

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Data Sheet

The SST12LP14C is a versatile power amplifier based on the highly-reliable InGaP/GaAs HBT technology. Easily configured for high-power applications with good power-added efficiency, it typically provides 32 dB gain with 29% PAE @ POUT = 23 dBm for 802.11g and 29% PAE @ POUT = 23.5 dBm for 802.11b. This power amplifier has excellent linearity while meeting 802.11g spectrum mask up to 23 dBm. The SST12LP14C also features easy board-level usage along with high-speed power-up/-down control through a single combined reference voltage pin. The SST12LP14C has an excellent on-chip and single ended power detector, and is offered in 16-contact VQFN package.

Features

- High Gain:
 - Typically 32 dB gain across 2.4~2.5 GHz over temperature 0°C to +85°C
- High linear output power:
 - ->26 dBm P1dB
 - Please refer to "Absolute Maximum Stress Ratings" on page 5
 - Meets 802.11g OFDM ACPR requirement up to 23 dBm
 - ~4% added EVM up to 20 dBm for 54 Mbps 802.11g signal
 - Meets 802.11b ACPR requirement up to 23.5 dBm
- High power-added efficiency/Low operating current for both 802.11b/g applications
 - ~29%/205 mA @ P_{OUT} = 23 dBm for 802.11g ~29%/230 mA @ P_{OUT} = 23.5 dBm for 802.11b
- Single-pin low I_{REF} power-up/-down control
 - I_{REF} <2 mA
- Low idle current
 - -~100 mA I_{CO}
- High-speed power-up/-down
 - Turn on/off time (10%-90%) <100 ns
 - Typical power-up/-down delay with driver delay included <200 ns
- High temperature stability
 - ~1 dB power variation between 0°C to +85°C

- Low shut-down current (< 0.1 μA)
- Excellent On-chip power detection
 - <+/- 0.5dB variation between 0°C to +85°C <+/- 0.3dB variation Ch1 through Ch14</p>
- 20 dB dynamic range on-chip power detection
- Simple input/output matching
- Packages available
 - 16-contact VQFN 3mm x 3mm
- All non-Pb (lead-free) devices are RoHS compliant

Applications

- WLAN (IEEE 802.11b/g)
- Home RF
- Cordless phones
- 2.4 GHz ISM wireless equipment

Data Sheet

Product Description

The SST12LP14C is a versatile power amplifier based on the highly-reliable InGaP/GaAs HBT technology.

The SST12LP14C can be easily configured for high-power applications with good power-added efficiency (PAE) while operating over the 2.4- 2.5 GHz frequency band. It typically provides 32 dB gain with 29% PAE @ P_{OUT} = 23 dBm for 802.11g and 29% PAE @ P_{OUT} = 23.5 dBm for 802.11b.

This power amplifier has excellent linearity, typically ~4% added EVM at 20 dBm output power. This is essential for 54 Mbps 802.11g operation while meeting 802.11g spectrum mask up to 23 dBm. The SST12LP14C can be configured for applications with an added EVM of ~3%, up to 21 dBm with 19% PAE over the 960-1060 MHz frequency bands. This configuration meets the 802.11g spectrum mask up to 24 dBm with 28% PAE and the 802.11b spectrum mask up to 25 dBm with 31% PAE.¹

The SST12LP14C also features easy board-level usage along with high-speed power-up/-down control through a single combined reference voltage pin. Ultra-low reference current (total $I_{REF} \sim 2$ mA) makes the SST12LP14C controllable by an on/off switching signal directly from the baseband chip. These features coupled with low operating current make this device ideal for the final stage power amplification in battery-powered 802.11b/g WLAN transmitter applications.

This power amplifier has an excellent on-chip and single-ended power detector, which features a wide range (>15 dB) with dB-wise linearization and high stability over temperature (+/-0.5 dB 0°C to +85°C), and over frequency (<+/-0.3 dB across Channels 1 through 14). The on-chip power detector provides a reliable solution to board-level power control.

The SST12LP14C is offered in 16-contact VQFN package. See Figure 2 for pin assignments and Table 1 for pin descriptions.

^{1.} For more information on performance and reference design, see the SST12LP14C application note.

Data Sheet

Functional Blocks

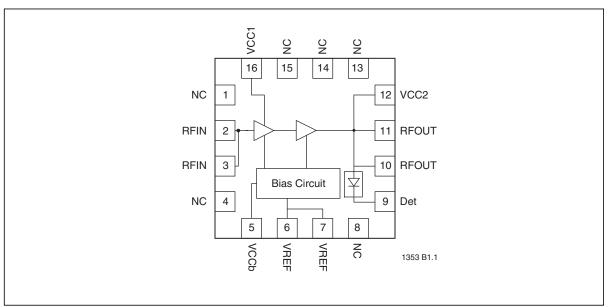


Figure 1: Functional Block Diagram

Data Sheet

Pin Assignments

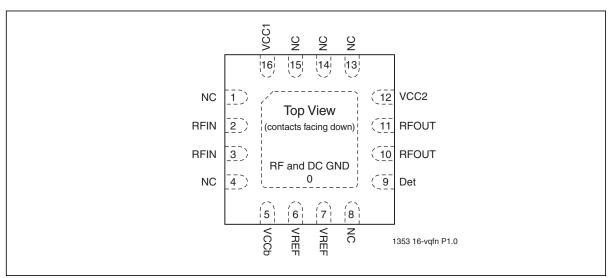


Figure 2: Pin Assignments for 16-contact VQFN

Pin Descriptions

Table 1: Pin Description

Symbol	Pin No.	Pin Name	Type ¹	Function	
GND	0	Ground		The center pad should be connected to RF ground with several low inductance, low resistance vias	
NC	1	No Connection		Unconnected pin	
RFIN	2		I	RF input	
RFIN	3		ı	RF input	
NC	4	No Connection		Unconnected pin	
VCCb	5	Power Supply	PWR	Supply voltage for bias circuit	
VREF	6		PWR	1 st and 2 nd stage idle current control	
VREF	7		PWR	1 st and 2 nd stage idle current control	
NC	8	No Connection		Unconnected pin	
Det	9		0	On-chip power detector	
RFOUT	10		0	RF output	
RFOUT	11		0	RF output	
VCC2	12	Power Supply	PWR	Power supply, 2 nd stage	
NC	13	No Connection		Unconnected pin	
NC	14	No Connection		Unconnected pin	
NC	15	No Connection		Unconnected pin	
VCC1	16	Power Supply	PWR	Power supply, 1st stage	

1. I=Input, O=Output

T1.0 75034

Data Sheet

Electrical Specifications

The AC and DC specifications for the power amplifier interface signals. Refer to Table 3 for the DC voltage and current specifications. Refer to Figures 3 through Figure 12 for the RF performance.

Absolute Maximum Stress Ratings (Applied conditions greater than those listed under "Absolute Maximum Stress Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these conditions or conditions greater than those defined in the operational sections of this data sheet is not implied. Exposure to absolute maximum stress rating conditions may affect device reliability.)

Input power to pins 2 and 3 (P _{IN})	+5 dBm
Average output power (P _{OUT}) ¹	+26 dBm
Supply Voltage at pins 5, 12, and 16 (V _{CC})	0.3V to +4.6V
Reference voltage to pins 6 and 7 (V _{REF})	0.3V to +3.3V
DC supply current (I _{CC})	400 mA
Operating Temperature (T _A)	40°C to +85°C
Storage Temperature (T _{STG})	40°C to +120°C
Maximum Junction Temperature (T _J)	+150°C
Surface Mount Solder Reflow Temperature	260°C for 10 seconds

^{1.} Never measure with CW source. Pulsed single-tone source with <50% duty cycle is recommended. Exceeding the maximum rating of average output power could cause permanent damage to the device.

Table 2: Operating Range

Range	Ambient Temp	V _{CC}
Industrial	-40°C to +85°C	3.3V

T2.1 75034

Table 3: DC Electrical Characteristics

Symbol	Parameter	Min.	Тур	Max.	Unit	Test Conditions
V_{CC}	Supply Voltage at pins 5, 12, 16	3.0	3.3	4.2	V	
I _{CC}	Supply Current					
	for 802.11g, 23 dBm		205		mA	
	for 802.11b, 23.5 dBm		230		mA	
I _{CQ}	Idle current for 802.11g to meet EVM<4% @ 20 dBm		100		mA	
I _{OFF}	Shut down current			0.1	μΑ	
V _{REG}	Reference Voltage for, with 30Ω resistor		2.85	2.95	٧	

T3.2 75034

Data Sheet

Table 4: AC Electrical Characteristics for Configuration

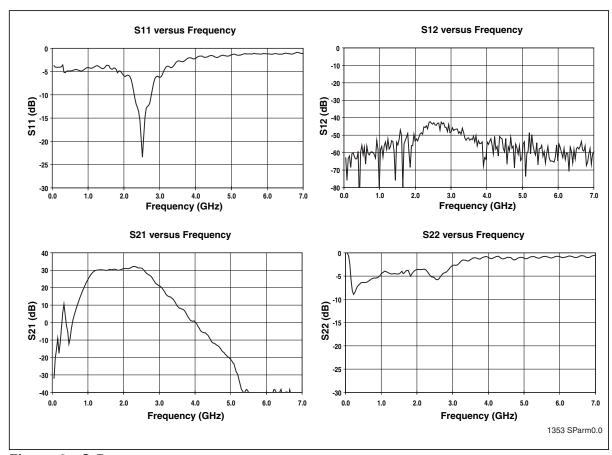
Symbol	Parameter	Min.	Тур	Max.	Unit
F _{L-U}	Frequency range	2400		2485	MHz
Pout	Output power				
	@ PIN = -9 dBm 11b signals	22			dBm
	@ PIN = -11 dBm 11g signals	20			dBm
G	Small signal gain	31	32		dB
G _{VAR1}	Gain variation over band (2400~2485 MHz)			±0.5	dB
G _{VAR2}	Gain ripple over channel (20 MHz)		0.2		dB
ACPR	Meet 11b spectrum mask	23	23.5		dBm
	Meet 11g OFDM 54 Mbps spectrum mask	22	23		dBm
Added EVM	@ 20 dBm output with 11g OFDM 54 Mbps signal		4		%
2f, 3f, 4f, 5f	Harmonics at 22 dBm, without external filters			-48	dBc

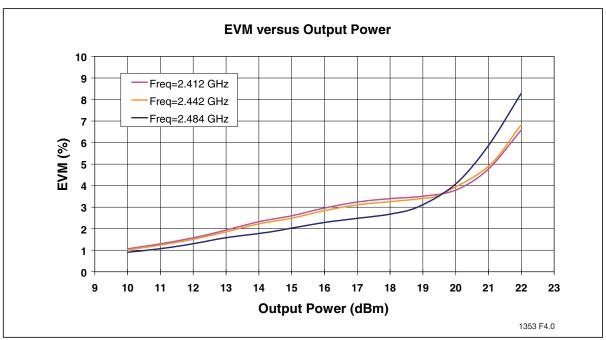
T4.3 75034

Data Sheet

Typical Performance Characteristics

Test Conditions: $V_{CC} = 3.3V$, $T_A = 25$ °C, unless otherwise specified




Figure 3: S-Parameters

Data Sheet

Typical Performance Characteristics

Test Conditions: $V_{CC} = 3.3V$, $T_A = 25$ °C, 54 Mbps 802.11g OFDM signal

Figure 4: EVM versus Output Power, measured with Equalizer Channel Estimation set to "sequence plus data"

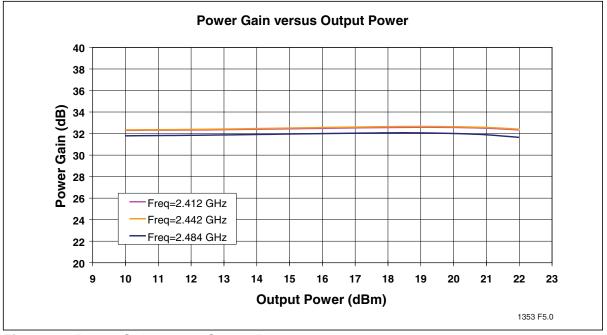


Figure 5: Power Gain versus Output Power

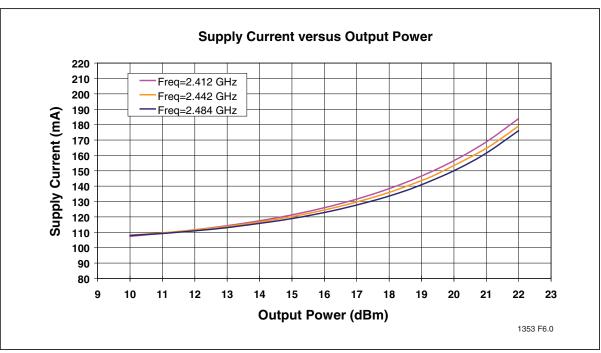


Figure 6: Total Current Consumption for 802.11g Operation versus Output Power

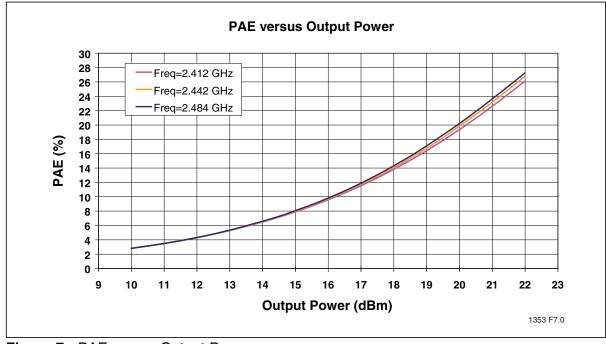


Figure 7: PAE versus Output Power

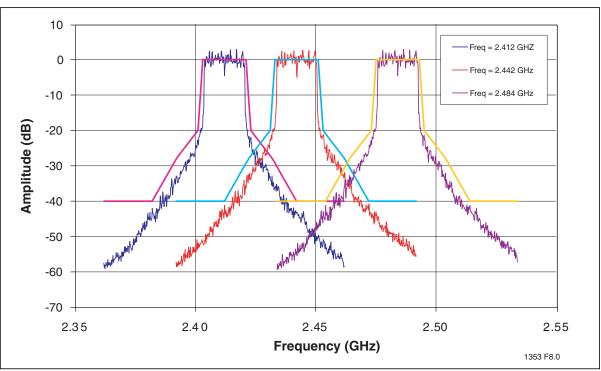


Figure 8: 802.11g Spectrum Mask at 23 dBm

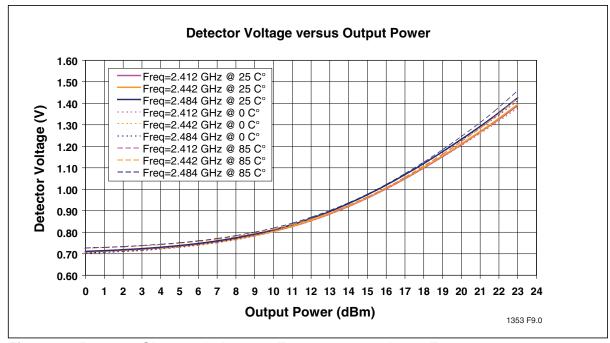


Figure 9: Detector Characteristics over Temperature and over Frequency

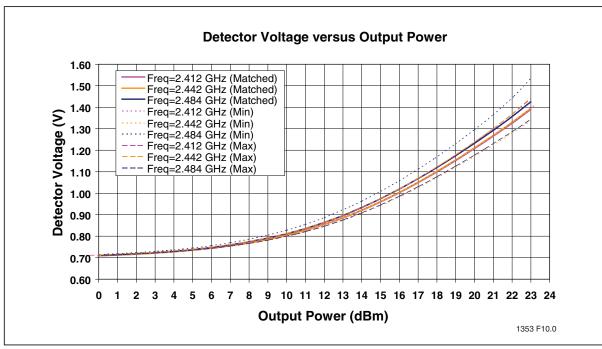


Figure 10: Detector Characteristics over Frequency with 2:1 Output VSWR All Phases

Figure 11:802.11b Spectrum Mast at 23.5 dBm

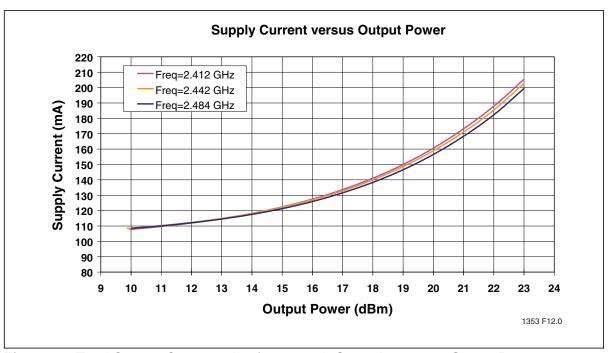


Figure 12: Total Current Consumption for 802.11b Operation versus Output Power

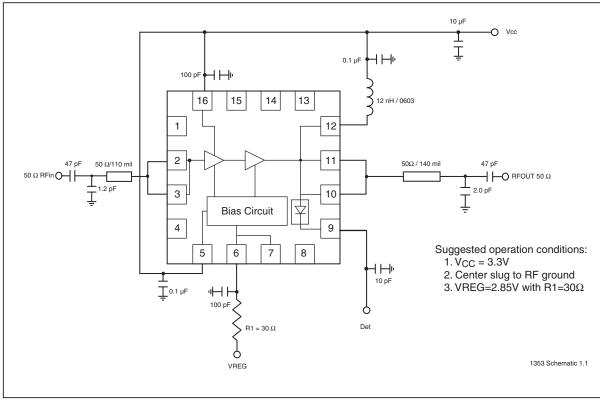
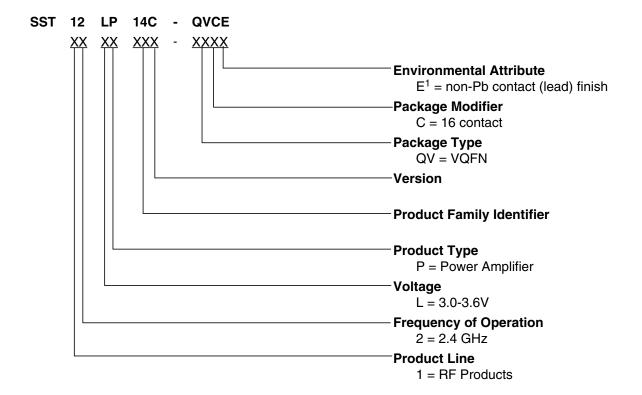



Figure 13: Typical Schematic for High-Power/High-Efficiency 802.11b/g Applications

Data Sheet

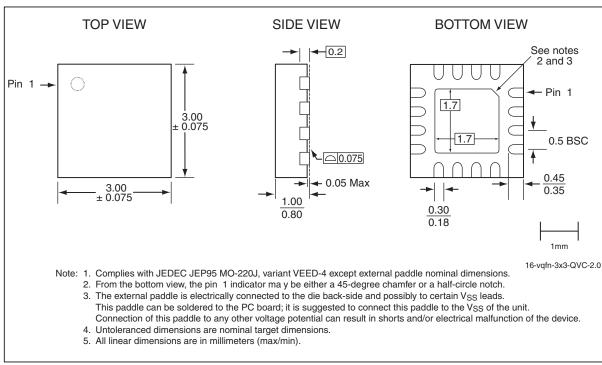
Product Ordering Information

Valid combinations for SST12LP14C

SST12LP14C-QVCE

SST12LP14C Evaluation Kits

SST12LP14C-QVCE-K


Note:Valid combinations are those products in mass production or will be in mass production. Consult your SST sales representative to confirm availability of valid combinations and to determine availability of new combinations.

Environmental suffix "E" denotes non-Pb solder. SST non-Pb solder devices are "RoHS Compliant".

Data Sheet

Packaging Diagrams

Figure 14:16-Contact Very-thin Quad Flat No-lead (VQFN) SST Package Code: QVC

Data Sheet

Table 5: Revision History

Revision		Description	Date
00	•	Initial release of data sheet	Feb 2007
01	•	Updated "Features" and "Product Description" on page 2	Oct 2007
	•	Revised Table 3 on page 5 and Table 4 on page 6	
	•	Updated the figure caption of Table 11 on page 11	
02	•	Updated document status from Preliminary Specification to Data Sheet	Apr 2008
03	•	Updated "Contact Information" on page 14	Mar 2009
Α	•	Applied new document format	Dec 2011
	•	Released document under letter revision system	
	•	Updated spec number from S71353 to DS75034	
	•	Updated Supply voltage range in "Electrical Specifications" on page 5	

ISBN:978-1-61341-894-9

© 2011 Silicon Storage Technology, Inc-a Microchip Technology Company. All rights reserved.

SST, Silicon Storage Technology, the SST logo, SuperFlash, MTP, and FlashFlex are registered trademarks of Silicon Storage Technology. nology, Inc. MPF, SQI, Serial Quad I/O, and Z-Scale are trademarks of Silicon Storage Technology, Inc. All other trademarks and registered trademarks mentioned herein are the property of their respective owners.

Specifications are subject to change without notice. Refer to www.microchip.com for the most recent documentation. For the most current package drawings, please see the Packaging Specification located at http://www.microchip.com/packaging.

Memory sizes denote raw storage capacity; actual usable capacity may be less.

SST makes no warranty for the use of its products other than those expressly contained in the Standard Terms and Conditions of Sale.

For sales office locations and information, please see www.microchip.com.

Silicon Storage Technology, Inc. A Microchip Technology Company www.microchip.com