low-Noise Amplifier (LNA) and a Power Amplifier (PA).

Designed in compliance with IEEE 802.11 b/g/n applications and based on GaAs PHEMT/HBT technology, the SST12LF01 operates within the frequency range of 2.4–2.55 GHz at a very low DC-current consumption. There are two components to the FEM: the Receiver (RX) chain and the Transmitter (TX) chain.

The RX chain consist of a cost effective Low-Noise Amplifier (LNA) cell which requires no external RFmatching components. This device is based on the 0.5m GaAs PHEMT technology, and complies with 802.11 b/g/n applications.

The LNA provides high-performance, low-noise, and moderate gain operation within the 2.4–2.55 GHz frequency band. Across this frequency band, the LNA typically provides 12 dB gain and 1.45 dB noise figure.

This LNA cell is designed with a self DC-biasing scheme, which maintains low DC current consumption, nominally at 11 mA, during operation. Optimum performance is achieved with only a single power supply and no external bias resistors or networks are required. The input and output ports are singledended 50 Ohm matched. RF ports are also DC isolated requiring no dc blocking capacitors or matching components to reduce system board Bill of Materials (BOM) cost.

The TX chain includes a high-efficiency PA based on InGaP/GaAs HBT technology. The PA typically provides 30 dB gain with 22% power-added efficiency at P_{OUT} = 22 dBm for 802.11g and 27% power-added efficiency at P_{OUT} = 24 dBm for 802.11b.

The Transmitter chain has excellent linearity, typically <4% added EVM up to 20 dBm output power, which is essential for 54 Mbps 802.11g operation while meeting 802.11g spectrum mask at 23 dBm.

The SST12LF01 is offered in 24-contact WQFN package. See Figure 2 for pin assignments and Table 1 for pin descriptions.

SST12LF01

Data Sheet

Functional Blocks

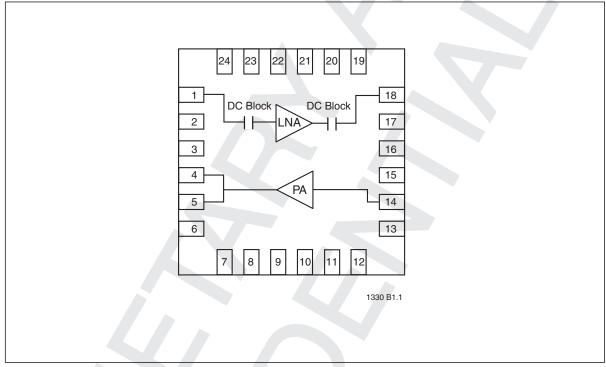


Figure 1: Functional Block Diagram

SST12LF01

Pin Assignments

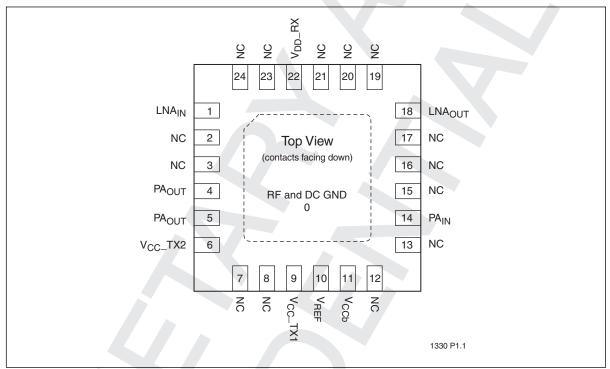


Figure 2: Pin Assignments for 24-contact WQFN

Data Sheet

Pin Descriptions

Symbol	Pin No.	Pin Name	Type ¹	Function
LNA _{IN}	1		I	LNA RF Input
NC	2	No Connection		Unconnected pin
NC	3	No Connection		Unconnected pin
PA _{OUT}	4		0	PA RF output
PA _{OUT}	5		0	PA RF output
V _{CC} _TX2	6	Power Supply	PWR	PA power supply, 2 nd stage
NC	7	No Connection		Unconnected pin
NC	8	No Connection		Unconnected pin
V _{CC} _TX1	9	Power Supply	PWR	PA power supply,1 st stage
V _{REF}	10		PWR	PA-enable and current control
V _{CCb}	11	Power Supply	PWR	PA power supply, bias circuit
NC	12	No Connection		Unconnected pin
NC	13	No Connection		Unconnected pin
PA _{IN}	14		I	PA RF input
NC	15	No Connection		Unconnected pin
NC	16	No Connection		Unconnected pin
NC	17	No Connection		Unconnected pin
LNA _{OUT}	18		0	LNA RF Output
NC	19	No Connection		Unconnected pin
NC	20	No Connection		Unconnected pin
NC	21	No Connection		Unconnected pin
V _{DD} _RX	22	Power Supply	PWR	LNA power supply
NC	23	No Connection		Unconnected pin
NC	24	No Connection		Unconnected pin

Table 1: Pin Description

1. I=Input, O=Output

T1.0 75040

Data Sheet

Electrical Specifications

The AC and DC specifications for the power amplifier interface signals. Refer to Table 3 for the DC voltage and current specifications. Refer to Figures 3 through 14 for the RF performance.

Absolute Maximum Stress Ratings (Applied conditions greater than those listed under "Absolute Maximum Stress Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these conditions or conditions greater than those defined in the operational sections of this data sheet is not implied. Exposure to absolute maximum stress rating conditions may affect device reliability.)

Input power to pins 1 (LNA)	0 dBm
Input power to pins 14 (PA)	
Average output power pins 4 and 5 (P _{OUT}) ¹	
Average output power pin 18 (P _{OUT}) ¹	9 dBm
Supply Voltage at pins 6, 9, and 11 (V _{CC})	
Supply Voltage at pin 22 (V _{DD})	
Reference voltage to pin 10 (V _{REF})	
DC supply current to pin 10 (I _{DD})	
DC supply current to pin 6, 9, and 11 (I _{CC})	
Operating Temperature (T _A)	40°C to +85°C
Storage Temperature (T _{STG})	40°C to +120°C
Maximum Junction Temperature (T _J)	
Surface Mount Solder Reflow Temperature	
 Never measure with CW source. Pulsed single-tone source with <50% duty cycle is recommendation imum rating of average output power could cause permanent damage to the device. 	

Table 2: Operating Range

Range	Ambient Temp	V _{CC} / V _{DD}
Commercial	-0 to 80°C	2.9–4.2V

T2.1 75040

Table 3: DC Electrical Characteristics

Symbol	Parameter	Min.	Тур	Max.	Unit
V _{CC}	Supply Voltage at pins 6, 9, 11, and 22		3.3	4.2	V
Icc	Supply Current at pin 22		10		mA
	for 802.11g, 22 dBm at pins 6, 9, and 11		210		mA
	for 802.11b, 23.5 dBm at pins 6, 9, and 11		260		mA
Icq	Idle current for 802.11g to meet EVM<4% @ 20 dBm		75		mA
IOFF	Shut down current		2.5		μA
V _{REF} ¹	Reference Voltage at pin10 with $R_{REG} = 0\Omega$ resistor		2.7		V
	Reference Voltage at pin 10 with $R_{REG} = 120\Omega$ resistor	2.7	2.9	3.1	V
	Reference Voltage at pin 10 with $R_{REG} = 220\Omega$ resistor	2.9	3.1	3.3	V
		•	•	•	T3.1 75040

1. V_{REF} and V_{REG} are defined in Figure 15. Three combinations of resistor values and applied voltages of V_{REG} are suggested in Table 3.

SST12LF01

Data Sheet

Symbol	Parameter	Min.	Тур	Max.	Unit	
F _{L-U}	Frequency range	2400		2550	MHz	
G	Small signal gain	10	12		dB	
NF	Noise Figure		1.45		dB	
IIP3	2.4–2.55 GHz	1	3		dBm	

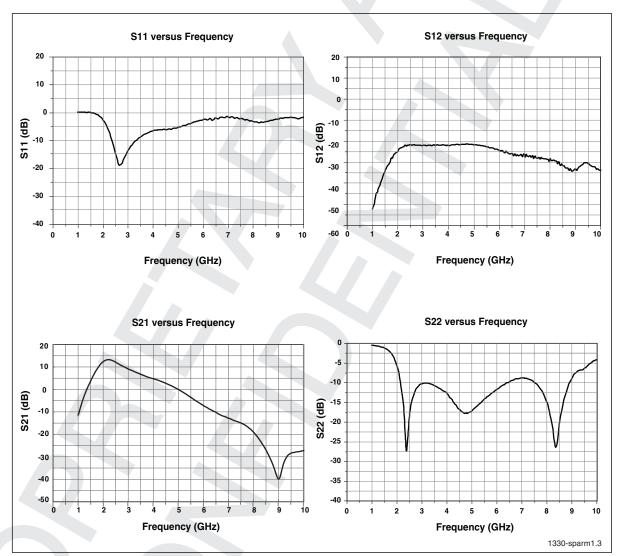
Table 4: AC Electrical Characteristics for RX Chain

T4.1 75040

Table 5: AC Electrical Characteristics for TX Chain

Symbol	Parameter	Min.	Тур	Max.	Unit
F _{L-U}	Frequency range	2400		2485	MHz
P _{OUT}	Output power				
	@ PIN = -6 dBm 11b signals	23			dBm
	@ PIN = -9 dBm 11g signals	20			dBm
G	Small signal gain	28	29	33	dB
G _{VAR1}	Gain variation over band (2400~2485 MHz)			±0.5	dB
G _{VAR2}	Gain ripple over channel (20 MHz)		0.2		dB
ACPR	Meet 11b spectrum mask	23			dBm
	Meet 11g OFDM 54 Mbps spectrum mask	22			dBm
Added EVM	@ 20 dBm output with 11g OFDM 54 Mbps signal		4		%
2f, 3f, 4f, 5f	Harmonics at 22 dBm, without external filters			-40	dBc

T5.1 75040



SST12LF01

Data Sheet

Typical Performance Characteristics

Test Conditions: V_{DD} = 3.0V, T_A = 25°C, unless otherwise specified

STIZLFUI

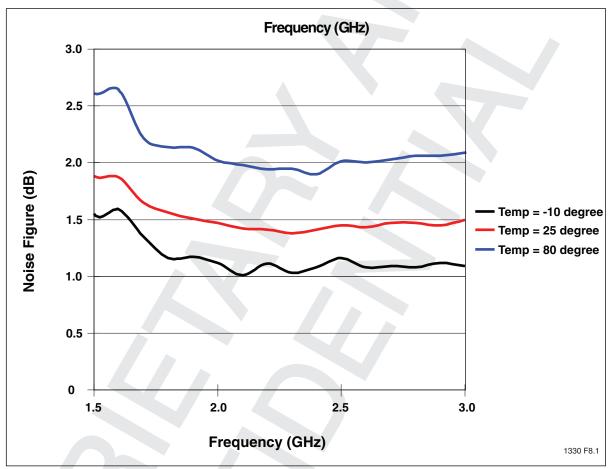


Figure 4: Noise Figure versus Frequency, RX Chain

SST12LF01

Data Sheet

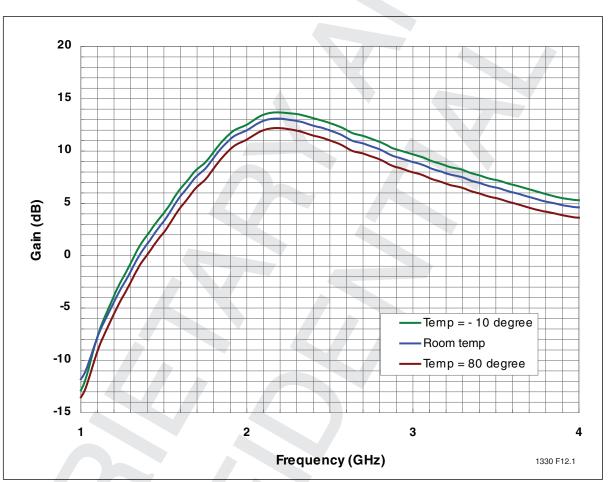


Figure 5: Frequency Response of Gain (S21) over three Temperatures

A Microchip Technology Company

SST12LF01

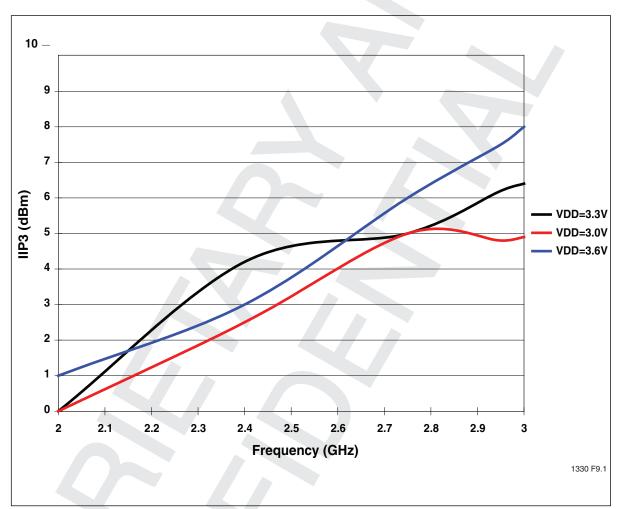


Figure 6: Input IP3 versus Frequency, RX Chain

SST12LF01

Data Sheet

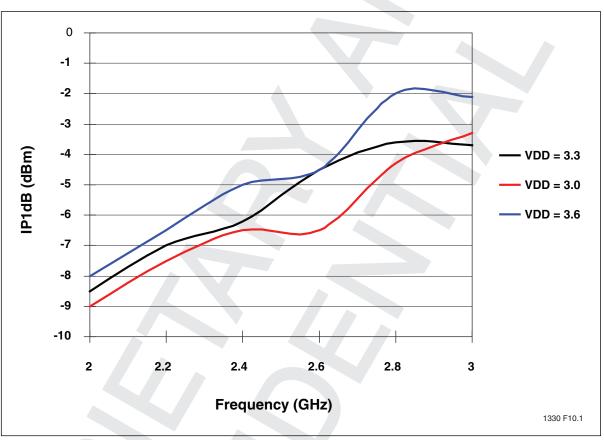


Figure 7: Input P1dB versus Frequency, RX Chain

IIIIh

A Microchip Technology Company

SST12LF01

Data Sheet

Test Conditions: V_{CC} = 3.3V, T_A = 25°C, unless otherwise specified

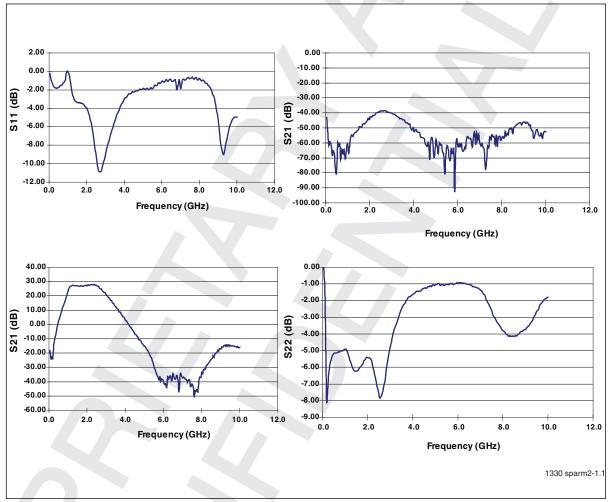


Figure 8: S-Parameters, TX Chain

SST12LF01

Data Sheet

Typical Performance Characteristics

Test Conditions: f = 2.447 GHz, V_{CC} = 3.3V, V_{REF} = 2.85V at room temperature I_{CQ} = 70 mA

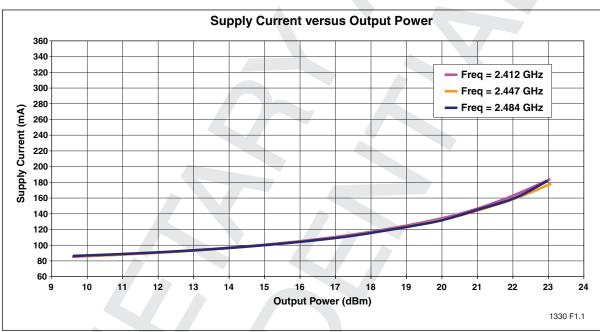
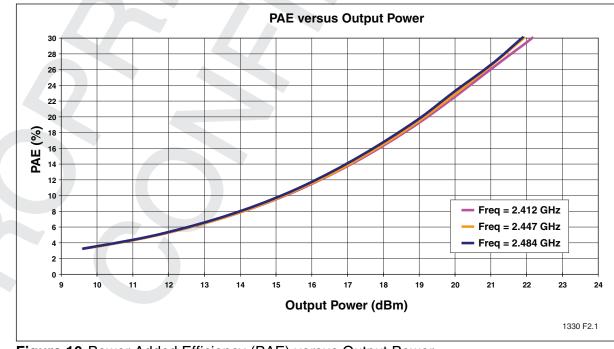
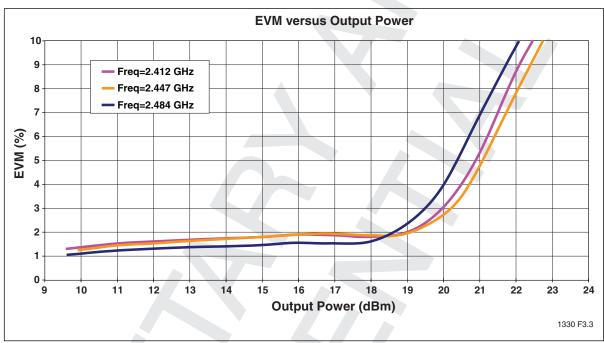
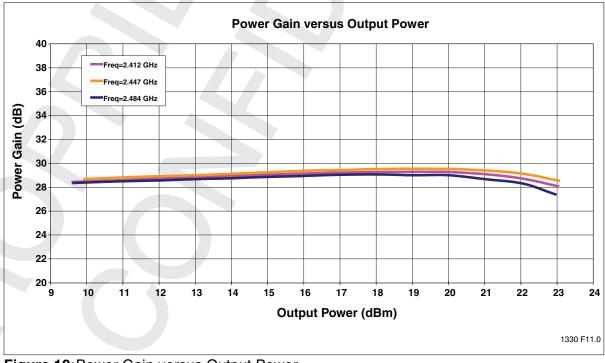


Figure 9: Supply Current versus Output Power


Figure 10: Power Added Efficiency (PAE) versus Output Power

SST12LF01

Data Sheet

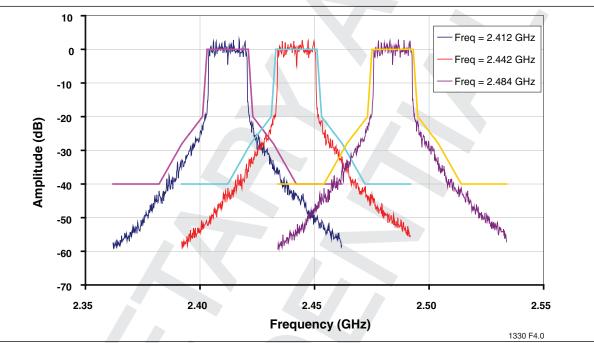


Figure 13:802.11g Spectrum Mask at 23 dBm

Test Conditions: V_{CC} = 3.3V, T_A = 25°C, 1 Mbps 802.11b signal

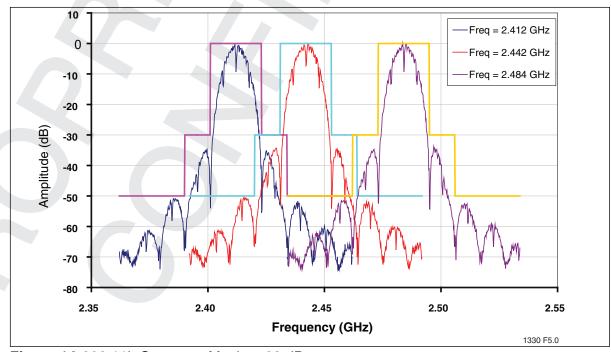
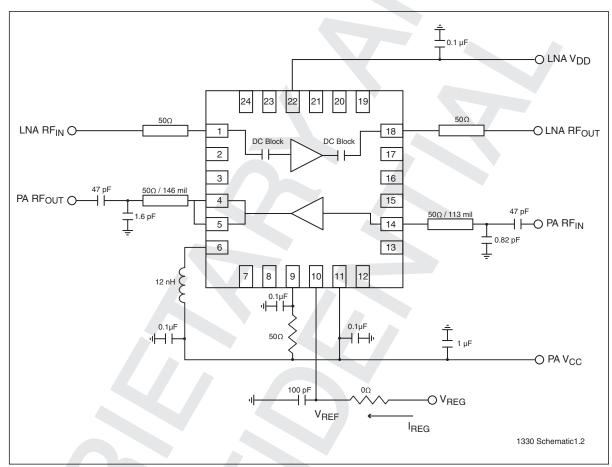
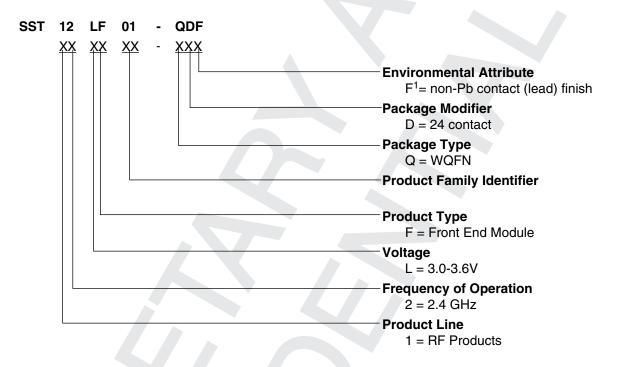


Figure 14:802.11b Spectrum Mask at 23 dBm




Figure 15: Typical Schematic

SST12LF01

Data Sheet

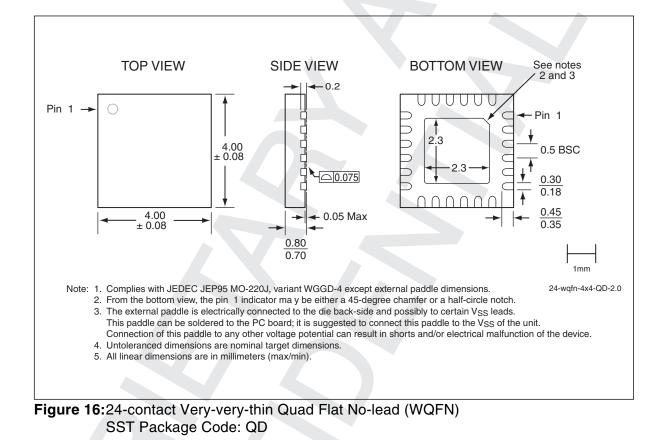
Product Ordering Information

1. Environmental suffix "F" denotes non-Pb solder. SST non-Pb solder devices are "RoHS Compliant".

Valid combinations for SST12LF01

SST12LF01-QDF

SST12LF01 Evaluation Kits


SST12LF01-QDF-K

Note: Valid combinations are those products in mass production or will be in mass production. Consult your SST sales representative to confirm availability of valid combinations and to determine availability of new combinations.

Packaging Diagrams

Data Sheet

©2011 Silicon Storage Technology, Inc.

Data Sheet

Table 6: Revision History

Revision	Description	Date
00	Initial release of data sheet	Sep 2006
01	Updated pins 9 and 11 in Figure 2 on page 4	Jan 2007
	Updated pin 6, 9, and 11 in Table 1 on page 5	
	Updated Figure 11 on page 15	
	Updated Figure 15 on page 17	
02	Updated "Product Ordering Information" on page 18	Sep 2007
03	Revised Product Description on page 1	Jun 2008
	Changed signal gain value14 dB globally	
	Changed low-noise figure to 1.45 dB globally	
	Edited high temperature stability feature, page 1	
	Change low idle current to 75 mA, page 1	
	• Edited Table 2, DC Electrical Characteristics; Table 3, AC Electrical Characteristics RX Chain; Table 4, AC Electrical Characteristics TX Chain	
	 Replaced Figures 3 through 11 with up-to-date graphs on pages 7 through 13 	
	Added Figure 5 on page 8	
	Added Figure 12 on page 15	
	Edited Figure 15 on page 17	
04	• Revised RX chain gain value from 14 to 12 in "Features" and "Product Description" on page 2 and Table 4 on page 7.	Nov 2008
	Updated Figures 3 and 5.	
05	Updated contact information	Feb 2009
06	Updated document status to "Data Sheet"	Nov 2010
	Revised IIPE values in Features on page 1 and Table 4 on page 7	
	Changed definition of "F" environmental attribute in "Product Ordering Information" on page 18	
A	Removed products with an "E" environmental attribute from "Product Ordering Information" on page 18	Dec 2011
	 Revised Figure 1 on page 3 and the caption of 	
	Applied new document format	
	Released document under letter revision system	
	 Updated Spec number from S71330 to DS75040 	

SST12LF01

Data Sheet

ISBN:978-1-61341-864-2

© 2011 Silicon Storage Technology, Inc-a Microchip Technology Company. All rights reserved.

SST, Silicon Storage Technology, the SST logo, SuperFlash, MTP, and FlashFlex are registered trademarks of Silicon Storage Technology, Inc. MPF, SQI, Serial Quad I/O, and Z-Scale are trademarks of Silicon Storage Technology, Inc. All other trademarks and registered trademarks mentioned herein are the property of their respective owners.

Specifications are subject to change without notice. Refer to www.microchip.com for the most recent documentation. For the most current package drawings, please see the Packaging Specification located at http://www.microchip.com/packaging.

Memory sizes denote raw storage capacity; actual usable capacity may be less.

SST makes no warranty for the use of its products other than those expressly contained in the Standard Terms and Conditions of Sale.

For sales office locations and information, please see www.microchip.com.

Silicon Storage Technology, Inc. A Microchip Technology Company www.microchip.com