: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

SSTU32866
 $1.8 \mathrm{~V} 25-$ bit 1:1 or 14-bit $1: 2$ configurable registered buffer with parity for DDR2 RDIMM applications with parity for DDR2 RDIMM applications

Rev. 02 - 11 November 2004
Product data sheet

1. General description

The SSTU32866 is a 1.8 V configurable register specifically designed for use on DDR2 memory modules requiring a parity checking function. It is defined in accordance with the JEDEC JESD82-7 standard for the SSTU32864 registered buffer, while adding the parity checking function in a compatible pinout. The JEDEC standard for SSTU32866 is pending publication. The register is configurable (using configuration pins CO and C 1) to two topologies: 25 -bit 1:1 or 14-bit 1:2, and in the latter configuration can be designated as Register A or Register B on the DIMM.

The SSTU32866 accepts a parity bit from the memory controller on its parity bit (PAR_IN) input, compares it with the data received on the DIMM-independent D-inputs and indicates whether a parity error has occurred on its open-drain QERR pin (active-LOW). The convention is even parity, that is, valid parity is defined as an even number of ones across the DIMM-independent data inputs combined with the parity input bit.

The SSTU32866 is packaged in a 96 -ball, 6×16 grid, 0.8 mm ball pitch LFBGA package (13.5 mm by 5.5 mm).

2. Features

■ Configurable register supporting DDR2 Registered DIMM applications

- Configurable to 25 -bit 1:1 mode or 14-bit 1:2 mode

■ Controlled output impedance drivers enable optimal signal integrity and speed

- Exceeds JESD82-7 speed performance (1.8 ns max. single-bit switching propagation delay; 2.0 ns max. mass-switching)
- Supports up to 450 MHz clock frequency of operation
- Optimized pinout for high-density DDR2 module design
- Chip-selects minimize power consumption by gating data outputs from changing state
- Supports SSTL_18 data inputs
- Checks parity on the DIMM-independent data inputs
- Partial parity output and input allows cascading of two SSTU32866s for correct parity error processing
- Differential clock (CK and $\overline{\mathrm{CK}}$) inputs
- Supports LVCMOS switching levels on the control and RESET inputs
- Single 1.8 V supply operation

■ Available in 96 -ball, $13.5 \times 5.5 \mathrm{~mm}, 0.8 \mathrm{~mm}$ ball pitch LFBGA package

3. Applications

DDR2 registered DIMMs desiring parity checking functionality

4. Ordering information

Table 1: Ordering information
$T_{a m b}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Type number	Solder process	Package		
		Name	Description	Version
SSTU32866EC/G	Pb-free (SnAgCu solder ball compound)	LFBGA96	plastic low profile fine-pitch ball grid array package; 96 balls; body $13.5 \times 5.5 \times 1.05 \mathrm{~mm}$	SOT536-1
SSTU32866EC	SnPb solder ball compound	LFBGA96	plastic low profile fine-pitch ball grid array package; 96 balls; body $13.5 \times 5.5 \times 1.05 \mathrm{~mm}$	SOT536-1

5. Functional diagram

Fig 1. Functional diagram of SSTU32866; 1:2 Register A configuration with $\mathbf{C O}=0$ and C1 = 1 (positive logic)

Fig 2. Parity logic diagram for 1:2 Register A configuration (positive logic); $C 0=0, C 1=1$

6. Pinning information

6.1 Pinning

ball A 1	SSTU32866EC/G SSTU32866EC
index area	123456
A	000000
B	000000
C	000000
D	000000
E	000000
F	000000
G	000000
H	000000
J	000000
K	000000
L	000000
M	000000
N	000000
P	000000
R	000000
T	000000

Transparent top view
Fig 3. Pin configuration for LFBGA96

	1	2	3	4	5	6
A	DCKE	PPO	$V_{\text {REF }}$	$V_{\text {DD }}$	QCKE	d.n.u.
B	D2	D15	GND	GND	Q2	Q15
C	D3	D16	$V_{D D}$	$V_{\text {DD }}$	Q3	Q16
D	DODT	$\overline{\text { QERR }}$	GND	GND	QODT	d.n.u.
E	D5	D17	$V_{D D}$	$V_{\text {DD }}$	Q5	Q17
F	D6	D18	GND	GND	Q6	Q18
G	PAR_IN	RESET	$V_{\text {DD }}$	V_{DD}	C1	C0
H	CK	$\overline{\text { DCS }}$	GND	GND	$\overline{\text { QCS }}$	d.n.u.
J	$\overline{\mathrm{CK}}$	$\overline{\mathrm{CSR}}$	$V_{D D}$	V ${ }_{\text {D }}$	n.c.	n.c.
K	D8	D19	GND	GND	Q8	Q19
L	D9	D20	$V_{D D}$	$V_{\text {DD }}$	Q9	Q20
M	D10	D21	GND	GND	Q10	Q21
N	D11	D22	$V_{D D}$	$V_{\text {DD }}$	Q11	Q22
P	D12	D23	GND	GND	Q12	Q23
R	D13	D24	V_{DD}	V_{DD}	Q13	Q24
T	D14	D25	$\mathrm{V}_{\text {REF }}$	$V_{\text {DD }}$	Q14	Q25

Fig 4. Ball mapping, $1: 1$ register $(C 0=0, C 1=0)$

A	1	2	3	4	5	6
	DCKE	PPO	$\mathrm{V}_{\text {REF }}$	$V_{D D}$	QCKEA	QCKEB
B	D2	d.n.u.	GND	GND	Q2A	Q2B
C	D3	d.n.u.	$V_{D D}$	V_{DD}	Q3A	Q3B
D	DODT	$\overline{\text { QERR }}$	GND	GND	QODTA	QODTB
E	D5	n.c.	$V_{D D}$	V_{DD}	Q5A	Q5B
F	D6	n.c.	GND	GND	Q6A	Q6B
G	PAR_IN	RESET	$V_{\text {DD }}$	V_{DD}	C1	C0
H	CK	$\overline{\mathrm{DCS}}$	GND	GND	$\overline{\text { QCSA }}$	$\overline{\text { QCSB }}$
J	$\overline{\mathrm{CK}}$	$\overline{\mathrm{CSR}}$	$V_{D D}$	$V_{D D}$	n.c.	n.c.
K	D8	d.n.u.	GND	GND	Q8A	Q8B
L	D9	d.n.u.	$V_{\text {DD }}$	V_{DD}	Q9A	Q9B
M	D10	d.n.u.	GND	GND	Q10A	Q10B
N	D11	d.n.u.	$V_{\text {DD }}$	V_{DD}	Q11A	Q11B
P	D12	d.n.u.	GND	GND	Q12A	Q12B
R	D13	d.n.u.	$V_{\text {DD }}$	$V_{D D}$	Q13A	Q13B
T	D14	d.n.u.	$\mathrm{V}_{\text {REF }}$	V_{DD}	Q14A	Q14B

Fig 5. Ball mapping, 1:2 Register $A(C 0=0, C 1=1)$

A	1	2	3	4	5	6
	D1	PPO	$V_{\text {REF }}$	$V_{D D}$	Q1A	Q1B
B	D2	d.n.u.	GND	GND	Q2A	Q2B
C	D3	d.n.u.	$V_{D D}$	$V_{D D}$	Q3A	Q3B
D	D4	$\overline{\text { QERR }}$	GND	GND	Q4A	Q4B
E	D5	d.n.u.	$V_{\text {DD }}$	$V_{D D}$	Q5A	Q5B
F	D6	d.n.u.	GND	GND	Q6A	Q6B
G	PAR_IN	$\overline{\text { RESET }}$	$V_{\text {DD }}$	$V_{D D}$	C1	C0
H	CK	$\overline{\text { DCS }}$	GND	GND	$\overline{\text { QCSA }}$	$\overline{\text { QCSB }}$
J	$\overline{\mathrm{CK}}$	$\overline{\text { CSR }}$	$V_{\text {DD }}$	$V_{D D}$	n.c.	n.c.
K	D8	d.n.u.	GND	GND	Q8A	Q8B
L	D9	d.n.u.	$V_{\text {DD }}$	$V_{D D}$	Q9A	Q9B
M	D10	d.n.u.	GND	GND	Q10A	Q10B
N	DODT	d.n.u.	$V_{\text {DD }}$	VDD	QODTA	QODTB
P	D12	d.n.u.	GND	GND	Q12A	Q12B
R	D13	d.n.u.	$V_{\text {DD }}$	$V_{D D}$	Q13A	Q13B
T	DCKE	d.n.u.	$V_{\text {REF }}$	$V_{D D}$	QCKEA	QCKEB
						002aab110

Fig 6. Ball mapping, 1:2 Register $B(C 0=1, C 1=1)$

6.2 Pin description

Table 2: Pin description

Symbol	Pin	Type	Description
GND	$\begin{aligned} & \text { B3, B4, D3, D4, } \\ & \text { F3, F4, H3, H4, } \\ & \text { K3, K4, M3, M4, } \\ & \text { P3, P4 } \end{aligned}$	ground input	ground
$V_{D D}$	$\begin{aligned} & \text { A4, C3, C4, E3, } \\ & \text { E4, G3, G4, J3, } \\ & \text { J4, L3, L4, N3, } \\ & \text { N4, R3, R4, T4 } \end{aligned}$	1.8 V nominal	power supply voltage
$\mathrm{V}_{\text {REF }}$	A3, T3	0.9 V nominal	input reference voltage
CK	H1	Differential input	positive master clock input
$\overline{\text { CK }}$	J1	Differential input	negative master clock input
C0	G6	LVCMOS inputs	Configuration control inputs; Register A
C1	G5		or Register B and 1:1 mode or $1: 2$ mode select.
RESET	G2	LVCMOS input	Asynchronous reset input. Resets registers and disables $V_{\text {REF }}$ data and clock.
$\overline{\text { CSR }}$	J2	SSTL_18 input	Chip select inputs. Disables D1 to D25 [2]
$\overline{\text { DCS }}$	H2		outputs switching when both inputs are HIGH.
D1 to D25	[1]	SSTL_18 input	Data input. Clocked in on the crossing of the rising edge od CK and the falling edge of $\overline{C K}$.
DODT	[1]	SSTL_18 input	The outputs of this register bit will not be suspended by the $\overline{\mathrm{DCS}}$ and $\overline{\mathrm{CSR}}$ control
DCKE	[1]	SSTL_18 input	The outputs of this register bit will not be suspended by the $\overline{\mathrm{DCS}}$ and $\overline{\mathrm{CSR}}$ control
PAR_IN	G1	SSTL_18 input	Parity input. Arrives one clock cycle after the corresponding data input.
Q1 to Q25, Q2A to Q14A, Q1B to Q14B	[1]	1.8 V CMOS outputs	Data outputs that are suspended by the $\overline{D C S}$ and $\overline{\text { CSR }}$ control.
PPO	A2	1.8 V CMOS output	Partial parity out. Indicates odd parity of inputs D1 to D25 [2].
$\begin{aligned} & \overline{\overline{\mathrm{QCS}}, \overline{\mathrm{QCSA}},} \\ & \overline{\mathrm{QCSB}} \end{aligned}$	[1]	1.8 V CMOS output	Data output that will not be suspended by the $\overline{\mathrm{DCS}}$ and $\overline{\mathrm{CSR}}$ control.
QODT, QODTA, QODTB	[1]	$\begin{aligned} & 1.8 \mathrm{~V} \text { CMOS } \\ & \text { output } \end{aligned}$	Data output that will not be suspended by the $\overline{\mathrm{DCS}}$ and $\overline{\mathrm{CSR}}$ control.
QCKE, QCKEA, QCKEB	[1]	1.8 V CMOS output	Data output that will not be suspended by the $\overline{\mathrm{DCS}}$ and $\overline{\mathrm{CSR}}$ control.

Table 2: Pin description ...continued

Symbol	Pin	Type	Description
QERR	D2	open-drain output	Output error bit. Generated one clock cycle after the corresponding data output
n.c.	$\underline{[1]}$	-	Not connected. Ball present but no internal connection to the die.
d.n.u.	$\underline{[1]}$	-	Do not use. Inputs are in standby-equivalent mode and outputs are driven LOW.

[1] Depends on configuration. Refer to Figure 4, Figure 5, and Figure 6 for ball number.
[2] Data inputs $=$ D2, D3, D5, D6, D8 to D25 when $\mathrm{C} 0=0$ and C1 $=0$. Data inputs $=$ D2, D3, D5, D6, D8 to D14 when C0 $=0$ and $\mathrm{C} 1=1$.
Data inputs $=\mathrm{D} 1$ to D6, D8 to D10, D12, D13 when $\mathrm{C} 0=1$ and $\mathrm{C} 1=1$.
[3] Data outputs $=$ Q2, Q3, Q5, Q6, Q8 to Q25 when $\mathrm{C} 0=0$ and $\mathrm{C} 1=0$.
Data outputs = Q2, Q3, Q5, Q6, Q8 to Q14 when $\mathrm{C} 0=0$ and $\mathrm{C} 1=1$.
Data outputs = Q1 to Q6, Q8 to Q10, Q12, Q13 when $C 0=1$ and $C 1=1$.

7. Functional description

The SSTU32866 is a 25 -bit 1:1 or 14-bit 1:2 configurable registered buffer with parity, designed for 1.7 V to $1.9 \mathrm{~V} \mathrm{~V}_{\mathrm{DD}}$ operation.

All clock and data inputs are compatible with the JEDEC standard for SSTL_18. The control and reset ($\overline{\mathrm{RESET}}$) inputs are LVCMOS. All data outputs are 1.8 V CMOS drivers that have been optimized to drive the DDR2 DIMM load, and meet SSTL_18 specifications. The error ($\overline{\mathrm{QERR}}$) output is 1.8 V open-drain driver.

The SSTU32866 operates from a differential clock (CK and CK). Data are registered at the crossing of CK going HIGH, and CK going LOW.

The C0 input controls the pinout configuration for the 1:2 pinout from A configuration (when LOW) to B configuration (when HIGH). The C1 input controls the pinout configuration from 25-bit 1:1 (when LOW) to 14-bit 1:2 (when HIGH).

The SSTU32866 accepts a parity bit from the memory controller on its parity bit (PAR_IN) input, compares it with the data received on the DIMM-independent D-inputs and indicates whether a parity error has occurred on its open-drain QERR pin (active-LOW). The convention is even parity, i.e., valid parity is defined as an even number of ones across the DIMM-independent data inputs combined with the parity input bit.

When used as a single device, the C0 and C1 inputs are tied LOW. In this configuration, parity is checked on the PAR_IN input which arrives one cycle after the input data to which it applies. The partial-parity-out (PPO) and QERR signals are produced three cycles after the corresponding data inputs.

When used in pairs, the C0 input of the first register is tied LOW and the C0 input of the second register is tied HIGH. The C1 input of both registers are tied HIGH. Parity, which arrives one cycle after the data input to which it applies, is checked on the PAR_IN input of the first device. The PPO and $\overline{\text { QERR }}$ signals are produced on the second device three clock cycles after the corresponding data inputs. The PPO output of the first register is
cascaded to the PAR_IN of the second register. The $\overline{\text { QERR }}$ output of the first register is left floating and the valid error information is latched on the QERR output of the second register.

If an error occurs and the $\overline{\text { QERR }}$ output is driven LOW, it stays latched LOW for two clock cycles or until $\overline{R E S E T}$ is driven LOW. The DIMM-dependent signals (DCKE, $\overline{\mathrm{DCS}}$, DODT, and $\overline{\mathrm{CSR}}$) are not included in the parity check computation.

The device supports low-power standby operation. When RESET is LOW, the differential input receivers are disabled, and undriven (floating) data, clock and reference voltage $\left(\mathrm{V}_{\mathrm{REF}}\right)$ inputs are allowed. In addition, when RESET is LOW all registers are reset, and all outputs are forced LOW. The LVCMOS RESET input must always be held at a valid logic HIGH or LOW level.

The device also supports low-power active operation by monitoring both system chip select ($\overline{\mathrm{DCS}}$ and $\overline{\mathrm{CSR}}$) inputs and will gate the Qn and PPO outputs from changing states when both $\overline{\mathrm{DCS}}$ and $\overline{\mathrm{CSR}}$ inputs are HIGH. If either $\overline{\mathrm{DCS}}$ or $\overline{\mathrm{CSR}}$ input is LOW, the Qn and PPO outputs will function normally. The $\overline{\operatorname{RESET}}$ input has priority over the $\overline{\mathrm{DCS}}$ and $\overline{\text { CSR }}$ control and when driven LOW will force the Qn and PPO outputs LOW, and the $\overline{Q E R R}$ output HIGH. If the $\overline{\mathrm{DCS}}$ control functionality is not desired, then the $\overline{\mathrm{CSR}}$ input can be hard-wired to ground, in which case, the set-up time requirement for $\overline{\mathrm{DCS}}$ would be the same as for the other Dn data inputs. To control the low-power mode with $\overline{\mathrm{DCS}}$ only, then the $\overline{C S R}$ input should be pulled up to V_{DD} through a pull-up resistor.

To ensure defined outputs from the register before a stable clock has been supplied, RESET must be held in the LOW state during power-up.

In the DDR2 RDIMM application, $\overline{\text { RESET }}$ is specified to be completely asynchronous with respect to CK and $\overline{\mathrm{CK}}$. Therefore, no timing relationship can be guaranteed between the two. When entering reset, the register will be cleared and the Qn outputs will be driven LOW quickly, relative to the time to disable the differential input receivers. However, when coming out of reset, the register will become active quickly, relative to the time to enable the differential input receivers. As long as the data inputs are LOW, and the clock is stable during the time from the LOW-to-HIGH transition of RESET until the input receivers are fully enabled, the design of the SSTU32866 must ensure that the outputs will remain LOW, thus ensuring no glitches on the output.

7.1 Function table

Table 3: Function table (each flip-flop)
$L=$ LOW voltage level; $H=$ HIGH voltage level; $X=$ don't care; $\uparrow=$ LOW-to-HIGH transition; $\downarrow=$ HIGH-to-LOW transition

Inputs						Outputs [1]		
RESET	$\overline{\text { DCS }}$	CSR	CK	$\overline{\text { CK }}$	Dn, DODTn, DCKEn	Qn	QCS	$\begin{aligned} & \text { QODT, } \\ & \text { QCKE } \end{aligned}$
H	L	L	\uparrow	\downarrow	L	L	L	L
H	L	L	\uparrow	\downarrow	H	H	L	H
H	L	L	L or H	L or H	X	Q_{0}	Q_{0}	Q_{0}
H	L	H	\uparrow	\downarrow	L	L	L	L
H	L	H	\uparrow	\downarrow	H	H	L	H
H	L	H	L or H	L or H	X	Q_{0}	Q_{0}	Q_{0}
H	H	L	\uparrow	\downarrow	L	L	H	L
H	H	L	\uparrow	\downarrow	H	H	H	H
H	H	L	L or H	L or H	X	Q_{0}	Q_{0}	Q_{0}
H	H	H	\uparrow	\downarrow	L	Q_{0}	H	L
H	H	H	\uparrow	\downarrow	H	Q_{0}	H	H
H	H	H	L or H	L or H	X	Q_{0}	Q_{0}	Q_{0}
L	X or floating	L	L	L				

[1] Q_{0} is the previous state of the associated output.

Table 4: Parity and standby function table
$L=L O W$ voltage level; $H=$ HIGH voltage level; $X=$ don't care; $\uparrow=L O W$-to-HIGH transition; $\downarrow=$ HIGH-to-LOW transition

Inputs							Outputs [1]	
RESET	DCS	CSR	CK	CK	\sum of inputs $=\mathbf{H}$ (D1 to D25)	PAR_IN [2]	PPO [3]	QERR
H	L	X	\uparrow	\downarrow	even	L	L	H
H	L	X	\uparrow	\downarrow	odd	L	H	L
H	L	X	\uparrow	\downarrow	even	H	H	L
H	L	X	\uparrow	\downarrow	odd	H	L	H
H	H	L	\uparrow	\downarrow	even	L	L	H
H	H	L	\uparrow	\downarrow	odd	L	H	L
H	H	L	\uparrow	\downarrow	even	H	H	L
H	H	L	\uparrow	\downarrow	odd	H	L	H
H	H	H	\uparrow	\downarrow	X	X	PPO_{0}	$\overline{\text { QERR }}_{0}$
H	X	X	L or H	L or H	X	X	PPO_{0}	$\overline{\text { QERR }}_{0}$
L	X or floating	X or floating	X or floating	X or floating	X or floating	X or floating	L	H

[1] PPO_{0} is the previous state of output $\mathrm{PPO} ; \overline{\mathrm{QERR}}_{0}$ is the previous state of output $\overline{\text { QERR }}$.
[2] Data inputs $=\mathrm{D} 2, \mathrm{D} 3, \mathrm{D} 5, \mathrm{D} 6, \mathrm{D} 8$ to D 25 when $\mathrm{C} 0=0$ and $\mathrm{C} 1=0$. Data inputs $=$ D2, D3, D5, D6, D8 to D14 when C0 $=0$ and C1 $=1$. Data inputs = D1 to D6, D8 to D10, D12, D13 when C0 $=1$ and $\mathrm{C} 1=1$.
[3] PAR_IN arrives one clock cycle ($\mathrm{C} 0=0$), or two clock cycles ($\mathrm{CO}=1$), after the data to which it applies.
[4] This condition assumes QERR is HIGH at the crossing of CK going HIGH and CK going LOW. If QERR is LOW, it stays latched LOW for two clock cycles or until RESET is driven LOW.

8. Limiting values

Table 5: Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). [1]

Symbol	Parameter	Conditions	Min	Max	Unit
$V_{D D}$	supply voltage		-0.5	+2.5	V
V_{1}	receiver input voltage		-0.5 [2]	+2.5 [3]	V
V_{O}	driver output voltage		-0.5 [2]	$\mathrm{V}_{\mathrm{DD}}+0.5 \underline{\text { [3] }}$	V
I_{IK}	input clamp current	$\mathrm{V}_{1}<0 \mathrm{~V}$ or $\mathrm{V}_{1}>\mathrm{V}_{\mathrm{DD}}$	-	-50	mA
lok	output clamp current	$\mathrm{V}_{\mathrm{O}}<0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{DD}}$	-	± 50	mA
lo	continuous output current	$0 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<\mathrm{V}_{\mathrm{DD}}$	-	± 50	mA
ICcc	continuous current through each $V_{D D}$ or GND pin		-	± 100	mA
$\mathrm{T}_{\text {stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$
$V_{\text {esd }}$	electrostatic discharge voltage	Human Body Model (HBM); $1.5 \mathrm{k} \Omega$; 100 pF	2	-	kV
		Machine Model (MM); $0 \Omega ; 200 \mathrm{pF}$	200	-	V

[1] Stresses beyond those listed under 'absolute maximum ratings' may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under 'recommended operating conditions' is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
[2] The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
[3] This value is limited to 2.5 V maximum.

9. Recommended operating conditions

Table 6: Recommended operating conditions

Symbol	Parameter	Conditions		Min	Typ	Max	Unit
$V_{\text {DD }}$	supply voltage			1.7	-	1.9	V
$\mathrm{V}_{\text {REF }}$	reference voltage			$0.49 \times \mathrm{V}_{\mathrm{DD}}$	$0.50 \times \mathrm{V}_{\mathrm{DD}}$	$0.51 \times \mathrm{V}_{\mathrm{DD}}$	V
$\mathrm{V}_{\text {TT }}$	termination voltage			$\mathrm{V}_{\text {REF }}-40 \mathrm{mV}$	$\mathrm{V}_{\text {REF }}$	$\mathrm{V}_{\text {REF }}+40 \mathrm{mV}$	V
V_{1}	input voltage			0	-	$V_{\text {DD }}$	V
$\mathrm{V}_{\mathrm{IH}(\mathrm{AC})}$	AC HIGH-level input voltage	data (Dn), CSR, and PAR_IN inputs		$\mathrm{V}_{\text {REF }}+250 \mathrm{mV}$	-	-	V
$\left.\mathrm{V}_{\text {IL(}} \mathrm{AC}\right)$	AC LOW-level input voltage	data (Dn), $\overline{\mathrm{CSR}}$, and PAR_IN inputs		-	-	$\mathrm{V}_{\text {REF }}-250 \mathrm{mV}$	V
$\mathrm{V}_{\mathrm{IH}(\mathrm{DC})}$	DC HIGH-level input voltage	data (Dn), CSR, and PAR_IN inputs		$\mathrm{V}_{\text {REF }}+125 \mathrm{mV}$	-	-	V
$\mathrm{V}_{\text {IL(} \mathrm{DC})}$	DC LOW-level input voltage	data (Dn), $\overline{\text { CSR }}$, and PAR_IN inputs		-	-	$\mathrm{V}_{\text {REF }}-125 \mathrm{mV}$	V
V_{IH}	HIGH-level input voltage	RESET, Cn	[1]	$0.65 \times \mathrm{V}_{\mathrm{DD}}$	-	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	RESET, Cn	[1]	-	-	$0.35 \times \mathrm{V}_{\mathrm{DD}}$	V
$V_{\text {ICR }}$	common mode input voltage range	CK, $\overline{\mathrm{CK}}$	[2]	0.675	-	1.125	V

Table 6: Recommended operating conditions ...continued

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{V}_{\text {ID }}$	differential input voltage	$\mathrm{CK}, \overline{\mathrm{CK}}$	[2]	600	-	-
$\mathrm{I}_{\text {OH }}$	HIGH-level output current		-	-	-8	mV
$\mathrm{IOL}^{\text {LI }}$	LOW-level output current		-	-	8	mA
$\mathrm{~T}_{\text {amb }}$	operating ambient temperature in free air	0	-	+70	${ }^{\circ} \mathrm{C}$	

[1] The RESET and Cn inputs of the device must be held at valid levels (not floating) to ensure proper device operation.
[2] The differential inputs must not be floating, unless RESET is LOW.

10. Characteristics

Table 7: Characteristics
At recommended operating conditions (see Table 6), unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
V_{OH}	HIGH-level output voltage	$\mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA} ; \mathrm{V}_{\mathrm{DD}}=1.7 \mathrm{~V}$	1.2	-	-	V
V_{OL}	LOW-level output voltage	$\mathrm{l}_{\mathrm{OL}}=6 \mathrm{~mA} ; \mathrm{V}_{\mathrm{DD}}=1.7 \mathrm{~V}$	-	-	0.5	V
1	input current	all inputs; $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$ or GND ; $V_{D D}=1.9 \mathrm{~V}$	-	-	± 5	$\mu \mathrm{A}$
IDD	static standby current	$\begin{aligned} & \overline{\mathrm{RESET}}=\mathrm{GND} ; \mathrm{l}_{\mathrm{O}}=0 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{DD}}=1.9 \mathrm{~V} \end{aligned}$	-	-	100	$\mu \mathrm{A}$
	static operating current	$\begin{aligned} & \overline{\mathrm{RESET}}=\mathrm{V}_{\mathrm{DD}} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{DD}}=1.9 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}(\mathrm{AC})} \text { or } \mathrm{V}_{\mathrm{IL}(\mathrm{AC})} \end{aligned}$	-	-	40	mA
$\mathrm{I}_{\text {DDD }}$	dynamic operating current per MHz , clock only	RESET $=V_{D D}$; $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}(\mathrm{AC})}$ or $\mathrm{V}_{\mathrm{IL}(\mathrm{AC})}$; CK and $\overline{\mathrm{CK}}$ switching at 50% duty cycle. $\mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA} ; \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$	-	16	-	$\mu \mathrm{A}$
	dynamic operating current per MHz, per each data input, 1:1 mode	$\overline{R E S E T}=V_{D D}$; $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}(\mathrm{AC})}$ or $\mathrm{V}_{\mathrm{IL}(\mathrm{AC})}$; CK and $\overline{\mathrm{CK}}$ switching at 50% duty cycle. One data input switching at half clock frequency, 50 \% duty cycle. $\mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA} ; \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$	-	11	-	$\mu \mathrm{A}$
	dynamic operating current per MHz, per each data input, 1:2 mode	$\overline{R E S E T}=V_{D D}$; $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}(\mathrm{AC})}$ or $\mathrm{V}_{\mathrm{IL}(\mathrm{AC})}$; CK and $\overline{\mathrm{CK}}$ switching at 50% duty cycle. One data input switching at half clock frequency, 50% duty cycle. $\mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA} ; \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$	-	19	-	$\mu \mathrm{A}$
C_{i}	input capacitance, data and $\overline{\mathrm{CSR}}$ inputs	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {REF }} \pm 250 \mathrm{mV} ; \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$	2.5	-	3.5	pF
	input capacitance, CK and $\overline{\mathrm{CK}}$ inputs	$\begin{aligned} & \mathrm{V}_{I C R}=0.9 \mathrm{~V} ; \mathrm{V}_{\mathrm{i}(\mathrm{p-p)}}=600 \mathrm{mV} ; \\ & \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V} \end{aligned}$	2	-	3	pF
	input capacitance, $\overline{\text { RESET input }}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$ or GND; $\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$	3	-	4	pF

Table 8: Timing requirements
At recommended operating conditions (see Table 6), unless otherwise specified. See Figure 2.

Symbol	Parameter	Conditions		Min	Typ	Max	Unit
$\mathrm{f}_{\text {clock }}$	clock frequency			-	-	450	MHz
t_{w}	pulse duration, CK, $\overline{\mathrm{CK}} \mathrm{HIGH}$ or LOW			1	-	-	ns
$t_{\text {ACT }}$	differential inputs active time		[1] [2]	-	-	10	ns
$t_{\text {INACT }}$	differential inputs inactive time		[1] [3]	-	-	15	ns
$\mathrm{t}_{\text {su }}$	set-up time	$\overline{\mathrm{DCS}}$ before CK $\uparrow, \overline{\mathrm{CK}} \downarrow, \overline{\mathrm{CSR}} \mathrm{HIGH} ; \overline{\mathrm{CSR}}$ before CK $\uparrow, \overline{\mathrm{CK}} \downarrow$, $\overline{\mathrm{DCS}}$ HIGH		0.7	-	-	ns
		$\overline{\mathrm{DCS}}$ before CK $\uparrow, \overline{\mathrm{CK}} \downarrow$, $\overline{\mathrm{CSR}} \mathrm{LOW}$		0.5	-	-	ns
		DODT, DCKE and data (Dn) before CK \uparrow, $\overline{\mathrm{CK}} \downarrow$		0.5	-	-	ns
		PAR_IN before CK \uparrow, $\overline{\mathrm{CK}} \downarrow$		0.5	-	-	ns
t_{h}	hold time	DCS, DODT, DCKE and data (Dn) after CK $\uparrow, \overline{\mathrm{CK}} \downarrow$		0.5	-	-	ns
		PAR_IN after CK \uparrow, $\overline{\mathrm{CK}} \downarrow$		0.5	-	-	ns

[1] This parameter is not necessarily production tested.
[2] $V_{\text {REF }}$ must be held at a valid input voltage level and data inputs must be held LOW for a minimum time of $t_{\text {ACT(max) }}$ after RESET is taken HIGH.
[3] $V_{\text {REF }}$, data and clock inputs must be held at valid levels (not floating) a minimum time of $t_{\text {INACT(max) }}$ after $\overline{\operatorname{RESET}}$ is taken LOW.

Table 9: Switching characteristics
At recommended operating conditions (see Table 6), unless otherwise specified. See Section 11.1.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{f}_{\text {MAX }}$	maximum input clock frequency		450	-	-	MHz
$t_{\text {PDM }}$	propagation delay, single bit switching	from $\mathrm{CK} \uparrow$ and $\overline{\mathrm{CK}} \downarrow$ to Qn	[1] 1.41	-	1.8	ns
$\mathrm{t}_{\text {PD }}$	propagation delay	from $\mathrm{CK} \uparrow$ and $\overline{\mathrm{CK}} \downarrow$ to PPO	0.5	-	1.8	ns
$t_{\text {LH }}$	LOW-to-HIGH propagation delay	from $\mathrm{CK} \uparrow$ and $\overline{C K} \downarrow$ to $\overline{\mathrm{QERR}}$	1.2	-	3	ns
t_{HL}	HIGH-to-LOW propagation delay	from CK \uparrow and $\overline{C K} \downarrow$ to $\overline{\text { QERR }}$	1	-	2.4	ns
$\mathrm{t}_{\text {PDMSS }}$	propagation delay, simultaneous switching	from $\mathrm{CK} \uparrow$ and $\overline{\mathrm{CK}} \downarrow$ to Qn	[1] [2]	-	2.0	ns
$\mathrm{t}_{\text {PHL }}$	HIGH-to-LOW propagation delay	from RESET \downarrow to Qn \downarrow	-	-	3	ns
		from $\overline{\mathrm{RESET}} \downarrow$ to PPO \downarrow	-	-	3	ns
tpLH	LOW-to-HIGH propagation delay	from $\overline{\operatorname{RESET}} \downarrow$ to $\overline{\text { QERR }} \uparrow$	-	-	3	ns

[1] Includes 350 ps of test-load transmission line delay.
[2] This parameter is not necessarily production tested.

Table 10: Data output edge rates
At recommended operating conditions (see Table 6), unless otherwise specified. See Section 11.2.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
dV/dt_r	rising edge slew rate	from 20 \% to 80%	1	-	4	V/ns
dV/dt_f	falling edge slew rate	from 80% to 20 \%	1	-	4	V/ns
dV/dt_ ${ }^{\text {d }}$	absolute difference between $\mathrm{dV} / \mathrm{dt} _\mathrm{r}$ and $d V / d t _f$	from 20% or 80% to 80% or 20%	-	-	1	V/ns

10.1 Timing diagrams

Fig 7. Timing diagram for SSTU32866 used as a single device; $C 0=0, C 1=0$

Fig 8. Timing diagram for the first SSTU32866 (1:2 Register A configuration) device used in pair; C0 = 0, C1 = 1

11. Test information

11.1 Parameter measurement information for data output load circuit
 $\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V}$.

All input pulses are supplied by generators having the following characteristics: $P R R \leq 10 \mathrm{MHz} ; \mathrm{Z}_{0}=50 \Omega$; input slew rate $=1 \mathrm{~V} / \mathrm{ns} \pm 20 \%$, unless otherwise specified.

The outputs are measured one at a time with one transition per measurement.

(1) C_{L} includes probe and jig capacitance.

Fig 10. Load circuit, data output measurements

(1) $I_{D D}$ tested with clock and data inputs held at $V_{D D}$ or $G N D$, and $\mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}$.

Fig 11. Voltage and current waveforms; inputs active and inactive times

$V_{I D}=600 \mathrm{mV}$
$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\text {REF }}+250 \mathrm{mV}$ (AC voltage levels) for differential inputs. $\mathrm{V}_{I H}=\mathrm{V}_{\mathrm{DD}}$ for LVCMOS inputs.
$\mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\text {REF }}-250 \mathrm{mV}$ (AC voltage levels) for differential inputs. $\mathrm{V}_{\mathrm{IL}}=$ GND for LVCMOS inputs.
Fig 12. Voltage waveforms; pulse duration

$V_{I D}=600 \mathrm{mV}$
$V_{\text {REF }}=V_{D D} / 2$
$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\text {REF }}+250 \mathrm{mV}$ (AC voltage levels) for differential inputs. $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}$ for LVCMOS inputs.
$\mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\text {REF }}-250 \mathrm{mV}$ (AC voltage levels) for differential inputs. $\mathrm{V}_{\mathrm{IL}}=$ GND for LVCMOS inputs.
Fig 13. Voltage waveforms; set-up and hold times

$t_{\text {PLH }}$ and $t_{\text {PHL }}$ are the same as $t_{\text {PD }}$.
Fig 14. Voltage waveforms; propagation delay times (clock to output)

$t_{\text {PLH }}$ and $t_{\text {PHL }}$ are the same as $t_{\text {PD }}$.
$\mathrm{V}_{I H}=\mathrm{V}_{\mathrm{REF}}+250 \mathrm{mV}$ (AC voltage levels) for differential inputs. $\mathrm{V}_{I H}=\mathrm{V}_{\mathrm{DD}}$ for LVCMOS inputs.
$\mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{REF}}-250 \mathrm{mV}$ (AC voltage levels) for differential inputs. $\mathrm{V}_{\mathrm{IL}}=$ GND for LVCMOS inputs.
Fig 15. Voltage waveforms; propagation delay times (reset to output)

11.2 Data output slew rate measurement information

$\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V}$.
All input pulses are supplied by generators having the following characteristics:
$P R R \leq 10 \mathrm{MHz} ; \mathrm{Z}_{0}=50 \Omega$; input slew rate $=1 \mathrm{~V} / \mathrm{ns} \pm 20 \%$, unless otherwise specified.

(1) C_{L} includes probe and jig capacitance.

Fig 16. Load circuit, HIGH-to-LOW slew measurement

Fig 17. Voltage waveforms, HIGH-to-LOW slew rate measurement

(1) C_{L} includes probe and jig capacitance.

Fig 18. Load circuit, LOW-to-HIGH slew measurement

Fig 19. Voltage waveforms, LOW-to-HIGH slew rate measurement

11.3 Error output load circuit and voltage measurement information

$\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V}$.
All input pulses are supplied by generators having the following characteristics:
$P R R \leq 10 \mathrm{MHz} ; \mathrm{Z}_{0}=50 \Omega$; input slew rate $=1 \mathrm{~V} / \mathrm{ns} \pm 20 \%$, unless otherwise specified.

(1) C_{L} includes probe and jig capacitance.

Fig 20. Load circuit, error output measurements

Fig 21. Voltage waveforms, open-drain output LOW-to-HIGH transition time with respect to RESET input.

Fig 22. Voltage waveforms, open-drain output HIGH-to-LOW transition time with respect to clock inputs

Fig 23. Voltage waveforms, open-drain output LOW-to-HIGH transition time with respect to clock inputs

11.4 Partial Parity Out load circuit and voltage measurement information

$V_{D D}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V}$.
All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \mathrm{MHz} ; \mathrm{Z}_{0}=50 \Omega$; input slew rate $=1 \mathrm{~V} / \mathrm{ns} \pm 20 \%$, unless otherwise specified.

(1) C_{L} includes probe and jig capacitance.

Fig 24. Partial Parity Out load circuit

$\mathrm{V}_{\mathrm{TT}}=\mathrm{V}_{\mathrm{DD}} / 2$
$t_{\text {PLH }}$ and $t_{\text {PHL }}$ are the same as $t_{\text {PD }}$.
$V_{i(p-p)}=600 \mathrm{mV}$
Fig 25. Partial Parity Out voltage waveforms; propagation delay times with respect to clock inputs

$\mathrm{V}_{\mathrm{TT}}=\mathrm{V}_{\mathrm{DD}} / 2$
$t_{\text {PLH }}$ and $t_{\text {PHL }}$ are the same as $t_{\text {PD }}$.
$\mathrm{V}_{I H}=\mathrm{V}_{\text {REF }}+250 \mathrm{mV}$ (AC voltage levels) for differential inputs. $\mathrm{V}_{I H}=\mathrm{V}_{\mathrm{DD}}$ for LVCMOS inputs.
$\mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\text {REF }}-250 \mathrm{mV}$ (AC voltage levels) for differential inputs. $\mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{DD}}$ for LVCMOS inputs.
Fig 26. Partial Parity Out voltage waveforms; propagation delay times with respect to RESET input

12. Package outline

LFBGA96: plastic low profile fine-pitch ball grid array package; 96 balls; body $13.5 \times 5.5 \times 1.05 \mathrm{~mm}$ SOT536-1

10 mm
DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} $\mathbf{m a x}$.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	\mathbf{b}	\mathbf{D}	\mathbf{E}	\mathbf{e}	$\mathbf{e}_{\mathbf{1}}$	$\mathbf{e}_{\mathbf{2}}$	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{y}_{\mathbf{1}}$
mm	1.5	0.41	1.2	0.51	5.6	13.6	0.8	4	12	0.15	0.1	0.1	0.2

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT536-1				- +	$\begin{aligned} & -00-03-04- \\ & 03-02-05 \end{aligned}$

Fig 27. Package outline SOT536-1 (LFBGA96)

13. Soldering

13.1 Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our Data Handbook IC26; Integrated Circuit Packages (document order number 9398652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch SMDs. In these situations reflow soldering is recommended.

13.2 Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. Driven by legislation and environmental forces the worldwide use of lead-free solder pastes is increasing.

Several methods exist for reflowing; for example, convection or convection/infrared heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 seconds and 200 seconds depending on heating method.

Typical reflow peak temperatures range from $215^{\circ} \mathrm{C}$ to $270^{\circ} \mathrm{C}$ depending on solder paste material. The top-surface temperature of the packages should preferably be kept:

- below $225{ }^{\circ} \mathrm{C}$ (SnPb process) or below $245{ }^{\circ} \mathrm{C}$ (Pb-free process)
- for all BGA, HTSSON..T and SSOP..T packages
- for packages with a thickness $\geq 2.5 \mathrm{~mm}$
- for packages with a thickness $<2.5 \mathrm{~mm}$ and a volume $\geq 350 \mathrm{~mm}^{3}$ so called thick/large packages.
- below $240{ }^{\circ} \mathrm{C}$ (SnPb process) or below $260^{\circ} \mathrm{C}$ (Pb-free process) for packages with a thickness $<2.5 \mathrm{~mm}$ and a volume $<350 \mathrm{~mm}^{3}$ so called small/thin packages.

Moisture sensitivity precautions, as indicated on packing, must be respected at all times.

13.3 Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
- larger than or equal to 1.27 mm , the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;
- smaller than 1.27 mm , the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.
The footprint must incorporate solder thieves at the downstream end.
- For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time of the leads in the wave ranges from 3 seconds to 4 seconds at $250^{\circ} \mathrm{C}$ or $265^{\circ} \mathrm{C}$, depending on solder material applied, SnPb or Pb -free respectively.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

13.4 Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300^{\circ} \mathrm{C}$.

When using a dedicated tool, all other leads can be soldered in one operation within 2 seconds to 5 seconds between $270^{\circ} \mathrm{C}$ and $320^{\circ} \mathrm{C}$.

13.5 Package related soldering information

Table 11: Suitability of surface mount IC packages for wave and reflow soldering methods

Package [1]	Soldering method	
	Wave	Reflow [2]
BGA, HTSSON..T [3], LBGA, LFBGA, SQFP, SSOP..T [3], TFBGA, VFBGA, XSON	not suitable	suitable
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP, HSQFP, HSSON, HTQFP, HTSSOP, HVQFN, HVSON, SMS	not suitable [4]	suitable
PLCC [5], SO, SOJ	suitable	suitable
LQFP, QFP, TQFP	not recommended [5] [6]	suitable
SSOP, TSSOP, VSO, VSSOP	not recommended [$\underline{\text { [] }}$	suitable
CWQCCN..L ${ }^{[8]}$, PMFP [9], WQCCN..L[${ }^{[8]}$	not suitable	not suitable

[1] For more detailed information on the BGA packages refer to the (LF)BGA Application Note (AN01026); order a copy from your Philips Semiconductors sales office.
2] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods.
[3] These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no account be processed through more than one soldering cycle or subjected to infrared reflow soldering with peak temperature exceeding $217^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$ measured in the atmosphere of the reflow oven. The package body peak temperature must be kept as low as possible.

