imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

4 Mbit, 3.3V, SPI Serial Flash

Features

- Single Voltage Read and Write Operations
 2.3-3.6V
- Serial Interface Architecture
 - SPI Compatible: Mode 0 and Mode 3
- High Speed Clock Frequency
 - 40MHz
- Dual Input/Output Support
 - Fast-Read Dual-Output Instruction (3BH)
 - Fast-Read Dual I/O Instruction (BBH)
- Superior Reliability
 - Endurance: 100,000 Cycles
 - Greater than 20 years Data Retention
- Ultra-Low Power Consumption:
 - Active Read Current: 5 mA (typical)
 - Standby Current: 5 µA (typical)
 - Power-down Mode Standby Current: 3 μA (typical)
- Flexible Erase Capability
 - Uniform 4 KByte sectors
 - Uniform 64 KByte overlay blocks
- Page Program Mode
 - 256 Bytes/Page
- Fast Erase and Page-Program:
 - Chip-Erase Time: 250 ms (typical)
 - Sector-Erase Time: 40 ms (typical)
 - Block-Erase Time: 80 ms (typical)
 - Page-Program Time: 4 ms/ 256 bytes (typical)
- End-of-Write Detection
 - Software polling the BUSY bit in Status Register
- Hold Pin (HOLD#)
 - Suspend a serial sequence without deselecting the device
- Write Protection (WP#)
 - Enables/Disables the Lock-Down function of the status register
- Software Write Protection
 - Write protection through Block-Protection bits in status register

- Temperature Range
 - Automotive AECQ-100 Grade 2 and Grade 3
 - Industrial: -40°C to +85°C
 - Extended: -40°C to +105°C
- · Packages Available
 - 8-contact USON (2 mm x 3 mm)
 - 8-lead SOIC (150 mils)
 - 8-contact WDFN (5mm x 6mm)
- · All devices are RoHS compliant

Product Description

SST25PF040C is a member of the Serial Flash 25 Series family and feature a four-wire, SPI-compatible interface that allows for a low pin-count package which occupies less board space and ultimately lowers total system costs. SPI serial flash memory is manufactured with proprietary, high-performance CMOS SuperFlash technology. The split-gate cell design and thick-oxide tunneling injector attain better reliability and manufacturability compared with alternate approaches.

This Serial Flash significantly improve performance and reliability, while lowering power consumption. The device writes (Program or Erase) with a single power supply of 2.3-3.6V. The total energy consumed is a function of the applied voltage, current, and time of application. Since for any given voltage range, the SuperFlash technology uses less current to program and has a shorter erase time, the total energy consumed during any Erase or Program operation is less than alternative flash memory technologies.

SST25PF040C is offered in 8-lead SOIC and 8-contact WDFN and USON packages. See Figure 2-1 for the pin assignments.

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

1.0 FUNCTIONAL BLOCKS

SST25PF040C

2.0 PIN ASSIGNMENTS

Symbol	Pin Name	Functions
SCK	Serial Clock	To provide the input/output timing of the serial interface. Commands, addresses, or input data are latched on the rising edge of the clock input, while output data is shifted out on the falling edge of the clock input.
SI	Serial Data Input	To transfer commands, addresses, or data serially into the device. Inputs are latched on the rising edge of the serial clock.
SO	Serial Data Output	To transfer data serially out of the device. Data is shifted out on the falling edge of the serial clock.
SIO _[0:1]	Serial Data Input/ Output for Dual I/O Mode	To transfer commands, addresses, or data serially into the device, or data out of the device. Inputs are latched on the rising edge of the serial clock. Data is shifted out on the falling edge of the serial clock. These pins are used in Dual I/O mode
CE#	Chip Enable	The device is enabled by a high to low transition on CE#. CE# must remain low for the duration of any command sequence. The device is deselected and placed in Standby mode when CE# is high.
WP#	Write Protect	The Write Protect (WP#) pin is used to enable/disable BPL bit in the status reg- ister.
HOLD#	Hold	To temporarily stop serial communication with SPI Flash memory while device is selected.
V _{DD}	Power Supply	To provide power supply voltage: 2.3-3.6V
V _{SS}	Ground	

TABLE 2-1:PIN DESCRIPTION

3.0 MEMORY ORGANIZATION

The SST25PF040C SuperFlash memory arrays are organized in 128 uniform 4 KByte sectors, with 8 64 KByte overlay erasable blocks.

FIGURE 3-1: **MEMORY MAP**

DEVICE OPERATION 4.0

SST25PF040C is accessed through the SPI (Serial Peripheral Interface) bus compatible protocol. The SPI bus consist of four control lines: Chip Enable (CE#) is used to select the device, and data is accessed through the Serial Data Input (SI), Serial Data Output (SO), and Serial Clock (SCK).

The SST25PF040C supports both Mode 0 (0,0) and Mode 3 (1,1) of SPI bus operations. The difference between the two modes, as shown in Figure 4-1, is the state of the SCK signal when the bus master is in Stand-by mode and no data is being transferred. The SCK signal is low for Mode 0 and SCK signal is high for Mode 3. For both modes, the Serial Data In (SI) is sampled at the rising edge of the SCK clock signal and the Serial Data Output (SO) is driven after the falling edge of the SCK clock signal.

FIGURE 4-1: SPI PROTOCOL

4.0.1 HOLD

In the hold mode, serial sequences underway with the SPI Flash memory are paused without resetting the clocking sequence. To activate the HOLD# mode, CE# must be in active low state. The HOLD# mode begins when the SCK active low state coincides with the falling edge of the HOLD# signal. The Hold mode ends when the rising edge of the HOLD# signal coincides with the SCK active low state. HOLD# must not rise or fall when SCK logic level is high. See Figure 4-2 for Hold Condition waveform.

Once the device enters Hold mode, SO will be in high-impedance state while SI and SCK can be V_{II} or V_{IH}

If CE# is driven active high during a Hold condition, the device returns to standby mode. The device can then be re-initiated with the command sequences listed in Table 5-1. As long as HOLD# signal is low, the memory remains in the Hold condition. To resume communication with the device, HOLD# must be driven active high, and CE# must be driven active low. See Figure 4-2 for Hold timing.

4.1 Write Protection

SST25PF040C provides software Write protection. The Write Protect pin (WP#) enables or disables the lock-down function of the status register. The Block-Protection bits (BP0, BP1, BP2, TB, and BPL) in the status register provide Write protection to the memory array and the status register. See Table 4-3 for the Block-Protection description.

4.1.1 WRITE PROTECT PIN (WP#)

The Write Protect (WP#) pin enables the lock-down function of the BPL bit (bit 7) in the status register. When WP# is driven low, the execution of the Write-Status-Register (WRSR) instruction is determined by the value of the BPL bit (see Table 4-1). When WP# is high, the lock-down function of the BPL bit is disabled.

TABLE 4-1: CONDITIONS TO EXECUTE WRITE-STATUS-REGISTER (WRSR) INSTRUCTION

WP#	BPL	Execute WRSR Instruction	
L	1	Not Allowed	
L	0	Allowed	
Н	Х	Allowed	

4.2 Status Register

The software status register provides status on whether the flash memory array is available for any Read or Write operation, whether the device is Write enabled, and the state of the Memory Write protection. During an internal Erase or Program operation, the status register may be read only to determine the completion of an operation in progress. Table 4-2 describes the function of each bit in the software status register.

			Default at	
Bit	Name	Function	Power-up	Read/Write
0	BUSY	1 = Internal Write operation is in progress0 = No internal Write operation is in progress	0	R
1	WEL	1 = Device is memory Write enabled0 = Device is not memory Write enabled	0	R
2	BP0 ¹	Indicate current level of block write protection (See Table 4-3)	0 or 1	R/W
3	BP1 ¹	Indicate current level of block write protection (See Table 4-3)	0 or 1	R/W
4	BP2 ¹	Indicate current level of block write protection (See Table 4-3)	0 or 1	R/W
5	TB ¹	1 = 1/8, 1/4, or 1/2 Bottom Memory Blocks are protected (See Table 4-3) 0 = 1/8, 1/4, or 1/2 Top Memory Blocks are protected	0 or 1	R/W
6	RES	Reserved for future use	0	N/A
7	BPL ¹	1 = BP0, BP1, BP2, TB, and BPL are read-only bits 0 = BP0, BP1, BP2, TB, and BPL are read/writable	0 or 1	R/W

TABLE 4-2:SOFTWARE STATUS REGISTER

1. BP0, BP1, BP2, TB, and BPL bits are non-volatile memory bits.

4.2.1 BUSY (BIT 0)

The Busy bit determines whether there is an internal Erase or Program operation in progress. A '1' for the Busy bit indicates the device is busy with an operation in progress. A '0' indicates the device is ready for the next valid operation.

4.2.2 WRITE ENABLE LATCH (WEL–BIT 1)

The Write-Enable-Latch bit indicates the status of the internal Write-Enable-Latch memory. If the WEL bit is set to '1', it indicates the device is Write enabled. If the bit is set to '0' (reset), it indicates the device is not Write enabled and does not accept any Write (Program/ Erase) commands. The Write-Enable-Latch bit is automatically reset under the following conditions:

- · Power-up
- Write-Disable (WRDI) instruction completion
- Page-Program instruction completion
- Sector-Erase instruction completion
- 64 KByte Block-Erase instruction completion
- Chip-Erase instruction completion
- · Write-Status-Register instruction completion

4.2.3 BLOCK-PROTECTION (BP0, BP1, BP2, AND TB–BITS 2, 3, 4, AND 5)

The Block-Protection (BP0, BP1, BP2, and TB) bits define the size of the memory area to be software protected against any memory Write (Program or Erase) operation, see Table 4-3. The Write-Status-Register (WRSR) instruction is used to program the BP0, BP1,

BP2, and TB bits as long as WP# is high or the Block-Protect-Lock (BPL) bit is '0'. Chip-Erase can only be executed if Block-Protection bits are all '0'. BP0, BP1, and BP2 select the protected area and TB allocates the protected area to the higher-order address area (Top Blocks) or lower-order address area (Bottom Blocks).

4.2.4 BLOCK PROTECTION LOCK-DOWN (BPL–BIT 7)

When the WP# pin is driven low (V_{IL}), it enables the Block-Protection-Lock-Down (BPL) bit. When BPL is set to '1', it prevents any further alteration of the BP0,

BP1, BP2, TB, and BPL bits. When the WP# pin is driven high (V_IH), the BPL bit has no effect and its value is 'Don't Care'.

TABLE 4-3: SOFTWARE STATUS REGISTER BLOCK PROTECTION

	Status Register Bit				
Protection Level		BP2	BP1	BP0	Protected Memory Address
0 (Full Memory Array unprotected)	Х	0	0	0	None
T1 (1/8 Top Memory Block protected)	0	0	0	1	070000H-07FFFFH
T2 (1/4 Top Memory Block protected)	0	0	1	0	060000H-07FFFFH
T3 (1/2 Top Memory Block protected)	0	0	1	1	040000H-07FFFH
B1 (1/8 Bottom Memory Block protected)	1	0	0	1	000000H-00FFFFH
B2 (1/4 Bottom Memory Block protected)	1	0	1	0	000000H-01FFFFH
B3 (1/2 Bottom Memory Block protected)	1	0	1	1	000000H-03FFFFH
4 (Full Memory Block protected)	Х	1	Х	Х	000000H-07FFFH

5.0 INSTRUCTIONS

Instructions are used to read, write (Erase and Program), and configure the SST25PF040C devices. The instruction bus cycles are 8 bits each for commands (Op Code), data, and addresses. The Write-Enable (WREN) instruction must be executed prior to Sector-Erase, Block-Erase, Page-Program, Write-Status-Register, or Chip-Erase instructions. The complete instructions are provided in Table 5-1. All instructions are synchronized off a high-to-low transition of CE#. Inputs will be accepted on the rising edge of SCK starting with the most significant bit. CE# must be driven low before an instruction is entered and must be driven high after the last bit of the instruction has been shifted in (except for Read, Read-ID, and Read-Status-Register instructions). Any low-to-high transition on CE#, before receiving the last bit of an instruction bus cycle, will terminate the instruction in progress and return the device to standby mode. Instruction commands (Op Code), addresses, and data are all input from the most significant bit (MSB) first.

			Address	Dummy	Data	Maximum
Instruction	Description	Op Code Cycle ¹	Cycle(s) ²	Cycle(s)	Cycle(s)	Frequency
Read	Read Memory	0000 0011b (03H)	3	0	1 to ∞	25 MHz
High-Speed Read	Read Memory at Higher Speed	0000 1011b (0BH)	3	1	1 to ∞	
Fast-Read Dual- Output	Read Memory with Dual Out- put	0011 1011b (3BH)	3	1 ³	1 to ∞ ³	
Fast-Read Dual I/O	Read Memory with Dual Address Input and Data Output	1011 1011b (BBH)	3 ³	1 ³	1 to ∞ ³	
4 KByte Sector- Erase ⁴	Erase 4 KByte of memory array	0010 0000b (20H) 1101 0111b (D7H)	3	0	0	
64 KByte Block- Erase ⁵	Erase 64 KByte block of memory array	1101 1000b (D8H)	3	0	0	
Chip-Erase	Erase Full Memory Array	0110 0000b (60H) or 1100 0111b (C7H)	0	0	0	40 MHz
Page-Program	To program up to 256 Bytes	0000 0010b (02H)	3	0	1 to 256	
RDSR ⁶	Read-Status-Register	0000 0101b (05H)	0	0	1 to ∞	
WRSR	Write-Status-Register	0000 0001b (01H)	0	0	1	
WREN	Write-Enable	0000 0110b (06H)	0	0	0	
WRDI	Write-Disable	0000 0100b (04H)	0	0	0	
RDID ^{7,8}	Read-ID	1010 1011b (ABH)	3	0	1 to ∞	
JEDEC-ID	JEDEC ID Read	1001 1111b (9FH)	0	0	4 to ∞	
DPD	Deep Power-Down Mode	1011 1001b (B9H)	0	0	0	
RDPD ⁸	Release from Deep Power- Down or Read ID	1010 1011b (ABH)	0	0	0	

TABLE 5-1: DEVICE OPERATION INSTRUCTIONS

1. One bus cycle is eight clock periods.

2. Address bits above the most significant bit of each density can be $V_{IL} \mbox{ or } V_{IH}.$

3. One bus cycle is four clock periods in Dual Operation

- 4. 4 KByte Sector-Erase addresses: use A_{MS}-A₁₂, remaining addresses are don't care but must be set either at V_{IL} or V_{IH}.
- 5. 64 KByte Block-Erase addresses: use A_{MS} - A_{16} , remaining addresses are don't care but must be set either at V_{IL} or V_{IH} .

6. The Read-Status-Register is continuous with ongoing clock cycles until terminated by a low to high transition on CE#.

7. Device ID is read after three dummy address bytes. The Device ID output stream is continuous until terminated by a low-tohigh transition on CE#.

8. The instructions Release from Deep Power down and Read-ID are similar instructions (ABH). Executing Read-ID requires the ABH instruction, followed by 24 dummy address bits to retrieve the Device ID. Release from Deep Power-Down only requires the instruction ABH.

5.1 Read (25 MHz)

The Read instruction, 03H, supports up to 25 MHz Read. The device outputs a data stream starting from the specified address location. The data stream is continuous through all addresses until terminated by a lowto-high transition on CE#. The internal address pointer automatically increments until the highest memory address is reached. Once the highest memory address is reached, the address pointer automatically incre-

FIGURE 5-1: **READ SEQUENCE**

ments to the beginning (wrap-around) of the address space. For example, for 4 Mbit density, once the data from the address location 7FFFFH is read, the next output is from address location 000000H. The Read instruction is initiated by executing an 8-bit command, 03H, followed by address bits A23-A0. CE# must remain active low for the duration of the Read cycle. See Figure 5-1 for the Read sequence.

5.2 High-Speed-Read (40 MHz)

The High-Speed-Read instruction supporting up to 40 MHz Read is initiated by executing an 8-bit command, 0BH, followed by address bits [A₂₃-A₀] and a dummy byte. CE# must remain active low for the duration of the High-Speed-Read cycle. See Figure 5-2 for the High-Speed-Read sequence.

Following a dummy cycle, the High-Speed-Read instruction outputs the data starting from the specified address location. The data output stream is continuous through all addresses until terminated by a low-to-high transition on CE#. The internal address pointer will automatically increment until the highest memory address is reached. Once the highest memory address is reached, the address pointer will automatically increment to the beginning (wrap-around) of the address space. For example, for 4 Mbit density, once the data from address location 7FFFFH is read, the next output will be from address location 000000H.

FIGURE 5-2: **HIGH-SPEED-READ SEQUENCE**

5.3 Fast-Read Dual Output (40 MHz)

The Fast-Read Dual-Output (3BH) instruction outputs data up to 40 MHz from the SIO₀ and SIO₁ pins. To initiate the instruction, execute an 8-bit command (3BH) followed by address bits A23-A0 and a dummy byte on SI/SIO₀. Following a dummy cycle, the Fast-Read Dual-Output instruction outputs the data starting from the specified address location on the SIO₁ and SIO₀ lines. SIO1 outputs, per clock sequence, odd data bits D7, D5, D3, and D1; and SIO₀ outputs even data bits D6, D4, D2, and D0. CE# must remain active low for the

duration of the Fast-Read Dual-Output instruction cycle. See Figure 5-3 for the Fast-Read Dual-Output sequence.

The data output stream is continuous through all addresses until terminated by a low-to-high transition on CE#. The internal address pointer will automatically increment until the highest memory address is reached. Once the highest memory address is reached, the address pointer automatically increments to the beginning (wraparound) of the address space. For 4 Mbit density, once the data from address location 7FFFFH has been read the next output will be from address location 000000H.

FAST-READ DUAL OUTPUT SEQUENCE

5.4 Fast-Read Dual I/O (40 MHz)

The Fast-Read Dual I/O (BBH) instruction reduces the total number of input clock cycles, which results in faster data access. The device is first selected by driving Chip Enable CE# low. Fast-Read Dual I/O is initiated by executing an 8-bit command (BBH) on SI/SIO₀, thereafter, the device accepts address bits A23-A0 and a dummy byte on SI/SIO₀ and SO/SIO₁. It offers the capability to input address bits A23-A0 at a rate of two bits per clock. Odd address bits A23 through A1 are input on SIO1 and even address bits A22 through A0 are input on SIO₀, alternately For example, the most significant bit is input first followed by A23/22, A21/A20, and so on. Each bit is latched at the same rising edge of the Serial Clock (SCK). The input data during the dummy clocks is "don't care". However, the SIO₀ and SIO₁ pin must be in high-impedance prior to the falling edge of the first data output clock.

Following a dummy cycle, the Fast-Read Dual I/O instruction outputs the data starting from the specified address location on the SIO1 and SIO0 lines. SIO1 outputs, per clock sequence, odd data bits D7, D5, D3, and D1; and SIO₀ outputs even data bits D6, D4, D2, and D0 per clock edge. CE# must remain active low for the duration of the Fast-Read Dual I/O instruction cycle. The data output stream is continuous through all addresses until terminated by a low-to-high transition on CE#.

The internal address pointer will automatically increment until the highest memory address is reached. Once the highest memory address is reached, the address pointer automatically increments to the beginning (wraparound) of the address space. For example, once the data from address location 7FFFFH is read, the next output is from address location 000000H. See Figure 5-4 for the Fast-Read Dual I/O sequence.

5.5 Page-Program

The Page-Program instruction programs up to 256 Bytes of data in the memory. The data for the selected page address must be in the erased state (FFH) before initiating the Page-Program operation. A Page-Program applied to a protected memory area will be ignored. Prior to the program operation, execute the WREN instruction.

To execute a Page-Program operation, the host drives CE# low, then sends the Page-Program command cycle (02H), three address cycles, followed by the data to be programmed, and then drives CE# high. The programmed data must be between 1 to 256 Bytes and in whole byte increments; sending less than a full byte will cause the partial byte to be ignored. Poll the BUSY bit in the Status register, or wait T_{PP} for the completion of

the internal, self-timed, Page-Program operation. See Figure 5-5 for the Page-Program sequence and Figure 6-8 for the Page-Program flow chart.

When executing Page-Program, the memory range for the SST25PF040C is divided into 256-Byte page boundaries. The device handles the shifting of more than 256 Bytes of data by maintaining the last 256 Bytes as the correct data to be programmed. If the target address for the Page-Program instruction is not the beginning of the page boundary (A[7:0] are not all zero), and the number of bytes of data input exceeds or overlaps the end of the address of the page boundary, the excess data inputs wrap around and will be programmed at the start of that target page.

5.6 Sector-Erase

The Sector-Erase instruction clears all bits in the selected 4 KByte sector to FFH. A Sector-Erase instruction applied to a protected memory area will be ignored. Prior to any Write operation, the Write-Enable (WREN) instruction must be executed. CE# must remain active low for the duration of any command sequence. The Sector-Erase instruction is initiated by executing an 8-bit command, 20H or D7H, followed by address bits $[A_{23}-A_0]$. Address bits $[A_{MS}-A_{12}]$

 $(A_{MS}$ = Most Significant address) are used to determine the sector address (SA_X), remaining address bits can be V_{IL} or V_{IH}. CE# must be driven high before the instruction is executed. Poll the BUSY bit in the Software Status register, or wait T_{SE}, for the completion of the internal self-timed Sector-Erase cycle. See Figure 5-6 for the Sector-Erase sequence and Figure 6-9 for the flow chart.

FIGURE 5-6: SECTOR-ERASE SEQUENCE

5.7 64-KByte Block-Erase

The 64-KByte Block-Erase instruction clears all bits in the selected 64 KByte block to FFH. Applying this instruction to a protected memory area results in the instruction being ignored. Prior to any Write operation, the Write-Enable (WREN) instruction must be executed. CE# must remain active low for the duration of any command sequence.

Initiate the 64-Byte Block-Erase instruction by executing an 8-bit command, D8H, followed by address bits

[A₂₃-A₀]. Address bits [A_{MS}-A₁₆] (A_{MS} = Most Significant Address) determine the block address (BA_X), remaining address bits can be V_{IL} or V_{IH}. CE# must be driven high before executing the instruction. Poll the Busy bit in the software status register or wait T_{BE} for the completion of the internal self-timed Block-Erase cycle. See Figure 5-7 for the 64-KByte Block-Erase sequences and Figure 6-9 for the flow chart.

5.8 Chip-Erase

The Chip-Erase instruction clears all bits in the device to FFH. A Chip-Erase instruction is ignored if any of the memory area is protected. Prior to any Write operation, the Write-Enable (WREN) instruction must be executed. CE# must remain active low for the duration of the Chip-Erase instruction sequence. Initiate the Chip-Erase instruction by executing an 8-bit command, 60H or C7H. CE# must be driven high before the instruction is executed. Poll the BUSY bit in the Software Status register, or wait T_{SCE} , for the completion of the internal self-timed Chip-Erase cycle. See Figure 5-8 for the Chip-Erase sequence and Figure 6-10 for the flow chart.

FIGURE 5-8: CHIP-ERASE SEQUENCE

5.9 Read-Status-Register (RDSR)

The Read-Status-Register (RDSR) instruction, 05H, allows reading of the status register. The status register may be read at any time even during a Write (Program/ Erase) operation. When a Write operation is in progress, the Busy bit may be checked before sending any new commands to assure that the new commands are properly received by the device. CE# must be driven low before the RDSR instruction is entered and remain low until the status data is read. Read-Status-Register is continuous with ongoing clock cycles until it is terminated by a low-to-high transition of the CE#. See Figure 5-9 for the RDSR instruction sequence.

5.10 Write-Enable (WREN)

The Write-Enable (WREN) instruction, 06H, sets the Write-Enable-Latch bit in the Status Register to '1' allowing Write operations to occur. The WREN instruction must be executed prior to any Write (Program/ Erase) operation. The WREN instruction may also be used to allow execution of the Write-Status-Register (WRSR) instruction; however, the Write-Enable-Latch bit in the Status Register will be cleared upon the rising edge CE# of the WRSR instruction. CE# must be driven low before entering the WREN instruction, and CE# must be driven high before executing the WREN instruction. See Figure 5-10 for the WREN instruction sequence.

FIGURE 5-10: WRITE ENABLE (WREN) SEQUENCE

5.11 Write-Disable (WRDI)

The Write-Disable (WRDI) instruction, 04H, resets the Write-Enable-Latch bit to '0', thus preventing any new Write operations. CE# must be driven low before enter-

ing the WRDI instruction, and CE# must be driven high before executing the WRDI instruction. See Figure 5-11 for the WRDI instruction sequence.

FIGURE 5-11: WRITE DISABLE (WRDI) SEQUENCE

5.12 Write-Status-Register (WRSR)

The Write-Status-Register instruction writes new values to the BP0, BP1, BP2, TB, and BPL bits of the status register. CE# must be driven low before the command sequence of the WRSR instruction is entered and driven high before the WRSR instruction is executed. Poll the BUSY bit in the Software Status register, or wait T_{WRSR} , for the completion of the internal, self-timed Write-Status-Register cycle. See Figure 5-12 for WREN and WRSR instruction sequences and Figure 6-11 for the WRSR flow chart.

Executing the Write-Status-Register instruction will be ignored when WP# is low and BPL bit is set to '1'. When the WP# is low, the BPL bit can only be set from '0' to

'1' to lock-down the status register, but cannot be reset from '1' to '0'. When WP# is high, the lock-down function of the BPL bit is disabled and the BPL, BP0, BP1, BP2, and TB bits in the status register can all be changed. As long as BPL bit is set to '0' or WP# pin is driven high (V_{IH}) prior to the low-to-high transition of the CE# pin at the end of the WRSR instruction, the bits in the status register can all be altered by the WRSR instruction. In this case, a single WRSR instruction can set the BPL bit to '1' to lock down the status register as well as altering the BP0, BP1, BP2, and TB bits at the same time. See Table 4-1 for a summary description of WP# and BPL functions.

5.13 Power-Down

The Deep Power-Down (DPD) instruction puts the device in the lowest power consumption mode – the Deep Power-Down mode. This instruction is ignored if the device is busy with an internal write operation. While the device is in DPD mode, all instructions are ignored except for the Release Deep Power-Down instruction or Read ID.

To initiate deep power-down, input the Deep Power-Down instruction (B9H) while driving CE# low. CE# must be driven high before executing the DPD instruction. After driving CE# high, the device requires a delay of T_{DPD} before the standby current I_{SB} is reduced to the deep power-down current I_{DPD} . See Figure 5-13 for the DPD instruction sequence.

Exit the power-down state using the Release from Deep Power-Down or Read ID instruction. CE# must be driven low before sending the Release from Deep Power-Down command cycle (ABH), and then driving CE# high. The device will return to Standby mode and be ready for the next instruction after T_{SBR} . See Figure 5-14. for the Release from Deep Power-Down sequence.

FIGURE 5-13: DEEP POWER-DOWN SEQUENCE

FIGURE 5-14: RELEASE FROM DEEP POWER-DOWN SEQUENCE

5.14 Read-ID

The Read-ID instruction identifies the device as SST25PF040C. Use the Read-ID instruction to identify SST25PF040C when using multiple manufacturers in the same socket. See Table 5-2.

The device ID information is read by executing an 8-bit

TABLE 5-2: PRODUCT IDENTIFICATION

	Address	Data
SST25PF040C ID	XXXXXXH	6EH

transition on CE#.

5.15 JEDEC Read-ID

The JEDEC Read-ID instruction identifies the device ID information of SST25PF040C. The device information can be read by executing the 8-bit command, 9FH. Following the JEDEC Read-ID instruction, 32-bit device ID information is output from the device. The Device ID information is assigned by the manufacturer and contains the Device ID 1 in the first byte, the type of mem-

ory in the second byte, the memory capacity of the device in the third byte, and a reserved code in the fourth byte. The 4-Byte code outputs repeatedly with continuous clock input until a low-to-high transition on CE#. See Figure 5-16 for the instruction sequence. The JEDEC Read ID instruction is terminated by a low to high transition on CE# at any time during data output.

command, ABH, followed by 24 dummy address bits.

Following the Read-ID instruction, and 24 address

dummy bits, the device ID continues to output with con-

tinuous clock input until terminated by a low-to-high

TABLE 5-3: JEDEC READ-ID DATA-OUT

	Device ID						
Product	Device ID 1 (Byte 1)	Memory Type (Byte 2)	Memory Capacity (Byte 3)	Reserved Code (Byte 4)			
SST25PF040C	62H	06H	13H	00H			

6.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Stress Ratings (Applied conditions greater than those listed under "Absolute Maximum Stress Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these conditions or conditions greater than those defined in the operational sections of this data sheet is not implied. Exposure to absolute maximum stress rating conditions may affect device reliability.)

Temperature Under Bias	55°C to +125°C
Storage Temperature	55°C to +150°C
D. C. Voltage on Any Pin to Ground Potential	0.5V to V _{DD} +0.5V
Transient Voltage (<20 ns) on Any Pin to Ground Potential	2.0V to V _{DD} +2.0V
Package Power Dissipation Capability (T _A = 25°C)	1.0W
Surface Mount Solder Reflow Temperature	260°C for 10 seconds
Output Short Circuit Current ¹	50 mA

1. Output shorted for no more than one second. No more than one output shorted at a time.

TABLE 6-1: OPERATING RANGE

Range	Ambient Temp	V _{DD}	
Industrial	-40°C to +85°C	2.3 - 3.6V	
Extended	-40°C to +105°C	2.3 - 3.6V	

TABLE 6-2: AC CONDITIONS OF TEST

Input Rise/Fall Time	Output Load
5ns	C _L = 30 pF

6.1 Power-Up Specifications

All functionalities and DC specifications are specified for a V_{DD} ramp rate of greater than 1V per 100 ms (0V to 3.3V in less than 330 ms). See Table 6-3 and Figure 6-2 for more information.

TABLE 6-3: RECOMMENDED SYSTEM POWER-UP TIMINGS

Symbol	Parameter	Minimum	Units
T _{PU-READ} ¹	V _{DD} Min to Read Operation	100	μs
T _{PU-WRITE} ¹	V _{DD} Min to Write Operation	100	μs

1. This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

FIGURE 6-1: POWER-UP TIMING DIAGRAM

6.2 Hardware Data Protection

SST25PF040C provides a power-up reset function. To ensure that the power reset circuit will operate correctly, the device must meet the conditions shown in Figure 6-2 and Table 6-4. Microchip does not guarantee the data in the event of an instantaneous power failure that occurs during a Write operation.

TABLE 6-4: RECOMMENDED SYSTEM POWER-DOWN TIMINGS

Symbol	Parameter	Min	Max	Units
T _{PD}	Power-down time	10		ms
V _{BOT}	Power-down voltage		0.2	V

6.3 Software Data Protection

SST25PF040C prevents unintentional operations by not recognizing commands under the following conditions:

- After inputting a Write command, if the rising CE# edge timing is not in a bus cycle (8 CLK units of SCK)
- When the Page-Program data is not in 1-byte increments
- If the Write Status Register instruction is input for two bus cycles or more.

6.4 Decoupling Capacitor

A 0.1 μ F ceramic capacitor must be provided for each device and connected between V_{DD} and V_{SS} to ensure that the device will operate correctly.

6.5 DC Characteristics

		Limits				
Symbol	Parameter	Min	Typ ¹	Max	Units	Test Conditions
I _{DDR}	Read Current			6	mA	CE#=0.1 V _{DD} /0.9 V _{DD} @25 MHz, SO=open; Single I/O
I _{DDR2}	Read Current			10	mA	CE#=0.1 V _{DD} /0.9V _{DD} @40 MHz, SO=open
I _{DDR3}	Read Current			12	mA	CE#=0.1 V _{DD} /0.9V _{DD} @40 MHz, SO=open; Dual I/O;
I _{DDW}	Program and Erase Current			15	mA	CE#=V _{DD}
I _{SB}	Standby Current			50	μΑ	CE#= V_{DD} , V_{IN} = V_{DD} or V_{SS}
I _{DPD}	Deep Power-Down			10	μA	CE#= V_{DD} , V_{IN} = V_{DD} or V_{SS}
ILI	Input Leakage Current			2	μΑ	V_{IN} =GND to V_{DD} , V_{DD} = V_{DD} Max
I _{LO}	Output Leakage Current			2	μΑ	V_{OUT} =GND to V_{DD} , V_{DD} = V_{DD} Max
V _{IL}	Input Low Voltage	-0.3		0.3	V	V _{DD} =V _{DD} Min
V _{IH}	Input High Voltage	0.7 V _{DD}		V _{DD} +0.3	V	V _{DD} =V _{DD} Max
V _{OL}	Output Low Voltage			0.2	V	I_{OL} =100 μ A, V _{DD} =V _{DD} Min
V _{OH}	Output High Voltage	V _{DD} -0.2			V	I_{OH} =-100 μ A, V_{DD} = V_{DD} Min

1. Value characterized, not fully tested in production.

TABLE 6-6: CAPACITANCE (T_A = 25°C, F=1 MHz, OTHER PINS OPEN)

Parameter	Description	Test Condition	Maximum
C _{OUT} ¹	Output Pin Capacitance	V _{OUT} = 0V	12 pF
C _{IN} ¹	Input Capacitance	$V_{IN} = 0V$	6 pF

1. This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

TABLE 6-7: RELIABILITY CHARACTERISTICS

Symbol	Parameter	Minimum Specification	Units	Test Method	
N _{END} ¹	Endurance	100,000	Cycles	JEDEC Standard A117	
	Status Register Write Cycle	100,000	Cycles	JEDEC Standard A117	
T _{DR} ¹	Data Retention	20	Years	JEDEC Standard A103	
I _{LTH} ¹	Latch Up	100 + I _{DD}	mA	JEDEC Standard 78	

1. This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

6.6 AC Characteristics

Symbol	Parameter	Limits - 25 MHz			Limits - 40 MHz			
		Min		Max	Min		Max	Units
F _{CLK} ¹	Serial Clock Frequency			25			40	MHz
T _{SCKH}	Serial Clock High Time	18			11.5			ns
T _{SCKL}	Serial Clock Low Time	18			11.5			ns
T _{SCKR}	Serial Clock Rise Time			5			5	ns
T _{SCKF}	Serial Clock Fall Time			5			5	ns
T _{CES} ²	CE# Active Setup Time	8			8			ns
T _{CEH} ²	CE# Active Hold Time	8			8			ns
T _{CHS} ²	CE# Not Active Setup Time	8			8			ns
T _{CHH} ²	CE# Not Active Hold Time	8			8			ns
T _{CPH}	CE# High Time	25			25			ns
T _{CHZ}	CE# High to High-Z Output			8			8	ns
T _{CLZ}	SCK Low to Low-Z Output	0			0			ns
T _{DS}	Data In Setup Time	2			2			ns
T _{DH}	Data In Hold Time	5			5			ns
T _{HLS}	HOLD# Low Setup Time	5			5			ns
T _{HHS}	HOLD# High Setup Time	5			5			ns
T _{HLH}	HOLD# Low Hold Time	5			5			ns
Т _{ННН}	HOLD# High Hold Time	5			5			ns
T _{HZ}	HOLD# Low to High-Z Output			9			9	ns
T _{LZ}	HOLD# High to Low-Z Output			9			9	ns
Т _{ОН}	Output Hold from SCK Change	1			1			ns
Τ _V	Output Valid from SCK			11			11	ns
T _{WPS}	WP# Setup Time	20			20			ns
T _{WPH}	WP# Hold Time	20			20			ns
T _{WRSR}	Status Register Write Time			10			15	ms
T _{DPD}	CE# High to Deep Power-Down			3			3	μs
T _{SBR}	Deep Power-Down (CE# High) to Standby Mode			3			3	μs
T _{SE}	Sector-Erase		40	150		40	150	ms
T _{BE}	Block-Erase		80	250		80	250	ms
T _{CE}	Chip-Erase		0.25	2		0.25	2	S
T _{PP}	Page-Program (256 Byte)		4	5		4	5	ms

TABLE 6-8:AC OPERATING CHARACTERISTICS

1. Maximum clock frequency for Read instruction, 03H, is 25 MHz

2. Relative to SCK