imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Data Sheet

The SST89E516RDx and SST89V516RDx are members of the FlashFlex family of 8-bit microcontroller products designed and manufactured with SST's patented and proprietary SuperFlash CMOS semiconductor process technology. The splitgate cell design and thick-oxide tunneling injector offer significant cost and reliability benefits for SST's customers. The devices use the 8051 instruction set and are pin-for-pin compatible with standard 8051 microcontroller devices.

Features

- 8-bit 8051-Compatible Microcontroller (MCU) with **Embedded SuperFlash Memory**
 - Fully Software Compatible
 - Development Toolset Compatible
 - Pin-For-Pin Package Compatible

SST89E516RD2 Operation

– 0 to 40 MHz at 5V

SST89V516RD2 Operation

-0 to 33 MHz at 3V

1 KByte Internal RAM

Dual Block SuperFlash EEPROM

- 64 KByte primary block +
- 8 KByte secondary block (128-Byte sector size for both blocks)
- Individual Block Security Lock with SoftLock
- Concurrent Operation during In-Application Programming (IAP)
- Memory Overlay for Interrupt Support during IAP
- Support External Address Range up to 64 KByte of Program and Data Memory
- Three High-Current Drive Ports (16 mA each)
- Three 16-bit Timers/Counters
- Full-Duplex, Enhanced UART
 - Framing Error Detection
 - Automatic Address Recognition
- Ten Interrupt Sources at 4 Priority Levels
 - Four External Interrupt Inputs

- Programmable Watchdog Timer (WDT)
- Programmable Counter Array (PCA)
- Four 8-bit I/O Ports (32 I/O Pins) and One 4-bit Port
- Second DPTR register
- Low EMI Mode (Inhibit ALE)
- SPI Serial Interface
- Standard 12 Clocks per cycle, the device has an option to double the speed to 6 clocks per cycle.
- TTL- and CMOS-Compatible Logic Levels
- Brown-out Detection
- Low Power Modes
 - Power-down Mode with External Interrupt Wake-up Idle Mode
- Temperature Ranges:
 - Commercial (0°C to +70°C)
 - Industrial (-40°C to +85°C)
- Packages Available
 - 40-contact WQFN (Port 4 feature not available)
 - 44-lead PLCC
 - 40-pin PDIP (Port 4 feature not available)
 - 44-lead TQFP
- All non-Pb (lead-free) devices are RoHS compliant

Data Sheet

Product Description

The SST89E516RDx and SST89V516RDx are members of the FlashFlex family of 8-bit microcontroller products designed and manufactured with SST's patented and proprietary SuperFlash CMOS semiconductor process technology. The split-gate cell design and thick-oxide tunneling injector offer significant cost and reliability benefits for SST's customers. The devices use the 8051 instruction set and are pin-for-pin compatible with standard 8051 microcontroller devices.

The devices come with 72 KByte of on-chip flash EEPROM program memory which is partitioned into 2 independent program memory blocks. The primary Block 0 occupies 64 KByte of internal program memory space and the secondary Block 1 occupies 8 KByte of internal program memory space.

The 8-KByte secondary block can be mapped to the lowest location of the 64 KByte address space; it can also be hidden from the program counter and used as an independent EEPROM-like data memory.

In addition to the 72 KByte of EEPROM program memory on-chip and 1024 x8 bits of on-chip RAM, the devices can address up to 64 KByte of external program memory and up to 64 KByte of external RAM.

The flash memory blocks can be programmed via a standard 87C5x OTP EPROM programmer fitted with a special adapter and the firmware for SST's devices. During power-on reset, the devices can be configured as either a slave to an external host for source code storage or a master to an external host for an in-application programming (IAP) operation. The devices are designed to be programmed in-system and in-application on the printed circuit board for maximum flexibility. The devices are pre-programmed with an example of the bootstrap loader in the memory, demonstrating the initial user program code loading or subsequent user code updating via the IAP operation. The sample bootstrap loader is available for the user's reference and convenience only; SST does not guarantee its functionality or usefulness. Chip-Erase or Block-Erase operations will erase the pre-programmed sample code.

Data Sheet

Functional Blocks

Figure 1: Functional Block Diagram

Data Sheet

Pin Assignments

Figure 2: Pin Assignments for 40-Contact WQFN

Figure 3: Pin Assignments for 40-pin PDIP

Figure 4: Pin Assignments for 44-lead TQFP

Figure 5: Pin Assignments for 44-lead PLCC

Data Sheet

Pin Descriptions

Symbol	Type ¹	Name and Functions
P0[7:0]	I/O	Port 0: Port 0 is an 8-bit open drain bi-directional I/O port. As an output port each pin can sink several LS TTL inputs. Port 0 pins float that have '1's written to them, and in this state can be used as high-impedance inputs. Port 0 is also the multiplexed low-order address and data bus during accesses to external memory. In this application, it uses strong internal pull-ups when transitioning to V _{OH} . Port 0 also receives the code bytes during the external host mode programming, and outputs the code bytes during the external host mode verification. External pull-ups are required during program verification.
P1[7:0]	I/O with inter- nal pull-ups	Port 1: Port 1 is an 8-bit bi-directional I/O port with internal pull-ups. The Port 1 output buffers can drive LS TTL inputs. Port 1 pins are pulled high by the internal pull-ups when "1"s are written to them and can be used as inputs in this state. As inputs, Port 1 pins that are externally pulled low will source current because of the internal pull-ups. P1[5, 6, 7] have high current drive of 16 mA. Port 1 also receives the low-order address bytes during the external host mode programming and verification.
P1[0]	I/O	T2: External count input to Timer/Counter 2 or Clock-out from Timer/Counter 2
P1[1]	I	T2EX: Timer/Counter 2 capture/reload trigger and direction control
P1[2]	I	ECI: PCA Timer/Counter External Input: This signal is the external clock input for the PCA timer/counter.
P1[3]	I/O	CEX0: Compare/Capture Module External I/O Each compare/capture module connects to a Port 1 pin for external I/O. When not used by the PCA, this pin can handle standard I/O.
P1[4]	I/O	SS#: Master Input or Slave Output for SPI. OR CEX1: Compare/Capture Module External I/O
P1[5]	I/O	MOSI: Master Output line, Slave Input line for SPI OR CEX2: Compare/Capture Module External I/O
P1[6]	I/O	MISO: Master Input line, Slave Output line for SPI OR CEX3: Compare/Capture Module External I/O
P1[7]	I/O	SCK: Master clock output, slave clock input line for SPI OR CEX4: Compare/Capture Module External I/O
P2[7:0]	I/O with inter- nal pull-up	Port 2: Port 2 is an 8-bit bi-directional I/O port with internal pull-ups. Port 2 pins are pulled high by the internal pull-ups when "1"s are written to them and can be used as inputs in this state. As inputs, Port 2 pins that are externally pulled low will source current because of the internal pull-ups. Port 2 sends the high-order address byte during fetches from external Program memory and during accesses to external Data Memory that use 16-bit address (MOVX@DPTR). In this application, it uses strong internal pull-ups when transitioning to V _{OH} . Port 2 also receives some control signals and high-order address bits during the external host mode programming and verification.

 Table 1:
 Pin Descriptions (1 of 3)

Table 1:	Pin Descriptions	(Continued)) (2 of 3))
----------	------------------	-------------	------------	---

Symbol	Type ¹	Name and Functions
P3[7:0]	I/O with inter- nal pull-up	Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. The Port 3 output buffers can drive LS TTL inputs. Port 3 pins are pulled high by the internal pull-ups when "1"s are written to them and can be used as inputs in this state. As inputs, Port 3 pins that are externally pulled low will source current because of the internal pull-ups. Port 3 also receives some control signals and a partial of high-order address bits during the external host mode programming and verification.
P3[0]	1	RXD: Universal Asynchronous Receiver/Transmitter (UART) - Receive input
P3[1]	0	TXD: UART - Transmit output
P3[2]	I	INT0#: External Interrupt 0 Input
P3[3]	l	INT1#: External Interrupt 1 Input
P3[4]	I	T0: External count input to Timer/Counter 0
P3[5]	I	T1: External count input to Timer/Counter 1
P3[6]	0	WR#: External Data Memory Write strobe
P3[7]	0	RD#: External Data Memory Read strobe
PSEN#	I/O	Program Store Enable: PSEN# is the Read strobe to External Program Store. When the device is executing from Internal Program Memory, PSEN# is inactive (V_{OH}) . When the device is executing code from External Program Memory, PSEN# is activated twice each machine cycle, except when access to External Data Memory while one PSEN# activation is skipped in each machine cycle. A forced high-to-low input transition on the PSEN# pin while the RST input is continually held high for more than ten machine cycles will cause the device to enter External Host mode for programming.
RST	I	Reset: While the oscillator is running, a high logic state on this pin for two machine cycles will reset the device. After a reset, if the PSEN# pin is driven by a high-to-low input transition while the RST input pin is held high, the device will enter the External Host mode, otherwise the device will enter the Normal operation mode.
EA#	Ι	External Access Enable: EA# must be driven to V_{IL} in order to enable the device to fetch code from the External Program Memory. EA# must be driven to V_{IH} for internal program execution. However, Security lock level 4 will disable EA#, and program execution is only possible from internal program memory. The EA# pin can tolerate a high voltage ² of 12V.
ALE/ PROG#	I/O	Address Latch Enable: ALE is the output signal for latching the low byte of the address during an access to external memory. This pin is also the programming pulse input (PROG#) for flash programming. Normally the ALE ³ is emitted at a constant rate of 1/6 the crystal frequency ⁴ and can be used for external timing and clocking. One ALE pulse is skipped during each access to external data memory. However, if AO is set to 1, ALE is disabled.
P4[3:0] ⁵	I/O with inter- nal pull-ups	Port 4: Port 4 is an 4-bit bi-directional I/O port with internal pull-ups. The port 4 output buffers can drive LS TTL inputs. Port 4 pins are pulled high by the internal pull-ups when '1's are written to them and can be used as inputs in this state. As inputs, port 4 pins that are externally pulled low will source current because of the internal pull-ups.
P4[0]	I/O	Bit 0 of port 4
P4[1]	I/O	Bit 1 of port 4
P4[2] / INT3#	I/O	Bit 2 of port 4 / INT3# External interrupt 3 input

Data Sheet

	in Descripti	
Symbol	Type ¹	Name and Functions
P4[3] / INT2#	I/O	Bit 3 of port 4 / INT2# External interrupt 2 input
XTAL1	I	Crystal 1: Input to the inverting oscillator amplifier and input to the internal clock generator circuits.
XTAL2	0	Crystal 2: Output from the inverting oscillator amplifier
V _{DD}	I	Power Supply
V _{SS}	I	Ground
		T0-0.0 25093

Table 1: Pin Descriptions (Continued) (3 of 3)

1. I = Input; O = Output

2. It is not necessary to receive a 12V programming supply voltage during flash programming.

3.ALE loading issue: When ALE pin experiences higher loading (>30pf) during the reset, the MCU may accidentally enter into modes other than normal working mode. The solution is to add a pull-up resistor of 3-50 KΩ to V_{DD}, e.g. for ALE pin.

4. For 6 clock mode, ALE is emitted at 1/3 of crystal frequency.

5. Port 4 is not present on the PDIP and WQFN packages.

Data Sheet

Memory Organization

The device has separate address spaces for program and data memory.

Program Flash Memory

There are two internal flash memory blocks in the device. The primary flash memory block (Block 0) has 64 KByte. The secondary flash memory block (Block 1) has 8 KByte. Since the total program address space is limited to 64 KByte, the SFCF[1:0] bit are used to control program bank selection. Please refer to Figure 6 for the program memory configuration. Program bank selection is described in the next section.

The 64K x8 primary SuperFlash block is organized as 512 sectors, each sector consists of 128 Bytes.

The 8K x8 secondary SuperFlash block is organized as 64 sectors, each sector consists also of 128 Bytes.

For both blocks, the 7 least significant program address bits select the byte within the sector. The remainder of the program address bits select the sector within the block.

Figure 6: Program Memory Organization

Data Sheet

Program Memory Block Switching

The program memory block switching feature of the device allows either Block 1 or the lowest 8 KByte of Block 0 to be used for the lowest 8 KByte of the program address space. SFCF[1:0] controls program memory block switching.

Table 2: SFCF Values for Program Memory Block Switching

SFCF[1:0]	Program Memory Block Switching
01, 10, 11	Block 1 is not visible to the program counter (PC).
	Block 1 is reachable only via in-application programming from 0000H - 1FFFH.
00	Block 1 is overlaid onto the low 8K of the program address space; occupying address locations 0000H - 1FFFH.
	When the PC falls within 0000H - 1FFFH, the instruction will be fetched from Block 1 instead of Block 0. Outside of 0000H - 1FFFH, Block 0 is used. Locations 0000H - 1FFFH of Block 0 are reachable through in-application programming.

T0-0.0 25093

Reset Configuration of Program Memory Block Switching

Program memory block switching is initialized after reset according to the state of the Start-up Configuration bit SC0. The SC0 bit is programmed via an external host mode command or an IAP Mode command. See Table 14.

Once out of reset, the SFCF[0] bit can be changed dynamically by the program for desired effects. Changing SFCF[0] will not change the SC0 bit.

Caution must be taken when dynamically changing the SFCF[0] bit. Since this will cause different physical memory to be mapped to the logical program address space. The user must avoid executing block switching instructions within the address range 0000H to 1FFFH.

	State of SFCF[1:0] after:								
SC0 ¹	Power-on or External Reset	WDT Reset or Brown-out Reset	Software Reset						
U (1)	00 (default)	x0	10						
P (0)	01	x1	11						
•		•	T0-0.0 25093						

Table 3: SFCF Values Under Different Reset Conditions

1. P = Programmed (Bit logic state = 0),

U = Unprogrammed (Bit logic state = 1)

Data RAM Memory

The data RAM has 1024 bytes of internal memory. The RAM can be addressed up to 64KB for external data memory.

Data Sheet

Expanded Data RAM Addressing

The SST89E/V516RDx have the capability of 1 KByte RAM. See Figure 7.

The device has four sections of internal data memory:

- 1. The lower 128 Bytes of RAM (00H to 7FH) are directly and indirectly addressable.
- 2. The higher 128 Bytes of RAM (80H to FFH) are indirectly addressable.
- 3. The special function registers (80H to FFH) are directly addressable only.
- 4. The expanded RAM of 768 Bytes (00H to 2FFH) is indirectly addressable by the move external instruction (MOVX) and clearing the EXTRAM bit. (See "Auxiliary Register (AUXR)" in Section , "Special Function Registers")

Since the upper 128 Bytes occupy the same addresses as the SFRs, the RAM must be accessed indirectly. The RAM and SFRs space are physically separate even though they have the same addresses.

When instructions access addresses in the upper 128 Bytes (above 7FH), the MCU determines whether to access the SFRs or RAM by the type of instruction given. If it is indirect, then RAM is accessed. If it is direct, then an SFR is accessed. See the examples below.

Indirect Access:

MOV@R0, #data; R0 contains 90H

Register R0 points to 90H which is located in the upper address range. Data in "#data" is written to RAM location 90H rather than port 1.

Direct Access:

MOV90H, #data; write data to P1

Data in "#data" is written to port 1. Instructions that write directly to the address write to the SFRs.

To access the expanded RAM, the EXTRAM bit must be cleared and MOVX instructions must be used. The extra 768 bytes of memory is physically located on the chip and logically occupies the first 768 bytes of external memory (addresses 000H to 2FFH).

When EXTRAM = 0, the expanded RAM is indirectly addressed using the MOVX instruction in combination with any of the registers R0, R1 of the selected bank or DPTR. Accessing the expanded RAM does not affect ports P0, P3.6 (WR#), P3.7 (RD#), or P2. With EXTRAM = 0, the expanded RAM can be accessed as in the following example.

Expanded RAM Access (Indirect Addressing only):

MOVX@DPTR, A; DPTR contains 0A0H

DPTR points to 0A0H and data in "A" is written to address 0A0H of the expanded RAM rather than external memory. Access to external memory higher than 2FFH using the MOVX instruction will access external memory (0300H to FFFH) and will perform in the same way as the standard 8051, with P0 and P2 as data/address bus, and P3.6 and P3.7 as write and read timing signals.

When EXTRAM = 1, MOVX @Ri and MOVX @DPTR will be similar to the standard 8051. Using MOVX @Ri provides an 8-bit address with multiplexed data on Port 0. Other output port pins can be used to output higher order address bits. This provides external paging capabilities. Using MOVX @DPTR generates a 16-bit address. This allows external addressing up the 64K. Port 2 provides the

Data Sheet

high-order eight address bits (DPH), and Port 0 multiplexes the low order eight address bits (DPL) with data. Both MOVX @Ri and MOVX @DPTR generates the necessary read and write signals (P3.6 - WR# and P3.7 - RD#) for external memory use. Table 4 shows external data memory RD#, WR# operation with EXTRAM bit.

The stack pointer (SP) can be located anywhere within the 256 bytes of internal RAM (lower 128 bytes and upper 128 bytes). The stack pointer may not be located in any part of the expanded RAM.

	MOVX @DPTR, A or	MOVX @Ri, A or MOVX A, @Ri	
AUXR	ADDR < 0300H	ADDR >= 0300H	ADDR = Any
EXTRAM = 0	RD# / WR# not asserted	RD# / WR# asserted	RD# / WR# not asserted ¹
EXTRAM = 1	RD# / WR# asserted	RD# / WR# asserted	RD# / WR# asserted

Table 4: External Data Memory RD#, WR# with EXTRAM bit

1. Access limited to ERAM address within 0 to 0FFH; cannot access 100H to 02FFH.

Figure 7: Internal and External Data Memory Structure

Data Sheet

Dual Data Pointers

The device has two 16-bit data pointers. The DPTR Select (DPS) bit in AUXR1 determines which of the two data pointers is accessed. When DPS=0, DPTR0 is selected; when DPS=1, DPTR1 is selected. Quickly switching between the two data pointers can be accomplished by a single INC instruction on AUXR1. (See Figure 8)

Figure 8: Dual Data Pointer Organization

Special Function Registers

Most of the unique features of the FlashFlex microcontroller family are controlled by bits in special function registers (SFRs) located in the SFR memory map shown in Table 5. Individual descriptions of each SFR are provided and reset values indicated in Tables 6 to 10.

	8 BYTES										
F8H	IP1 ¹	СН	CCAP0H	CCAP1H	CCAP2H	CCAP3H	CCAP4H				
F0H	B ¹							IP1H			
E8H	IEA ¹	CL	CCAP0L	CCAP1L	CCAP2L	CCAP3L	CCAP4L				
E0H	ACC ¹										
D8H	CCON ¹	CMOD	CCAPM0	CCAPM1	CCAPM2	CCAPM3	CCAPM4				
D0H	PSW ¹					SPCR					
C8H	T2CON ¹	T2MOD	RCAP2L	RCAP2H	TL2	TH2					
C0H	WDTC ¹										
B8H	IP ¹	SADEN									
B0H	P3 ¹	SFCF	SFCM	SFAL	SFAH	SFDT	SFST	IPH			
A8H	IE ¹	SADDR	SPSR				XICON				
A0H	P2 ¹		AUXR1			P4					
98H	SCON ¹	SBUF									
90H	P1 ¹										
88H	TCON ¹	TMOD	TL0	TL1	TH0	TH1	AUXR				
80H	P0 ¹	SP	DPL	DPH		WDTD	SPDR	PCON			

 Table 5:
 FlashFlex SFR Memory Map

1. Bit addressable SFRs

Data Sheet

	Table 6:	CPU related SFRs
--	----------	-------------------------

Symbol	Description	Direct Address	MSB	Bit Address, Symbol, or Alternative Port Function MSB I SB									
ACC ¹	Accumulator	E0H		ACC[7:0]									
B ¹	B Register	F0H		B[7:0]									
PSW ¹	Program Sta- tus Word	D0H	CY	AC	F0	RS 1	RS0	OV	F1	Р	00H		
SP	Stack Pointer	81H		SP[7:0]									
DPL	Data Pointer Low	82H		DPL[7:0]									
DPH	Data Pointer High	83H		DPH[7:0]									
IE ¹	Interrupt Enable	A8H	EA	EC	ET2	ES	ET1	EX1	ET0	EX0	00H		
IEA ¹	Interrupt Enable A	E8H	-	-	-	-	EBO	-	-	-	xxxx0xxx b		
IP ¹	Interrupt Prior- ity Reg	B8H	-	PPC	PT2	PS	PT1	PX1	PT0	PX0	x0000000 b		
IPH	Interrupt Prior- ity Reg High	B7H	-	PPCH	PT2 H	PS H	PT1H	PX1 H	PT0H	PX0 H	x0000000 b		
IP1 ¹	Interrupt Prior- ity Reg A	F8H	-	-	-	-	РВО	PX3	PX2	-	xxxx0xxx b		
IP1H	Interrupt Prior- ity Reg A High	F7H	-	-	-	-	PBO H	PX3 H	PX2H	-	xxxx0xxx b		
PCON	Power Control	87H	SMOD 1	SMOD 0	BOF	PO F	GF1	GF0	PD	IDL	00010000 b		
AUXR	Auxiliary Reg	8EH	-	-	-	-	-	-	EXTRA M	AO	xxxxxxx0 0b		
AUXR1	Auxiliary Reg 1	A2H	-	-	-	-	GF2	0	-	DPS	xxxx00x0 b		
XICON	External Interrupt Con- trol	AEH	-	EX3	IE3	IT3	0	EX2	IE2	IT2	00H		

1. Bit Addressable SFRs

Data Sheet

		Direct		Bit Address, Symbol, or Alternative Port Function								
Symbol	Description	Address	MSB		Value							
SFCF	SuperFlash Configuration	B1H	-	IAPE N	-	-	-	-	SW R	BSE L	x0xxxx00 b	
SFCM	SuperFlash Command	B2H	FIE	FIE FCM[6:0]								
SFAL	SuperFlash Address Low	B3H	Super	SuperFlash Low Order Byte Address Register - A7 to A0 (SFAL)								
SFAH	SuperFlash Address High	B4H	Su	SuperFlash High Order Byte Address Register - A ₁₅ to A ₈ (SFAH)								
SFDT	SuperFlash Data	B5H		SuperFlash Data Register								
SFST	SuperFlash Status	B6H	SB1 _i	SB2_ i	SB3 _i	-	EDC_i	FLASH_BU SY	-	-	000x00xx b	

Table 7: Flash Memory Programming SFRs

T0-0.0 25093

Table 8: Watchdog Timer SFRs

		Direct	Bit Ade	Bit Address, Symbol, or Alternative Port Function									
Symbol	Description	Address	MSB							LSB	Value		
WDTC 1	Watchdog Timer Control	СОН	-	-	-	WDOUT	WDRE	WDTS	WDT	SWDT	xxx00x00 b		
WDTD	Watchdog Timer Data/Reload	85H			١	Watchdog T	imer Data	a/Reload			00H		

1. Bit Addressable SFRs

Data Sheet

Symbol	Description	Direct	Bit Add	dress, S	ymbol, o	or Alterna	ative Port	Functio	on	ISB	Reset
	Timer/Counter	89H	NISD	Tim	er 1			Ti	mer ()	LJD	00H
	Mode Control		GAT E	C/T#	M1	MO	GATE	C/ T#	M1	M0	
TCON ¹	Timer/Counter Control	88H	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	00H
TH0	Timer 0 MSB	8CH		TH0[7:0]							00H
TL0	Timer 0 LSB	8AH		TL0[7:0]							00H
TH1	Timer 1 MSB	8DH		TH1[7:0]							00H
TL1	Timer 1 LSB	8BH		TL1[7:0]							00H
T2CON 1	Timer / Coun- ter 2 Control	C8H	TF2	EXF 2	RCL K	TCL K	EXEN 2	TR2	C/ T2#	CP/ RL2#	00H
T2MOD	Timer2 Mode Control	C9H	-	-	-	-	-	-	T2O E	DCEN	xxxxxx00 b
TH2	Timer 2 MSB	CDH				TI	H2[7:0]				00H
TL2	Timer 2 LSB	CCH				T	_2[7:0]				00H
RCAP2 H	Timer 2 Capture MSB	CBH	RCAP2H[7:0]						00H		
RCAP2 L	Timer 2 Capture LSB	CAH				RCA	\P2L[7:0]				00H

Table 9: Timer/Counters SFRs

1. Bit Addressable SFRs

Data Sheet

Table 10: Interface SFRs

		Direct	Bit Addr	ess, Syn	nbol, or A	Alternativ	/e Port F	unction	1		RESET
Symbol	Description	Address	MSB							LSB	Value
SBUF	Serial Data Buf- fer	99H				SBUF[7:0]				Indetermi- nate
SCON 1	Serial Port Con- trol	98H	SM0/ FE	SM1	SM2	REN	TB8	RB8	TI	RI	00H
SADD R	Slave Address	A9H				SADDR	[7:0]				00H
SADE N	Slave Address Mask	B9H				SADEN	[7:0]				00H
SPCR	SPI Control Register	D5H	SPIE	SPE	DOR D	MST R	CPO L	CPH A	SPR 1	SPR 0	04H
SPSR	SPI Status Register	AAH	SPIF	WCO L							00H
SPDR	SPI Data Regis- ter	86H				SPDR[7:0]				00H
P0 ¹	Port 0	80H				P0[7:	0]				FFH
P1 ¹	Port 1	90H	-	-	-	-	-	-	T2E X	T2	FFH
P2 ¹	Port 2	A0H	P2[7:0]							FFH	
P3 ¹	Port 3	B0H	RD#	WR#	T1	Т0	INT1 #	INT0 #	TXD	RXD	FFH
P4 ²	Port 4	A5H	1	1	1	1	P4.3	P4.2	P4.1	P4.0	FFH

1. Bit Addressable SFRs

2. P4 is similar to P1 and P3 ports

Data Sheet

Table 11: PCA SFRs

		Direct		Bit Add	lress, Syı	nbol, or A	Alternati	ve Port	Functior	า	RESET
Symbol	Description	Address	MSB							LSB	Value
CH CL	PCA Timer/Coun- ter	F9H E9H				CH[7 CL[7	7:0] 7:0]				00H 00H
CCON ¹	PCA Timer/Coun- ter Control Register	D8H	CF	CR	-	CCF4	CCF 3	CCF 2	CCF 1	CCF0	00x0000 0b
CMOD	PCA Timer/Coun- ter Mode Register	D9H	CID L	WDTE	-	-	-	CPS 1	CPS 0	ECF	00xxx000 b
CCAP0 H	PCA Module 0 Compare/Cap-	FAH		CCAP0H[7:0] CCAP0L[7:0]							00H
CCAP0 L	ture Registers	EAH									00H
CCAP1 H	PCA Module 1 Compare/Cap-	FBH				CCAP1	H[7:0]				00H
CCAP1 L	ture Registers	EBH		CCAP1L[7:0]							
CCAP2 H	PCA Module 2 Compare/Cap-	FCH		CCAP2H[7:0]							
CCAP2 L	ture Registers	ECH				CCAP2	2L[7:0]				00H
CCAP3 H	PCA Module 3 Compare/Cap-	FDH				CCAP3	H[7:0]				00H
CCAP3 L	ture Registers	EDH				CCAP3	BL[7:0]				00H
CCAP4 H	PCA Module 4 Compare/Cap-	FEH				CCAP4	H[7:0]				00H
CCAP4 L	ture Registers	EEH				CCAP4	L[7:0]				00H
CCAPM 0	PCA Compare/Cap-	DAH	-	ECOM 0	CAPP 0	CAPN 0	MAT 0	TOG 0	PWM 0	ECCF 0	x000000 0b
CCAPM 1	ture Module Mode	DBH	-	ECOM 1	CAPP 1	CAPN 1	MAT 1	TOG 1	PWM 1	ECCF 1	x000000 0b
CCAPM 2	Registers	DCH	-	ECOM 2	CAPP 2	CAPN 2	MAT 2	TOG 2	PWM 2	ECCF 2	x000000 0b
CCAPM 3		DDH	-	ECOM 3	CAPP 3	CAPN 3	MAT 3	TOG 3	PWM 3	ECCF 3	x000000 0b
CCAPM 4		DEH	-	ECOM 4	CAPP 4	CAPN 4	MAT 4	TOG 4	PWM 4	ECCF 4	x000000 0b

1. Bit Addressable SFRs

Data Sheet

SuperFlash Configuration Register (SFCF)

Location	7	6	5	4	3	2	1	0	Reset Value
B1H	-	IAPEN	-	-	-	-	SWR	BSEL	x0xxxx00b

Symbol Function

IAPEN	Enable IAP operation 0: IAP commands are disabled 1: IAP commands are enabled
SWR	Software Reset See Section , "Software Reset"
BSEL	Program memory block switching bit See Figure 6 and Table 3

SuperFlash Command Register (SFCM)

Location	7	6	5	4	3	2	1	0	Reset Value
B2H	FIE	FCM6	FCM5	FCM4	FCM3	FCM2	FCM1	FCM0	00H

Symbol Function

FIE Flash Interrupt Enable.

0: INT1# is not reassigned.

1: INT1# is re-assigned to signal IAP operation completion. External INT1# interrupts are ignored.

FCM[6:0] Flash operation command

000_0001b	Chip-Erase
000_1011b	Sector-Erase
000_1101b	Block-Erase
000_1100b	Byte-Verify ¹
000_1110b	Byte-Program
000_1111b	Prog-SB1
000_0011b	Prog-SB2
000_0101b	Prog-SB3
000_1001b	Prog-SC0
000_1000bEr	able-Clock-Double
All other com	pinations are not im

All other combinations are not implemented, and reserved for future use. 1. Byte-Verify has a single machine cycle latency and will not generate any INT1# interrupt regardless of FIE.

SuperFlash Address Registers (SFAL)

Location	7	6	5	4	3	2	1	0	Reset Value
B3H		5	SuperFlash	ess Registe	r		00H		

Symbol Function

SFAL

Mailbox register for interfacing with flash memory block. (Low order address register).

Data Sheet SuperFlash Address Registers (SFAH) **Reset Value** Location 7 6 5 4 3 2 1 0 B4H SuperFlash High Order Byte Address Register 00H Mailbox register for interfacing with flash memory block. (High order address register).

Symbol Function

SFAH SuperFlash Data Register (SFDT)

Location	7	6	5	4	3	2	1	0	Reset Value	
B5H		SuperFlash Data Register								

Symbol Function

SFDT Mailbox register for interfacing with flash memory block. (Data register).

SuperFlash Status Register (SFST) (Read Only Register)

Location	7	6	5	4	3	2	1	0	Reset Value
B6H	SB1_i	SB2_i	SB3_i	-	EDC_i	FLASH_BU SY	-	-	xxxxx0xxb

Symbol Function

SB1_i	Security Bit 1	status	(inverse of SB1	bit)
-------	----------------	--------	-----------------	------

- SB2 i Security Bit 2 status (inverse of SB2 bit)
- SB3 i Security Bit 3 status (inverse of SB3 bit) Please refer to Table 25 for security lock options.
- EDC i **Double Clock Status**
 - 0: 12 clocks per machine cycle
 - 1: 6 clocks per machine cycle

FLASH_BUSYFlash operation completion polling bit.

- 0: Device has fully completed the last IAP command.
- 1: Device is busy with flash operation.

Data Sheet

Interrupt Enable (IE)											
Location	7	6	5	4	3	2	1	0	Reset Value		
A8H	EA	EC	ET2	ES	ET1	EX1	ET0	EX0	00H		
Symbol	Function	unction									
EA	Global Inte 0 = Disabl 1 = Enable	lobal Interrupt Enable. = Disable = Enable									
EC	PCA Intern	PCA Interrupt Enable.									
ET2	Timer 2 In	terrupt En	able.								
ES	Serial Inte	rrupt Enat	ole.								
ET1	Timer 1 In	terrupt En	able.								
EX1	External 1	Interrupt	Enable.								
ET0	Timer 0 In	imer 0 Interrupt Enable.									
EX0	External 0	Interrupt	Enable.								

Interrupt Enable A (IEA)

Location	7	6	5	4	3	2	1	0	Reset Value
E8H	-	-	-	-	EBO	-	-	-	xxxx0xxxb

Symbol Function

EBO Brown-out Interrupt Enable.

1 = Enable the interrupt

0 = Disable the interrupt

Data Sheet

Interrupt Priority (IP)

, ,									
Location	7	6	5	4	3	2	1	0	Reset Value
B8H	-	PPC	PT2	PS	PT1	PX1	PT0	PX0	x000000b

Symbol Function

- PPC PCA interrupt priority bit
- PT2 Timer 2 interrupt priority bit
- PS Serial Port interrupt priority bit
- PT1 Timer 1 interrupt priority bit
- PX1 External interrupt 1 priority bit
- PT0 Timer 0 interrupt priority bit
- PX0 External interrupt 0 priority bit

Interrupt Priority High (IPH)

Location	7	6	5	4	3	2	1	0	Reset Value
B7H	-	PPCH	PT2H	PSH	PT1H	PX1H	PT0H	PX0H	x000000b

Symbol Function

PPCH	PCA interrupt priority bit high
PT2H	Timer 2 interrupt priority bit high
PSH	Serial Port interrupt priority bit high
PT1H	Timer 1 interrupt priority bit high
PX1H	External interrupt 1 priority bit high
PT0H	Timer 0 interrupt priority bit high
	External interrupt 0 priority bit bigh

PX0H External interrupt 0 priority bit high

Interrupt Priority 1 (IP1)

Location	7	6	5	4	3	2	1	0	Reset Value
F8H	1	-	-	1	PBO	PX3	PX2	1	1xx10001b

Symbol Function

PBO Brown-out interrupt priority bit

PX2 External Interrupt 2 priority bit

PX3 External Interrupt 3 priority bit

Interrupt Priority 1 High (IP1H)

Location	7	6	5	4	3	2	1	0	Reset Value
F7H	1	-	-	1	PBOH	РХЗН	PX2H	1	1xx10001b

Symbol Function

- PBOH Brown-out Interrupt priority bit high
- PX2H External Interrupt 2 priority bit high
- PX3H External Interrupt 3 priority bit high