

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

SSTUA32866

1.8 V 25-bit 1 : 1 or 14-bit 1 : 2 configurable registered buffer with parity for DDR2-667 RDIMM applications

Rev. 02 — 26 March 2007

Product data sheet

1. General description

The SSTUA32866 is a 1.8 V configurable register specifically designed for use on DDR2 memory modules requiring a parity checking function. It is defined in accordance with the JEDEC standard for the SSTUA32866 registered buffer. The register is configurable (using configuration pins C0 and C1) to two topologies: 25-bit 1:1 or 14-bit 1:2, and in the latter configuration can be designated as Register A or Register B on the DIMM.

The SSTUA32866 accepts a parity bit from the memory controller on its parity bit (PAR_IN) input, compares it with the data received on the DIMM-independent D-inputs and indicates whether a parity error has occurred on its open-drain QERR pin (active LOW). The convention is even parity, that is, valid parity is defined as an even number of ones across the DIMM-independent data inputs combined with the parity input bit.

The SSTUA32866 is packaged in a 96-ball, 6×16 grid, 0.8 mm ball pitch LFBGA package (13.5 mm \times 5.5 mm).

2. Features

- Configurable register supporting DDR2 up to 667 MT/s Registered DIMM applications
- Configurable to 25-bit 1 : 1 mode or 14-bit 1 : 2 mode
- Controlled output impedance drivers enable optimal signal integrity and speed
- Exceeds JESD82-7 speed performance (1.8 ns max. single-bit switching propagation delay; 2.0 ns max. mass-switching)
- Supports up to 450 MHz clock frequency of operation
- Optimized pinout for high-density DDR2 module design
- Chip-selects minimize power consumption by gating data outputs from changing state
- Supports SSTL_18 data inputs
- Checks parity on the DIMM-independent data inputs
- Partial parity output and input allows cascading of two SSTUA32866s for correct parity error processing
- Differential clock (CK and CK) inputs
- Supports LVCMOS switching levels on the control and RESET inputs
- Single 1.8 V supply operation (1.7 V to 2.0 V)
- Available in 96-ball, 13.5 mm × 5.5 mm, 0.8 mm ball pitch LFBGA package

3. Applications

■ 400 MT/s to 667 MT/s DDR2 registered DIMMs desiring parity checking functionality

1.8 V DDR2-667 configurable registered buffer with parity

4. Ordering information

Table 1. Ordering information

 $T_{amb} = 0 \,^{\circ}C$ to $+70 \,^{\circ}C$.

Type number	Solder process	Package		
		Name	Description	Version
SSTUA32866EC/G	Pb-free (SnAgCu solder ball compound)	LFBGA96	plastic low profile fine-pitch ball grid array package; 96 balls; body $13.5 \times 5.5 \times 1.05$ mm	SOT536-1
SSTUA32866EC	SnPb solder ball compound	LFBGA96	plastic low profile fine-pitch ball grid array package; 96 balls; body $13.5 \times 5.5 \times 1.05$ mm	SOT536-1

5. Functional diagram

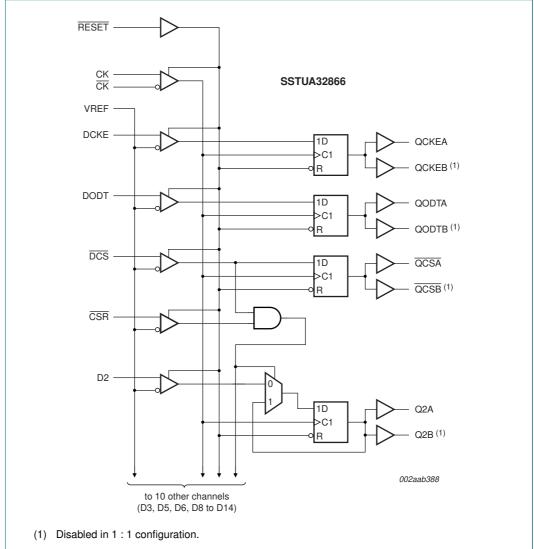
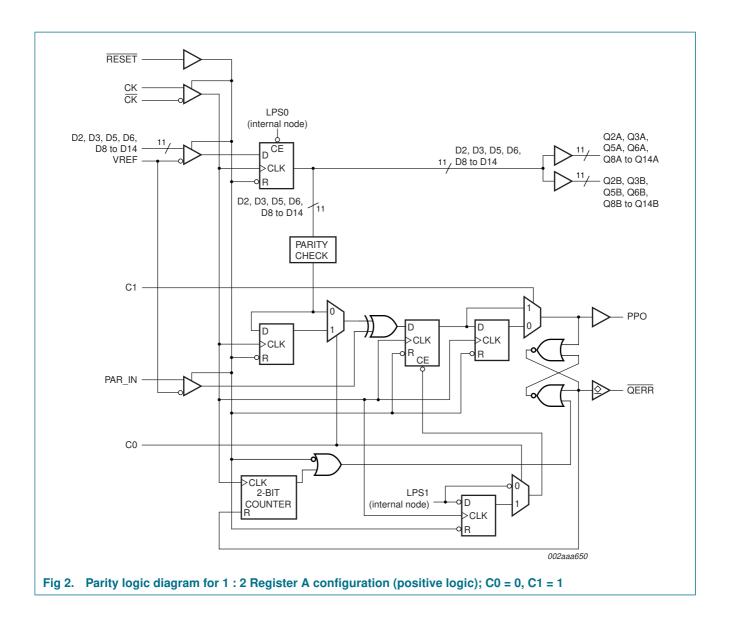
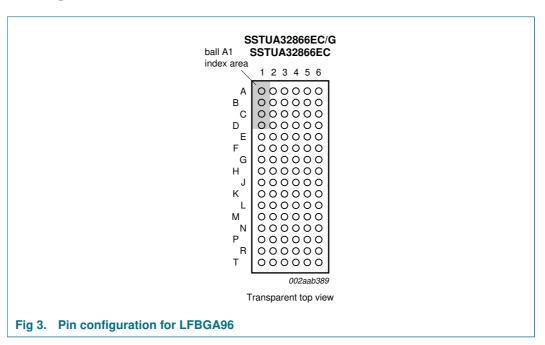



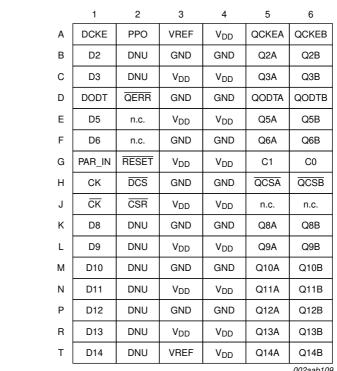
Fig 1. Functional diagram of SSTUA32866; 1 : 2 Register A configuration with C0 = 0 and C1 = 1 (positive logic)


1.8 V DDR2-667 configurable registered buffer with parity

1.8 V DDR2-667 configurable registered buffer with parity

Pinning information

6.1 Pinning


	1	2	3	4	5	6
А	DCKE	PPO	VREF	V _{DD}	QCKE	DNU
В	D2	D15	GND	GND	Q2	Q15
С	D3	D16	V_{DD}	V _{DD}	Q3	Q16
D	DODT	QERR	GND	GND	QODT	DNU
E	D5	D17	V_{DD}	V_{DD}	Q5	Q17
F	D6	D18	GND	GND	Q6	Q18
G	PAR_IN	RESET	V_{DD}	V_{DD}	C1	C0
Н	СК	DCS	GND	GND	QCS	DNU
J	CK	CSR	V_{DD}	V_{DD}	n.c.	n.c.
K	D8	D19	GND	GND	Q8	Q19
L	D9	D20	V_{DD}	V_{DD}	Q9	Q20
М	D10	D21	GND	GND	Q10	Q21
N	D11	D22	V_{DD}	V_{DD}	Q11	Q22
Р	D12	D23	GND	GND	Q12	Q23
R	D13	D24	V_{DD}	V _{DD}	Q13	Q24
Т	D14	D25	VREF	V _{DD}	Q14	Q25
						002aab108

SSTUA32866_2 © NXP B.V. 2007. All rights reserved.

Fig 4. Ball mapping, 1:1 register (C0 = 0, C1 = 0)

SSTUA32866 NXP Semiconductors

1.8 V DDR2-667 configurable registered buffer with parity

002aab109

Fig 5. Ball mapping, 1: 2 Register A (C0 = 0, C1 = 1)

1	2	3	4	5	6
D1	PPO	VREF	V_{DD}	Q1A	Q1B
D2	DNU	GND	GND	Q2A	Q2B
D3	DNU	V_{DD}	V_{DD}	Q3A	Q3B
D4	QERR	GND	GND	Q4A	Q4B
D5	DNU	V_{DD}	V_{DD}	Q5A	Q5B
D6	DNU	GND	GND	Q6A	Q6B
PAR_IN	RESET	V_{DD}	V_{DD}	C1	C0
CK	DCS	GND	GND	QCSA	QCSB
CK	CSR	V _{DD}	V _{DD}	n.c.	n.c.
D8	DNU	GND	GND	Q8A	Q8B
D9	DNU	V_{DD}	V_{DD}	Q9A	Q9B
D10	DNU	GND	GND	Q10A	Q10B
DODT	DNU	V_{DD}	V_{DD}	QODTA	QODTB
D12	DNU	GND	GND	Q12A	Q12B
D13	DNU	V_{DD}	V_{DD}	Q13A	Q13B
DCKE	DNU	VREF	V_{DD}	QCKEA	QCKEB
	D1 D2 D3 D4 D5 D6 PAR_IN CK D8 D9 D10 DODT D12 D13	D1 PPO D2 DNU D3 DNU D4 QERR D5 DNU D6 DNU PAR_IN RESET CK CSR D8 DNU D9 DNU D10 DNU DODT DNU D12 DNU D13 DNU	D1 PPO VREF D2 DNU GND D3 DNU VDD D4 QERR GND D5 DNU VDD D6 DNU GND PAR_IN RESET VDD CK DCS GND CK CSR VDD D8 DNU GND D9 DNU VDD D10 DNU GND DODT DNU VDD D12 DNU GND D13 DNU VDD	D1 PPO VREF VDD D2 DNU GND GND D3 DNU VDD VDD D4 QERR GND GND D5 DNU VDD VDD D6 DNU GND GND PAR_IN RESET VDD VDD CK DCS GND GND D8 DNU GND GND D9 DNU GND GND D0D DNU GND GND D0DT DNU VDD VDD D12 DNU GND GND D13 DNU VDD VDD	D1 PPO VREF VDD Q1A D2 DNU GND GND Q2A D3 DNU VDD VDD Q3A D4 QERR GND GND Q4A D5 DNU VDD VDD Q5A D6 DNU GND GND Q6A PAR_IN RESET VDD VDD C1 CK DCS GND GND QCSA CK CSR VDD VDD n.c. D8 DNU GND GND Q8A D9 DNU VDD VDD Q9A D10 DNU GND GND Q10A DODT DNU VDD VDD Q0DTA D12 DNU GND GND Q13A

002aab110

Fig 6. Ball mapping, 1 : 2 Register B (C0 = 1, C1 = 1)

SSTUA32866

1.8 V DDR2-667 configurable registered buffer with parity

6.2 Pin description

NXP Semiconductors

Table 2. Pin description

Symbol	Pin	Туре	Description
GND	B3, B4, D3, D4, F3, F4, H3, H4, K3, K4, M3, M4, P3, P4	ground input	ground
V_{DD}	A4, C3, C4, E3, E4, G3, G4, J3, J4, L3, L4, N3, N4, R3, R4, T4	1.8 V nominal	power supply voltage
VREF	A3, T3	0.9 V nominal	input reference voltage
CK	H1	Differential input	positive master clock input
CK	J1	Differential input	negative master clock input
C0 C1	G6 G5	LVCMOS inputs	Configuration control inputs; Register A or Register B and 1 : 1 mode or 1 : 2 mode select.
RESET	G2	LVCMOS input	Asynchronous reset input (active LOW). Resets registers and disables VREF data and clock.
CSR	J2	SSTL_18 input	Chip select inputs (active LOW). Disables
DCS	H2		D1 to D25 outputs switching when both inputs are HIGH.
D1 to D25	<u>[1]</u>	SSTL_18 input	Data input. Clocked in on the crossing of the rising edge of CK and the falling edge of $\overline{\text{CK}}$.
DODT	[1]	SSTL_18 input	The outputs of this register bit will not be suspended by the \overline{DCS} and \overline{CSR} control.
DCKE	[1]	SSTL_18 input	The outputs of this register bit will not be suspended by the \overline{DCS} and \overline{CSR} control.
PAR_IN	G1	SSTL_18 input	Parity input. Arrives one clock cycle after the corresponding data input.
Q1 to Q25, Q2A to Q14A, Q1B to Q14B	[1]	1.8 V CMOS outputs	Data outputs that are suspended by the $\overline{\text{DCS}}$ and $\overline{\text{CSR}}$ control $\underline{^{[3]}}$.
PPO	A2	1.8 V CMOS output	Partial parity out. Indicates odd parity of inputs D1 to D25[2].
$\overline{\text{QCS}}, \overline{\text{QCSA}}, \overline{\text{QCSB}}$	[1]	1.8 V CMOS output	Data output that will not be suspended by the DCS and CSR control.
QODT, QODTA, QODTB	[1]	1.8 V CMOS output	Data output that will not be suspended by the DCS and CSR control.
QCKE, QCKEA, QCKEB	<u>[1]</u>	1.8 V CMOS output	Data output that will not be suspended by the $\overline{\text{DCS}}$ and $\overline{\text{CSR}}$ control.

1.8 V DDR2-667 configurable registered buffer with parity

Table 2. Pin description continue	Table 2.	Pin de	scription.	continued
--	----------	--------	------------	-----------

Symbol	Pin	Туре	Description
QERR	D2	open-drain output	Output error bit (active LOW). Generated one clock cycle after the corresponding data output
n.c.	<u>[1]</u>	-	Not connected. Ball present but no internal connection to the die.
DNU	[1]	-	Do not use. Inputs are in standby-equivalent mode and outputs are driven LOW.

- [1] Depends on configuration. See Figure 4, Figure 5, and Figure 6 for ball number.
- [2] Data inputs = D2, D3, D5, D6, D8 to D25 when C0 = 0 and C1 = 0.
 Data inputs = D2, D3, D5, D6, D8 to D14 when C0 = 0 and C1 = 1.
 Data inputs = D1 to D6, D8 to D10, D12, D13 when C0 = 1 and C1 = 1.
- [3] Data outputs = Q2, Q3, Q5, Q6, Q8 to Q25 when C0 = 0 and C1 = 0.
 Data outputs = Q2, Q3, Q5, Q6, Q8 to Q14 when C0 = 0 and C1 = 1.
 Data outputs = Q1 to Q6, Q8 to Q10, Q12, Q13 when C0 = 1 and C1 = 1.

7. Functional description

The SSTUA32866 is a 25-bit 1 : 1 or 14-bit 1 : 2 configurable registered buffer with parity, designed for 1.7 V to 2.0 V V_{DD} operation.

All clock and data inputs are compatible with the JEDEC standard for SSTL_18. The control and reset (RESET) inputs are LVCMOS. All data outputs are 1.8 V CMOS drivers that have been optimized to drive the DDR2 DIMM load, and meet SSTL_18 specifications. The error (QERR) output is 1.8 V open-drain driver.

The SSTUA32866 operates from a differential clock (CK and \overline{CK}). Data are registered at the crossing of CK going HIGH, and \overline{CK} going LOW.

The C0 input controls the pinout configuration for the 1 : 2 pinout from A configuration (when LOW) to B configuration (when HIGH). The C1 input controls the pinout configuration from 25-bit 1 : 1 (when LOW) to 14-bit 1 : 2 (when HIGH).

The SSTUA32866 accepts a parity bit from the memory controller on its parity bit (PAR_IN) input, compares it with the data received on the DIMM-independent D-inputs and indicates whether a parity error has occurred on its open-drain $\overline{\text{QERR}}$ pin (active LOW). The convention is even parity, that is, valid parity is defined as an even number of ones across the DIMM-independent data inputs combined with the parity input bit.

When used as a single device, the C0 and C1 inputs are tied LOW. In this configuration, parity is checked on the PAR_IN input which arrives one cycle after the input data to which it applies. The Partial-Parity-Out (PPO) and $\overline{\text{QERR}}$ signals are produced three cycles after the corresponding data inputs.

When used in pairs, the C0 input of the first register is tied LOW and the C0 input of the second register is tied HIGH. The C1 input of both registers are tied HIGH. Parity, which arrives one cycle after the data input to which it applies, is checked on the PAR_IN input of the first device. The PPO and QERR signals are produced on the second device three clock cycles after the corresponding data inputs. The PPO output of the first register is

1.8 V DDR2-667 configurable registered buffer with parity

cascaded to the PAR_IN of the second register. The QERR output of the first register is left floating and the valid error information is latched on the QERR output of the second register.

If an error occurs and the $\overline{\text{QERR}}$ output is driven LOW, it stays latched LOW for two clock cycles or until $\overline{\text{RESET}}$ is driven LOW. The DIMM-dependent signals (DCKE, $\overline{\text{DCS}}$, DODT, and $\overline{\text{CSR}}$) are not included in the parity check computation.

The device supports low-power standby operation. When RESET is LOW, the differential input receivers are disabled, and undriven (floating) data, clock and reference voltage (VREF) inputs are allowed. In addition, when RESET is LOW all registers are reset, and all outputs are forced LOW. The LVCMOS RESET input must always be held at a valid logic HIGH or LOW level.

The device also supports low-power active operation by monitoring both system chip select (\overline{DCS} and \overline{CSR}) inputs and will gate the Qn and PPO outputs from changing states when both \overline{DCS} and \overline{CSR} inputs are HIGH. If either \overline{DCS} or \overline{CSR} input is LOW, the Qn and PPO outputs will function normally. The \overline{RESET} input has priority over the \overline{DCS} and \overline{CSR} control and when driven LOW will force the Qn and PPO outputs LOW, and the \overline{QERR} output HIGH. If the \overline{DCS} control functionality is not desired, then the \overline{CSR} input can be hard-wired to ground, in which case, the setup time requirement for \overline{DCS} would be the same as for the other Dn data inputs. To control the low-power mode with \overline{DCS} only, then the \overline{CSR} input should be pulled up to V_{DD} through a pull-up resistor.

To ensure defined outputs from the register before a stable clock has been supplied, RESET must be held in the LOW state during power-up.

In the DDR2 RDIMM application, $\overline{\text{RESET}}$ is specified to be completely asynchronous with respect to CK and $\overline{\text{CK}}$. Therefore, no timing relationship can be guaranteed between the two. When entering reset, the register will be cleared and the Qn outputs will be driven LOW quickly, relative to the time to disable the differential input receivers. However, when coming out of reset, the register will become active quickly, relative to the time to enable the differential input receivers. As long as the data inputs are LOW, and the clock is stable during the time from the LOW-to-HIGH transition of $\overline{\text{RESET}}$ until the input receivers are fully enabled, the design of the SSTUA32866 must ensure that the outputs will remain LOW, thus ensuring no glitches on the output.

1.8 V DDR2-667 configurable registered buffer with parity

7.1 Function table

Table 3. Function table (each flip-flop)

L = LOW voltage level; H = HIGH voltage level; X = don't care; $\uparrow = LOW$ -to-HIGH transition; $\downarrow = HIGH$ -to-LOW transition

		In	puts				Outputs[1]	
RESET	DCS	CSR	CK	CK	Dn, DODTn, DCKEn	Qn	QCS	QODT, QCKE
Н	L	L	1	\	L	L	L	L
Н	L	L	1	\downarrow	Н	Н	L	Н
Н	L	L	L or H	L or H	X	Q_0	Q_0	Q_0
Н	L	Н	1	\downarrow	L	L	L	L
Н	L	Н	1	\downarrow	Н	Н	L	Н
Н	L	Н	L or H	L or H	X	Q_0	Q_0	Q_0
Н	Н	L	1	\downarrow	L	L	Н	L
Н	Н	L	1	\downarrow	Н	Н	Н	Н
Н	Н	L	L or H	L or H	X	Q_0	Q_0	Q_0
Н	Н	Н	1	\downarrow	L	Q_0	Н	L
Н	Н	Н	1	\downarrow	Н	Q_0	Н	Н
Н	Н	Н	L or H	L or H	X	Q_0	Q_0	Q_0
L	X or floating	L	L	L				

^[1] Q₀ is the previous state of the associated output.

Table 4. Parity and standby function table

L = LOW voltage level; H = HIGH voltage level; X = don't care; $\uparrow = LOW$ -to-HIGH transition; $\downarrow = HIGH$ -to-LOW transition

			Inputs				Outp	outs[1]
RESET	DCS	CSR	СК	CK	Σ of inputs = H (D1 to D25)	PAR_IN[2]	PPO[3]	QERR[4]
Н	L	Χ	1	\downarrow	even	L	L	Н
Н	L	Χ	↑	\downarrow	odd	L	Н	L
Н	L	Χ	1	\downarrow	even	Н	Н	L
Н	L	Χ	1	\downarrow	odd	Н	L	Н
Н	Н	L	1	\downarrow	even	L	L	Н
Н	Н	L	1	\downarrow	odd	L	Н	L
Н	Н	L	1	\downarrow	even	Н	Н	L
Н	Н	L	1	\downarrow	odd	Н	L	Н
Н	Н	Н	1	\downarrow	X	Х	PPO ₀	QERR ₀
Н	Χ	Χ	L or H	L or H	X	Х	PPO ₀	QERR ₀
L	X or floating	X or floating	L	Н				

^[1] PPO₀ is the previous state of output PPO; $\overline{\text{QERR}}_0$ is the previous state of output $\overline{\text{QERR}}$.

Data inputs = D2, D3, D5, D6, D8 to D25 when C0 = 0 and C1 = 0.
 Data inputs = D2, D3, D5, D6, D8 to D14 when C0 = 0 and C1 = 1.
 Data inputs = D1 to D6, D8 to D10, D12, D13 when C0 = 1 and C1 = 1.

^[3] PAR_IN arrives one clock cycle (C0 = 0), or two clock cycles (C0 = 1), after the data to which it applies.

^[4] This condition assumes QERR is HIGH at the crossing of CK going HIGH and CK going LOW. If QERR is LOW, it stays latched LOW for two clock cycles or until RESET is driven LOW.

1.8 V DDR2-667 configurable registered buffer with parity

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DD}	supply voltage		-0.5	+2.5	٧
VI	input voltage	receiver	-0.5 ^[1]	+2.5 ^[2]	V
Vo	output voltage	driver	-0.5 ^[1]	$V_{DD} + 0.5^{2}$	V
I _{IK}	input clamping current	$V_I < 0 \text{ V or } V_I > V_{DD}$	-	-50	mA
I _{OK}	output clamping current	$V_O < 0 \text{ V or } V_O > V_{DD}$	-	±50	mA
lo	output current	continuous; 0 V < V _O < V _{DD}	-	±50	mA
Iccc	continuous current through each V_{DD} or GND pin		-	±100	mA
T _{stg}	storage temperature		-65	+150	°C
V _{esd}	electrostatic discharge	Human Body Model (HBM); 1.5 kΩ; 100 pF	2	-	kV
	voltage	Machine Model (MM); 0 Ω; 200 pF	200	-	V

^[1] The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

9. Recommended operating conditions

Table 6. Recommended operating conditions

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V_{DD}	supply voltage			1.7	-	2.0	V
V_{ref}	reference voltage			$0.49 \times V_{DD}$	$0.50 \times V_{DD}$	$0.51 \times V_{DD}$	V
V_{T}	termination voltage			$V_{ref} - 0.040$	V_{ref}	$V_{ref} + 0.040$	V
VI	input voltage			0	-	V_{DD}	V
V _{IH(AC)}	AC HIGH-level input voltage	data (Dn), $\overline{\text{CSR}}$, and PAR_IN inputs		V _{ref} + 0.250	-	-	V
V _{IL(AC)}	AC LOW-level input voltage	data (Dn), $\overline{\text{CSR}}$, and PAR_IN inputs		-	-	$V_{ref} - 0.250$	V
V _{IH(DC)}	DC HIGH-level input voltage	data (Dn), $\overline{\text{CSR}}$, and PAR_IN inputs		V _{ref} + 0.125	-	-	V
$V_{IL(DC)}$	DC LOW-level input voltage	data (Dn), $\overline{\text{CSR}}$, and PAR_IN inputs		-	-	$V_{ref} - 0.125$	V
V _{IH}	HIGH-level input voltage	RESET, Cn	[1]	$0.65 \times V_{DD}$	-	-	V
V _{IL}	LOW-level input voltage	RESET, Cn	[1]	-	-	$0.35 \times V_{DD}$	V
V_{ICR}	common mode input voltage range	CK, CK	[2]	0.675	-	1.125	V
V_{ID}	differential input voltage	CK, CK	[2]	600	-	-	mV
I _{OH}	HIGH-level output current			-	-	-8	mA
I _{OL}	LOW-level output current			-	-	8	mA
T _{amb}	ambient temperature	operating in free air		0	-	+70	°C

^[1] The RESET and Cn inputs of the device must be held at valid levels (not floating) to ensure proper device operation.

^[2] This value is limited to 2.5 V maximum.

^[2] The differential inputs must not be floating, unless RESET is LOW.

1.8 V DDR2-667 configurable registered buffer with parity

10. Characteristics

Table 7. Characteristics

At recommended operating conditions (see Table 6); unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{OH}	HIGH-level output voltage	$I_{OH} = -6 \text{ mA}; V_{DD} = 1.7 \text{ V}$	1.2	-	-	V
V _{OL}	LOW-level output voltage	$I_{OL} = 6 \text{ mA}; V_{DD} = 1.7 \text{ V}$	-	-	0.5	٧
l _l	input current	all inputs; $V_I = V_{DD}$ or GND; $V_{DD} = 2.0 \text{ V}$	-	-	±5	μΑ
I _{DD}	supply current	static standby; $\overline{RESET} = GND$; $I_O = 0 \text{ mA}$; $V_{DD} = 2.0 \text{ V}$	-	-	2	mA
		static operating; $\overline{RESET} = V_{DD}$; $I_O = 0$ mA; $V_{DD} = 2.0$ V; $V_I = V_{IH(AC)}$ or $V_{IL(AC)}$	-	-	40	mA
I _{DDD}	dynamic operating current per MHz	clock only; $\overline{RESET} = V_{DD}$; $V_I = V_{IH(AC)}$ or $V_{IL(AC)}$; CK and CK switching at 50 % duty cycle. $I_O = 0$ mA; $V_{DD} = 1.8$ V	-	16	-	μА
		per each data input, 1 : 1 mode; RESET = V_{DD} ; $V_{I} = V_{IH(AC)}$ or $V_{IL(AC)}$; CK and \overline{CK} switching at 50 % duty cycle. One data input switching at half clock frequency, 50 % duty cycle. $I_{O} = 0$ mA; $V_{DD} = 1.8 \text{ V}$	-	11	-	μΑ
		per each data input, 1 : 2 mode; RESET = V_{DD} ; $V_I = V_{IH(AC)}$ or $V_{IL(AC)}$; CK and \overline{CK} switching at 50 % duty cycle. One data input switching at half clock frequency, 50 % duty cycle. $I_O = 0$ mA; $V_{DD} = 1.8 \text{ V}$	-	19	-	μΑ
Ci	input capacitance	data and $\overline{\text{CSR}}$ inputs; $V_I = V_{ref} \pm 250$ mV; $V_{DD} = 1.8$ V	2.5	-	3.5	pF
		CK and \overline{CK} inputs; $V_{ICR} = 0.9 \text{ V}$; $V_{i(p-p)} = 600 \text{ mV}$; $V_{DD} = 1.8 \text{ V}$	2	-	3	pF
		RESET input; $V_I = V_{DD}$ or GND; $V_{DD} = 1.8 \text{ V}$	3	-	4	pF

1.8 V DDR2-667 configurable registered buffer with parity

Table 8. Timing requirements

At recommended operating conditions (see Table 6), unless otherwise specified. See Figure 2.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
f_{clock}	clock frequency			-	-	450	MHz
t _W	pulse width	CK, CK HIGH or LOW		1	-	-	ns
t _{ACT}	differential inputs active time		[1][2]	-	-	10	ns
t _{INACT}	differential inputs inactive time		[1][3]	-	-	15	ns
t _{su}	set-up time	$\overline{\text{DCS}}$ before CK \uparrow , $\overline{\text{CK}}\downarrow$, $\overline{\text{CSR}}$ HIGH; $\overline{\text{CSR}}$ before CK \uparrow , $\overline{\text{CK}}\downarrow$, $\overline{\text{DCS}}$ HIGH		0.7	-	-	ns
		$\overline{\text{DCS}}$ before CK \uparrow , $\overline{\text{CK}}\downarrow$, $\overline{\text{CSR}}$ LOW		0.5	-	-	ns
		DODT, DCKE and data (Dn) before CK \uparrow , $\overline{\text{CK}}\downarrow$		0.5	-	-	ns
		PAR_IN before CK↑, CK↓		0.5	-	-	ns
t _h	hold time	DCS, DODT, DCKE and data (Dn) after CK1, $\overline{\text{CK}}\downarrow$		0.5	-	-	ns
		PAR_IN after CK↑, CK↓		0.5	-	-	ns

^[1] This parameter is not necessarily production tested.

Table 9. Switching characteristics

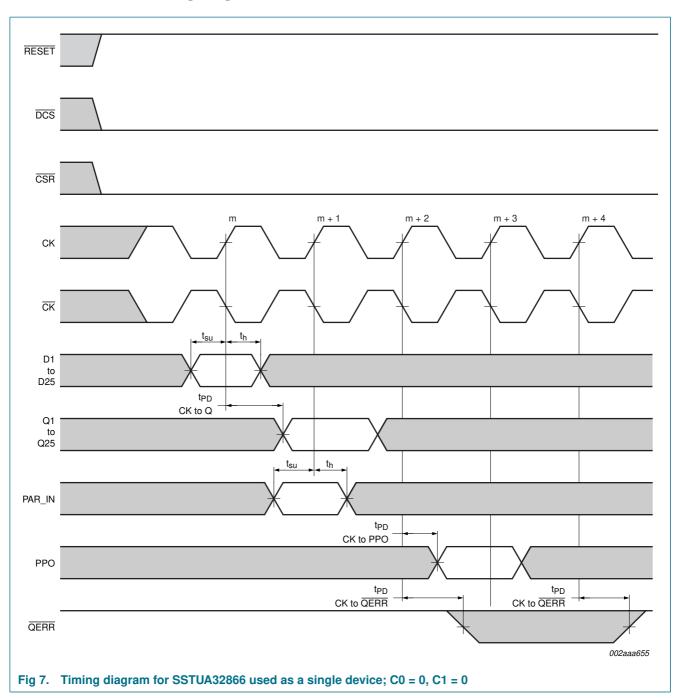
At recommended operating conditions (see Table 6), unless otherwise specified. See Section 11.1.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f_{max}	maximum input clock frequency		450	-	-	MHz
t _{PDM}	peak propagation delay	single bit switching; from CK and $\overline{\text{CK}}\downarrow$ to Qn	<u>[1]</u> 1.2	-	1.8	ns
t _{PD}	propagation delay	from CK \uparrow and $\overline{\text{CK}}\downarrow$ to PPO	0.5	-	1.8	ns
t _{LH}	LOW-to-HIGH delay	from CK↑ and $\overline{\text{CK}}$ ↓ to $\overline{\text{QERR}}$	1.2	-	3	ns
t _{HL}	HIGH-to-LOW delay	from CK↑ and $\overline{\text{CK}}$ ↓ to $\overline{\text{QERR}}$	1	-	2.4	ns
t _{PDMSS}	simultaneous switching peak propagation delay	from CK \uparrow and $\overline{\text{CK}} \downarrow$ to Qn	[1][2]	-	2.0	ns
t _{PHL}	HIGH-to-LOW propagation delay	from RESET↓ to Qn↓	-	-	3	ns
		from RESET↓ to PPO↓	-	-	3	ns
t _{PLH}	LOW-to-HIGH propagation delay	from RESET↓ to QERR↑	-	-	3	ns

^[1] Includes 350 ps of test-load transmission line delay.

Table 10. Data output edge rates

At recommended operating conditions (see Table 6), unless otherwise specified. See Section 11.2.


Symbol	Parameter	Conditions	Min	Тур	Max	Unit
dV/dt_r	rising edge slew rate	from 20 % to 80 %	1	-	4	V/ns
dV/dt_f	falling edge slew rate	from 80 % to 20 %	1	-	4	V/ns
dV/dt_Δ	absolute difference between dV/dt_r and dV/dt_f	from 20 % or 80 % to 80 % or 20 %	-	-	1	V/ns

^[2] VREF must be held at a valid input voltage level and data inputs must be held LOW for a minimum time of t_{ACT(max)} after RESET is taken HIGH.

^[3] VREF, data and clock inputs must be held at valid levels (not floating) a minimum time of t_{INACT(max)} after RESET is taken LOW.

^[2] This parameter is not necessarily production tested.

10.1 Timing diagrams

1.8 V DDR2-667 configurable registered buffer with parity

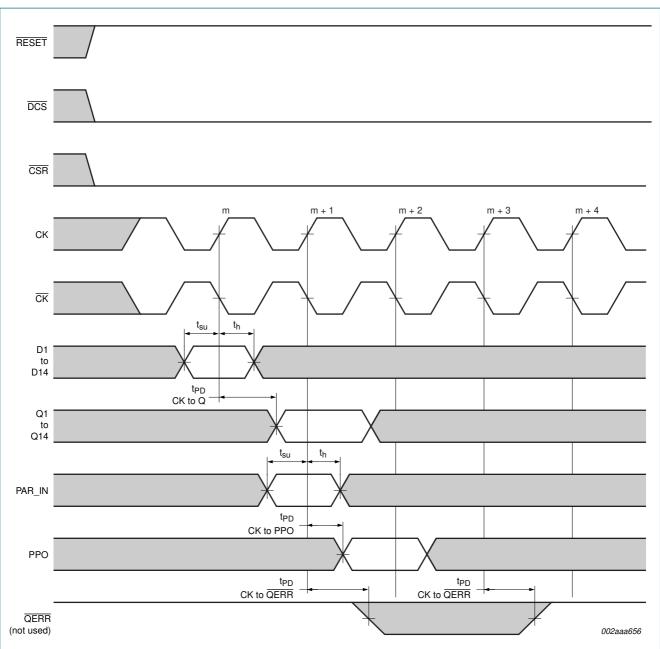
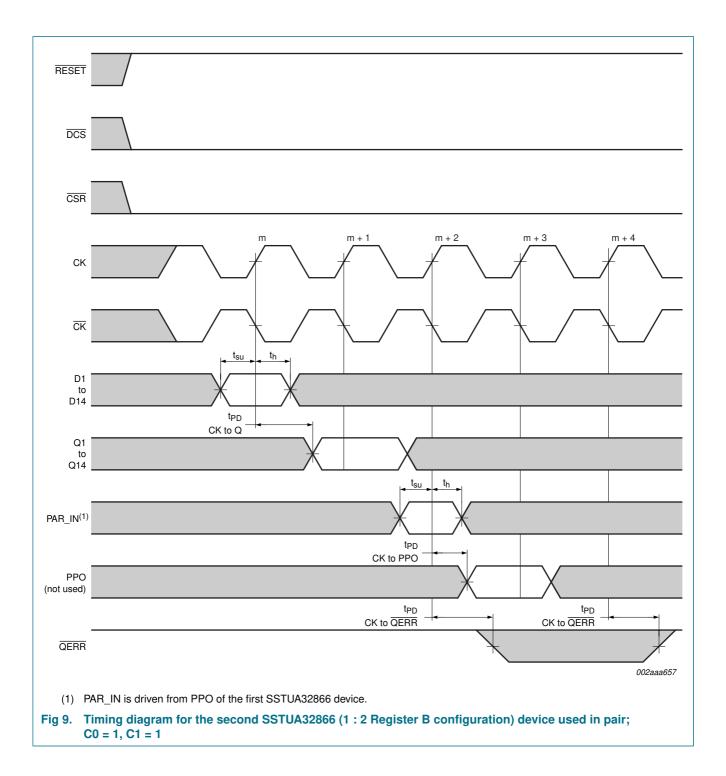
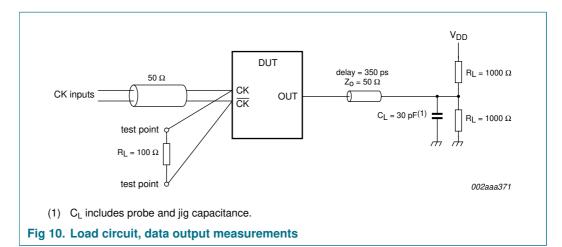
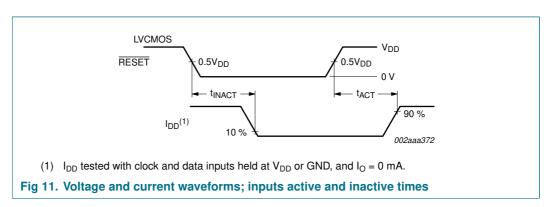



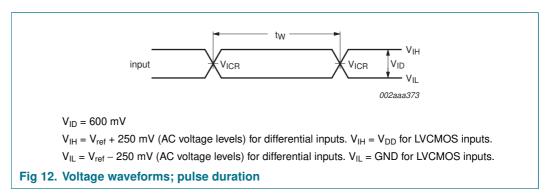
Fig 8. Timing diagram for the first SSTUA32866 (1 : 2 Register A configuration) device used in pair; C0 = 0, C1 = 1

1.8 V DDR2-667 configurable registered buffer with parity

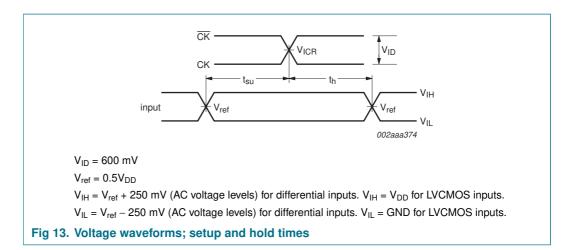
1.8 V DDR2-667 configurable registered buffer with parity

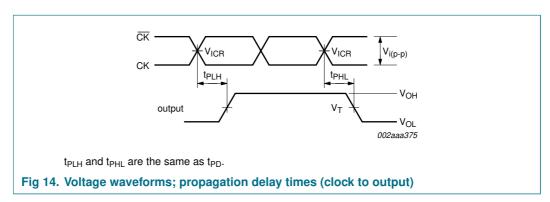

11. Test information

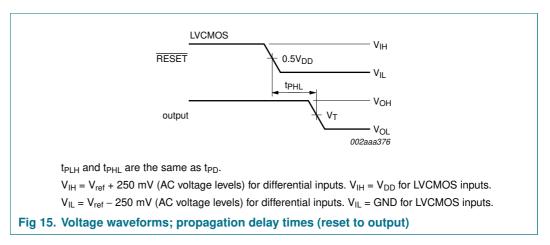

11.1 Parameter measurement information for data output load circuit


 $V_{DD} = 1.8 \text{ V} \pm 0.1 \text{ V}.$

All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz; $Z_0 = 50 \Omega$; input slew rate = 1 V/ns \pm 20 %, unless otherwise specified.


The outputs are measured one at a time with one transition per measurement.





1.8 V DDR2-667 configurable registered buffer with parity

SSTUA32866 NXP Semiconductors

1.8 V DDR2-667 configurable registered buffer with parity

11.2 Data output slew rate measurement information

 $V_{DD} = 1.8 \text{ V} \pm 0.1 \text{ V}.$

All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz; $Z_0 = 50~\Omega$; input slew rate = 1 V/ns \pm 20 %, unless otherwise specified.

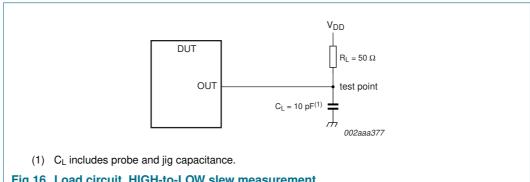
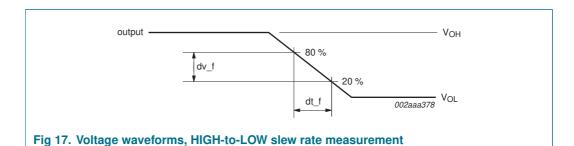
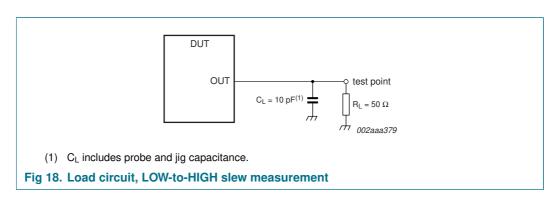
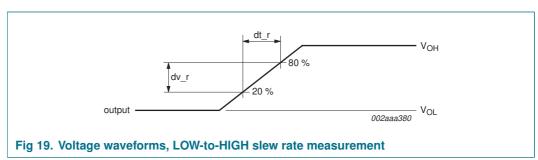
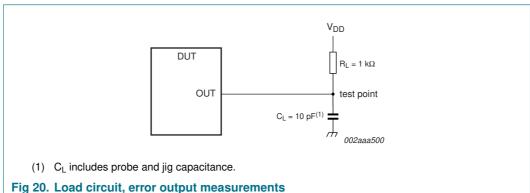





Fig 16. Load circuit, HIGH-to-LOW slew measurement


SSTUA32866 NXP Semiconductors

1.8 V DDR2-667 configurable registered buffer with parity

11.3 Error output load circuit and voltage measurement information

 $V_{DD} = 1.8 \text{ V} \pm 0.1 \text{ V}.$

All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz; $Z_0 = 50 \Omega$; input slew rate = 1 V/ns \pm 20 %, unless otherwise specified.

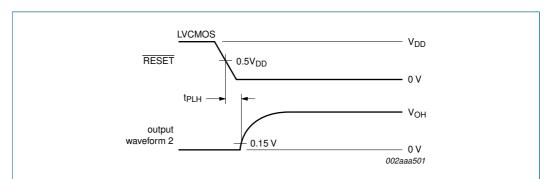


Fig 21. Voltage waveforms, open-drain output LOW-to-HIGH transition time with respect to RESET input.

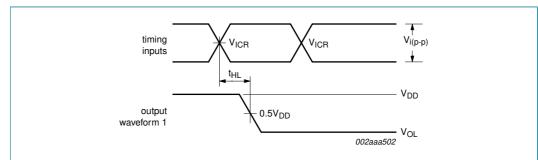
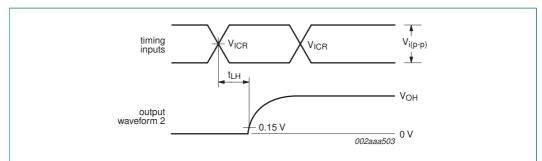
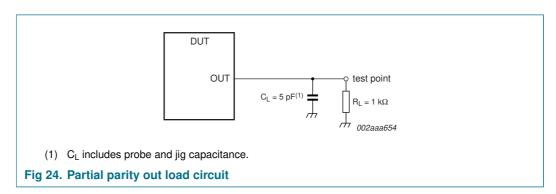
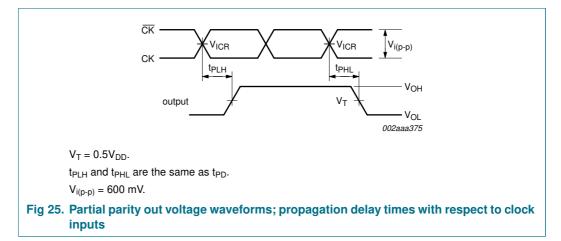


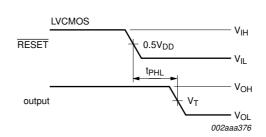
Fig 22. Voltage waveforms, open-drain output HIGH-to-LOW transition time with respect to clock inputs

1.8 V DDR2-667 configurable registered buffer with parity


Fig 23. Voltage waveforms, open-drain output LOW-to-HIGH transition time with respect to clock inputs

11.4 Partial parity out load circuit and voltage measurement information


 $V_{DD} = 1.8 \text{ V} \pm 0.1 \text{ V}.$

All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz; $Z_0 = 50 \Omega$; input slew rate = 1 V/ns \pm 20 %, unless otherwise specified.

1.8 V DDR2-667 configurable registered buffer with parity

 $V_{T} = 0.5V_{DD}$.

t_{PLH} and t_{PHL} are the same as t_{PD}.

 $V_{IH} = V_{ref} + 250$ mV (AC voltage levels) for differential inputs. $V_{IH} = V_{DD}$ for LVCMOS inputs.

 V_{IL} = V_{ref} – 250 mV (AC voltage levels) for differential inputs. V_{IL} = V_{DD} for LVCMOS inputs.

Fig 26. Partial parity out voltage waveforms; propagation delay times with respect to RESET input

1.8 V DDR2-667 configurable registered buffer with parity

12. Package outline

LFBGA96: plastic low profile fine-pitch ball grid array package; 96 balls; body 13.5 x 5.5 x 1.05 mm SOT536-1

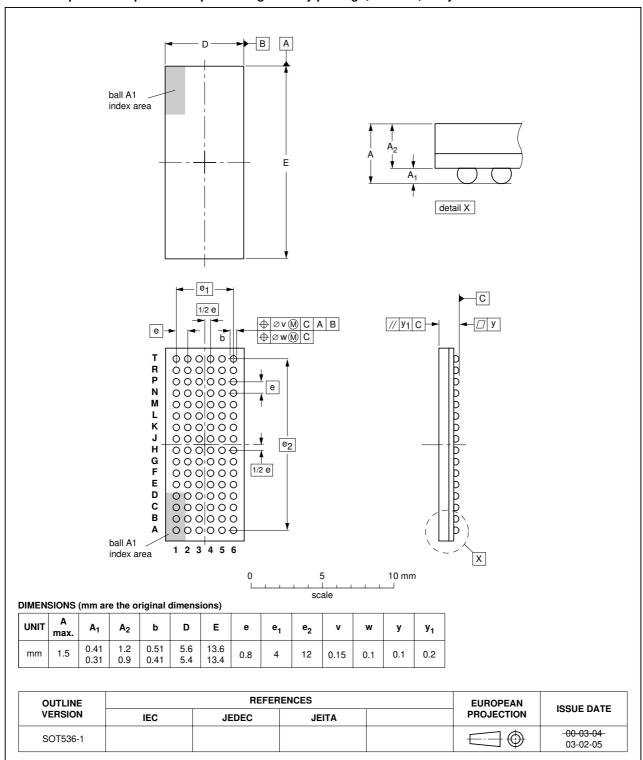


Fig 27. Package outline SOT536-1 (LFBGA96)

1.8 V DDR2-667 configurable registered buffer with parity

13. Soldering

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note *AN10365 "Surface mount reflow soldering description"*.

13.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

13.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- · Through-hole components
- · Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

- · Board specifications, including the board finish, solder masks and vias
- · Package footprints, including solder thieves and orientation
- · The moisture sensitivity level of the packages
- · Package placement
- · Inspection and repair
- · Lead-free soldering versus PbSn soldering

13.3 Wave soldering

Key characteristics in wave soldering are:

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- · Solder bath specifications, including temperature and impurities

1.8 V DDR2-667 configurable registered buffer with parity

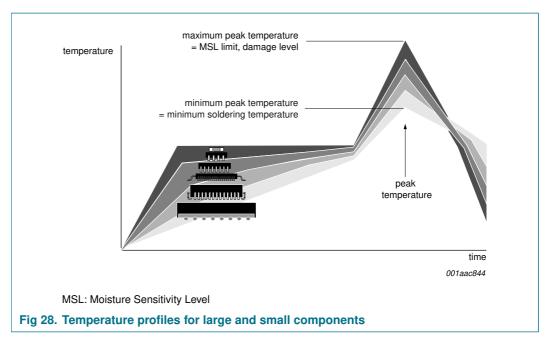
13.4 Reflow soldering

Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see <u>Figure 28</u>) than a PbSn process, thus reducing the process window
- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with Table 11 and 12

Table 11. SnPb eutectic process (from J-STD-020C)

Package thickness (mm)	Package reflow temperature (°C)		
	Volume (mm ³)		
	< 350	≥ 350	
< 2.5	235	220	
≥ 2.5	220	220	


Table 12. Lead-free process (from J-STD-020C)

Package thickness (mm)	Package reflow	flow temperature (°C)		
	Volume (mm³)			
	< 350	350 to 2000	> 2000	
< 1.6	260	260	260	
1.6 to 2.5	260	250	245	
> 2.5	250	245	245	

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 28.

1.8 V DDR2-667 configurable registered buffer with parity

For further information on temperature profiles, refer to Application Note *AN10365* "Surface mount reflow soldering description".

14. Abbreviations

Table 13. Abbreviations

Acronym	Description
CMOS	Complementary Metal Oxide Silicon
DDR	Double Data Rate
DIMM	Dual In-line Memory Module
LVCMOS	Low Voltage Complementary Metal Oxide Silicon
PPO	Partial Parity Out
PRR	Pulse Repetition Rate
RDIMM	Registered Dual In-line Memory Module
SSTL	Stub Series Terminated Logic