

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

1.8 V 28-bit 1 : 2 registered buffer with parity for DDR2-667 RDIMM applications

Rev. 02 — 16 March 2007

Product data sheet

1. General description

The SSTUA32S865 is a 1.8 V 28-bit 1 : 2 register specifically designed for use on two rank by four $(2R \times 4)$ and similar high-density Double Data Rate 2 (DDR2) memory modules. It is similar in function to the JEDEC-standard 14-bit DDR2 register, but integrates the functionality of the normally required two registers in a single package, thereby freeing up board real-estate and facilitating routing to accommodate high-density Dual In-line Memory Module (DIMM) designs.

The SSTUA32S865 also integrates a parity function, which accepts a parity bit from the memory controller, compares it with the data received on the D-inputs and indicates whether a parity error has occurred on its open-drain PTYERR pin (active LOW).

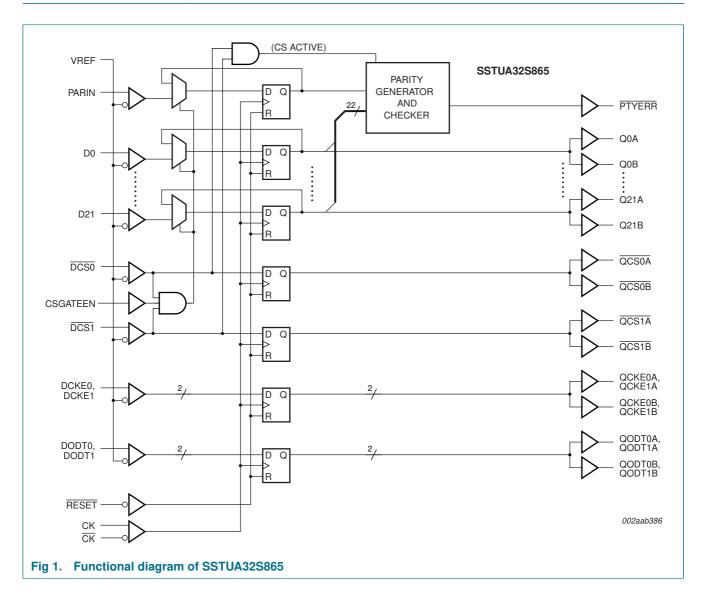
The SSTUA32S865 is packaged in a 160-ball, 12×18 grid, 0.65 mm ball pitch, thin profile fine-pitch ball grid array (TFBGA) package, which (while requiring a minimum 9 mm \times 13 mm of board space) allows for adequate signal routing and escape using conventional card technology.

2. Features

- 28-bit data register supporting DDR2
- Fully compliant to JEDEC standard for SSTUA32S865
- Supports 2 rank by 4 DIMM density by integrating equivalent functionality of two JEDEC-standard DDR2 registers (that is, 2 × SSTUA32864 or 2 × SSTUA32866)
- Parity checking function across 22 input data bits
- Parity out signal
- Controlled output impedance drivers enable optimal signal integrity and speed
- Exceeds JESD82-9 speed performance (1.8 ns max. single-bit switching propagation delay, 2.0 ns max. mass-switching)
- Supports up to 450 MHz clock frequency of operation
- Optimized pinout for high-density DDR2 module design
- Chip-selects minimize power consumption by gating data outputs from changing state
- Supports Stub Series Terminated Logic SSTL_18 data inputs
- Differential clock (CK and CK) inputs
- Supports Low Voltage Complementary Metal Oxide Semiconductor (LVCMOS) switching levels on the control and RESET inputs
- Single 1.8 V supply operation (1.7 V to 2.0 V)
- Available in 160-ball 9 mm × 13 mm, 0.65 mm ball pitch TFBGA package

1.8 V DDR2-667 registered buffer with parity

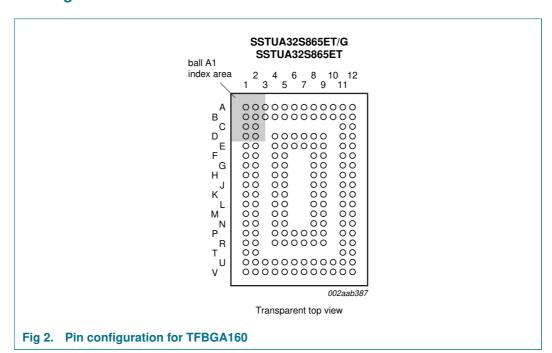
3. Applications


- 400 MT/s to 667 MT/s high-density (for example, 2 rank by 4) DDR2 registered DIMMs
- DDR2 Registered DIMMs (RDIMM) desiring parity checking functionality

4. Ordering information

Table 1. Ordering information

Type number	Solder process	Package						
		Name	Description	Version				
SSTUA32S865ET/G	Pb-free (SnAgCu solder ball compound)	TFBGA160	plastic thin fine-pitch ball grid array package; 160 balls; body $9 \times 13 \times 0.8$ mm	SOT802-1				
SSTUA32S865ET	SnPb solder ball compound	TFBGA160	plastic thin fine-pitch ball grid array package; 160 balls; body $9\times13\times0.8$ mm	SOT802-1				


5. Functional diagram

1.8 V DDR2-667 registered buffer with parity

6. Pinning information

6.1 Pinning

	1	2	3	4	5	6	7	8	9	10	11	12
Α	VREF	n.c.	PARIN	n.c.	n.c.	QCKE1A	QCKE0A	Q21A	Q19A	Q18A	Q17B	Q17A
В	D1	D2	n.c.	n.c.	n.c.	QCKE1B	QCKE0B	Q21B	Q19B	Q18B	QODT0B	QODT0A
С	D3	D4									QODT1B	QODT1A
D	D6	D5		VDDL	GND	n.c.	n.c.	GND	GND		Q20B	Q20A
Е	D7	D8		VDDL	GND	VDDL	VDDR	GND	GND		Q16B	Q16A
F	D11	D9		VDDL	GND			VDDR	VDDR		Q1B	Q1A
G	D18	D12		VDDL	GND			VDDR	VDDR		Q2B	Q2A
Н	CSGATEEN	D15		VDDL	GND			GND	GND		Q5B	Q5A
J	CK	DCS0		GND	GND			VDDR	VDDR		QCS0B	QCS0A
K	CK	DCS1		VDDL	VDDL			GND	GND		QCS1B	QCS1A
L	RESET	D14		GND	GND			VDDR	VDDR		Q6B	Q6A
М	D0	D10		GND	GND			GND	GND		Q10B	Q10A
N	D17	D16		VDDL	VDDL			VDDR	VDDR		Q9B	Q9A
Р	D19	D21		GND	VDDL	VDDL	VDDR	VDDR	GND		Q11B	Q11A
R	D13	D20		GND	VDDL	VDDL	GND	GND	GND		Q15B	Q15A
Т	DODT1	DODT0									Q14B	Q14A
U	DCKE0	DCKE1	MCL	PTYERR	MCH	Q3B	Q12B	Q7B	Q4B	Q13B	Q0B	Q8B
V	VREF	MCL	MCL	n.c.	MCH	Q3A	Q12A	Q7A	Q4A	Q13A	Q0A	Q8A

002aab011

160-ball, 12 × 18 grid; top view.

An empty cell indicates no ball is populated at that grid point.

n.c. denotes a no-connect (ball present but not connected to the die).

MCL denotes a pin that must be connected LOW.

MCH denotes a pin that must be connected HIGH.

Fig 3. Ball mapping

6.2 Pin description

Table 2. Pin description

SSTUA32S865_2

Symbol	Pin	Туре	Description
Ungated inputs		••	
DCKE0, DCKE1	U1, U2	SSTL_18	DRAM function pins not associated with Chip Select.
DODT0, DODT1	T2, T1		, , , , , , , , , , , , , , , , , , , ,
Chip Select gated in	,		
D0 to D21	M1, B1, B2, C1, C2, D2, D1, E1, E2, F2, M2, F1, G2, R1, L2, H2, N2, N1, G1, P1, R2, P2	SSTL_18	DRAM inputs, re-driven only when Chip Select is LOW.
Chip Select inputs			
DCS0, DCS1	J2, K2	SSTL_18	DRAM Chip Select signals. These pins initiate DRAM address/command decodes, and as such at least one will be LOW when a valid address/command is present. The register can be programmed to re-drive all D-inputs only (CSGATEEN = HIGH) when at least one Chip Select input is LOW.
Re-driven outputs			
Q0A to Q21A	V11, F12, G12, V6, V9, H12, L12, V8, V12, N12, M12, P12, V7, V10, T12, R12, E12, A12, A10, A9, D12, A8	SSTL_18	Outputs of the register, valid after the specified clock count and immediately following a rising edge of the clock.
Q0B to Q21B	U11, F11, G11, U6, U9, H11, L11, U8, U12, N11, M11, P11, U7, U10, T11, R11, E11, A11, B10, B9, D11, B8		
QCS0A, QDS1A, QCS0B, QCS1B	J12, K12, J11, K11		
QCKE0A, QCKE1A, QCKE0B, QCKE1B	A7, A6, B7, B6		
QODT0A, QODT1A, QODT0B, QODT1B	B12, C12, B11, C11		
Parity input			
PARIN	A3	SSTL_18	Parity input for the D0 to D21 inputs. Arrives one clock cycle after the corresponding data input.
Parity error			
PTYERR	U4	open drain	When LOW, this output indicates that a parity error was identified associated with the address and/or command inputs. PTYERR will be active for two clock cycles, and delayed by an additional clock cycle for compatibility with final parity out timing on the industry-standard DDR2 register with parity (in JEDEC definition).
Program inputs			
CSGATEEN	H1	1.8 V LVCMOS	Chip Select Gate Enable. When HIGH, the D0 to D21 inputs will be latched only when at least one Chip Select input is LOW during the rising edge of the clock. When LOW, the D0 to D21 inputs will be latched and redriven on every rising edge of the clock.
CCTUADOCOCE O			

 Table 2.
 Pin description ...continued

Symbol	Pin	Туре	Description
Clock inputs			
CK, CK	J1, K1	SSTL_18	Differential master clock input pair to the register. The register operation is triggered by a rising edge on the positive clock input (CK).
Miscellaneous i	inputs		
MCL	U3, V2, V3		Must be connected to a logic LOW.
MCH	U5, V5		Must be connected to a logic HIGH.
RESET	L1	1.8 V LVCMOS	Asynchronous reset input. When LOW, it causes a reset of the internal latches, thereby forcing the outputs LOW. RESET also resets the PTYERR signal.
VREF	A1, V1	0.9 V nominal	Input reference voltage for the SSTL_18 inputs. Two pins (internally tied together) are used for increased reliability.
VDDL	D4, E4, E6, F4, G4, H4, K4, K5, N4, N5, P5, P6, R5, R6		Power supply voltage.
VDDR	E7, F8, F9, G8, G9, J8, J9, L8, L9, N8, N9, P7, P8		Power supply voltage.
GND	D5, D8, D9, E5, E8, E9, F5, G5, H5, H8, H9, J4, J5, K8, K9, L4, L5, M4, M5, M8, M9, P4, P9, R4, R7, R8, R9		Ground.
n.c.	A2, A4, A5, B3, B4, B5, D6, D7, V4		Ball present but not connected to die.

7. Functional description

7.1 Function table

Table 3. Function table (each flip-flop)

			Inputs					Outputs ^[1]			
RESET	DCS0	DCS1	CSGATEEN	CK	CK	Dn, DODTn, DCKEn	Qn	QCS0	QCS1	QODTn, QCKEn	
Н	L	L	X	\uparrow	\	L	L	L	L	L	
Н	L	L	Х	↑	\downarrow	Н	Н	L	L	Н	
Н	L	L	Χ	L or H	L or H	X	Q_0	Q_0	Q_0	Q_0	
Н	L	Н	Х	↑	\downarrow	L	L	L	Н	L	
Н	L	Н	Х	↑	\downarrow	Н	Н	L	Н	Н	
Н	L	Н	Х	L or H	L or H	X	Q_0	Q_0	Q_0	Q_0	
Н	Н	L	Χ	↑	\downarrow	L	L	Н	L	L	
Н	Н	L	Χ	↑	\downarrow	Н	Н	Н	L	Н	
Н	Н	L	X	L or H	L or H	X	Q_0	Q_0	Q_0	Q_0	
Н	Н	Н	L	↑	\downarrow	L	L	Н	Н	L	
Н	Н	Н	L	↑	\downarrow	Н	Н	Н	Н	Н	
Н	Н	Н	L	L or H	L or H	X	Q_0	Q_0	Q_0	Q_0	
Н	Н	Н	Н	↑	\downarrow	L	Q_0	Н	Н	L	
Н	Н	Н	Н	↑	\downarrow	Н	Q_0	Н	Н	Н	
Н	Н	Н	Н	L or H	L or H	Χ	Q_0	Q_0	Q_0	Q_0	
L	X or floating	L	L	L	L						

^[1] Q_0 is the previous state of the associated output.

Table 4. Parity and standby function table

			Inputs				Output
RESET	DCS0	DCS1	CK	CK	Σ of inputs = H (D0 to D21)	PARIN[1]	PTYERR[2][3]
Н	L	Н	^	\	even	L	Н
Н	L	Н	1	\downarrow	odd	L	L
Н	L	Н	1	\downarrow	even	Н	L
Н	L	Н	1	\downarrow	odd	Н	Н
Н	Н	L	1	\downarrow	even	L	Н
Н	Н	L	1	\downarrow	odd	L	L
Н	Н	L	1	\downarrow	even	Н	L
Н	Н	L	1	\downarrow	odd	Н	Н
Н	Н	Н	1	\downarrow	Χ	X	PTYERR ₀
Н	Χ	Χ	L or H	L or H	Χ	Х	PTYERR ₀
L	X or floating	X or floating	Н				

^[1] PARIN arrives one clock cycle after the data to which it applies. All Dn inputs must be driven to a known state for parity to be calculated correctly.

1.8 V DDR2-667 registered buffer with parity

- [2] This condition assumes PTYERR is HIGH at the crossing of CK going HIGH and CK going LOW. If PTYERR is LOW, it stays latched LOW for two clock cycles or until RESET is driven LOW.

 CSGATEEN is 'don't care' for PTYERR.
- [3] \overline{PTYERR}_0 is the previous state of output \overline{PTYERR} .

7.2 Functional information

This 28-bit 1: 2 registered buffer with parity is designed for 1.7 V to 2.0 V V_{DD} operation.

All clock and data inputs are compatible with the JEDEC standard for SSTL_18. The control inputs are LVCMOS. All outputs are 1.8 V CMOS drivers that have been optimized to drive the DDR2 DIMM load.

The SSTUA32S865 operates from a differential clock (CK and $\overline{\text{CK}}$). Data are registered at the crossing of CK going HIGH, and $\overline{\text{CK}}$ going LOW.

The device supports low-power standby operation. When the reset input (RESET) is LOW, the differential input receivers are disabled, and undriven (floating) data, clock and reference voltage (VREF) inputs are allowed. In addition, when RESET is LOW all registers are reset, and all outputs except PTYERR are forced LOW. The LVCMOS RESET input must always be held at a valid logic HIGH or LOW level.

To ensure defined outputs from the register before a stable clock has been supplied, RESET must be held in the LOW state during power-up.

In the DDR2 RDIMM application, $\overline{\text{RESET}}$ is specified to be completely asynchronous with respect to CK and $\overline{\text{CK}}$. Therefore, no timing relationship can be guaranteed between the two. When entering reset, the register will be cleared and the data outputs will be driven LOW quickly, relative to the time to disable the differential input receivers. However, when coming out of reset, the register will become active quickly, relative to the time to enable the differential input receivers. As long as the data inputs are LOW, and the clock is stable during the time from the LOW-to-HIGH transition of $\overline{\text{RESET}}$ until the input receivers are fully enabled, the design of the SSTUA32S865 ensures that the outputs remain LOW, thus ensuring no glitches on the output.

The device monitors both $\overline{DCS0}$ and $\overline{DCS1}$ inputs and will gate the Qn outputs from changing states when both $\overline{DCS0}$ and $\overline{DCS1}$ are HIGH. If either $\overline{DCS0}$ or $\overline{DCS1}$ input is LOW, the Qn outputs will function normally. The \overline{RESET} input has priority over the $\overline{DCS0}$ and $\overline{DCS1}$ control and will force the Qn outputs LOW and the \overline{PTYERR} output HIGH. If the \overline{DCSn} -control functionality is not desired, then the CSGATEEN input can be hardwired to ground, in which case, the setup-time requirement for \overline{DCSn} would be the same as for the other Dn data inputs.

The SSTUA32S865 includes a parity checking function. The SSTUA32S865 accepts a parity bit from the memory controller at its input pin PARIN, compares it with the data received on the Dn inputs (with either $\overline{DCS0}$ or $\overline{DCS1}$ active) and indicates whether a parity error has occurred on its open-drain \overline{PTYERR} pin (active LOW).

7.3 Functional differences to SSTU32864

The SSTUA32S865 for its basic register functionality, signal definition and performance is based upon the industry-standard SSTU32864, but provides key operational features which differ (at least in part) from the industry-standard register in the following aspects:

7.3.1 Chip Select (CS) gating of key inputs (DCS0, DCS1, CSGATEEN)

As a means to reduce device power, the internal latches will only be updated when one or both of the CS inputs are active (LOW) and CSGATEEN HIGH at the rising edge of the clock. The 22 'Chip-Select-gated' input signals associated with this function include addresses (ADDR0 to ADDR15, BA0 to BA2), and RAS, CAS, WE, with the remaining signals (CS, CKE, ODT) continuously re-driven at the rising edge of every clock as they are independent of CS. The CS gating function can be disabled by tying CSGATEEN LOW, enabling all internal latches to be updated on every rising edge of the clock.

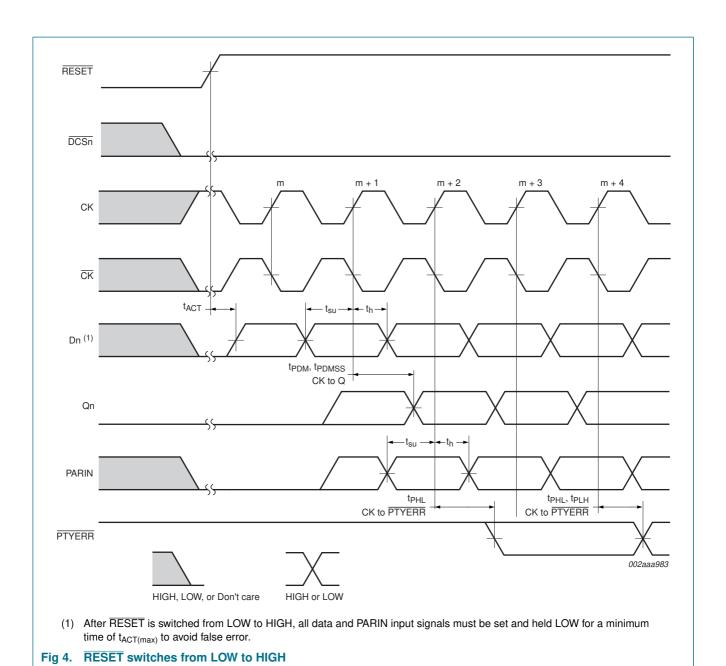
Table 5. Chip Select gating mode

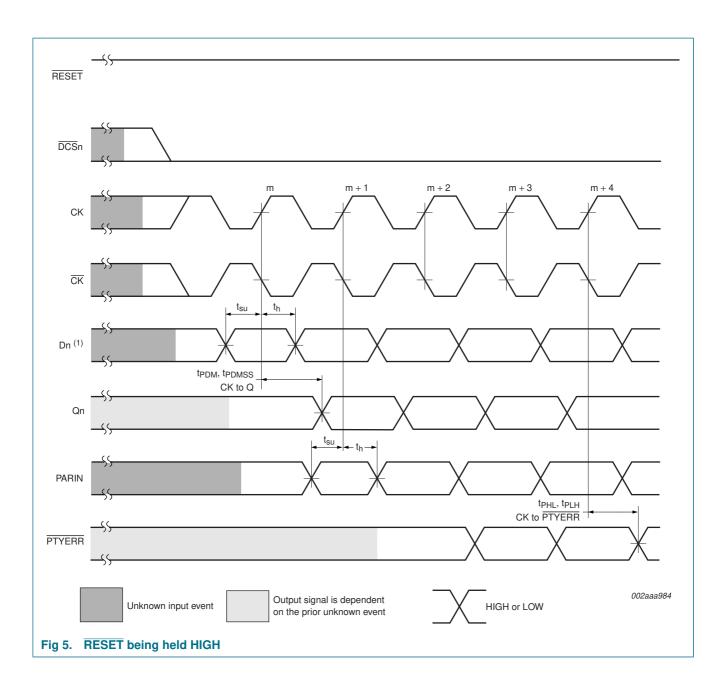
Mode	Signal name	Description
Gating	CSGATEEN HIGH	Registers only re-drive signals to the DRAMs when Chip Select inputs are LOW.
Non-gating	CSGATEEN LOW	Registers always re-drive signals on every clock cycle, independent of the state of the Chip Select inputs.

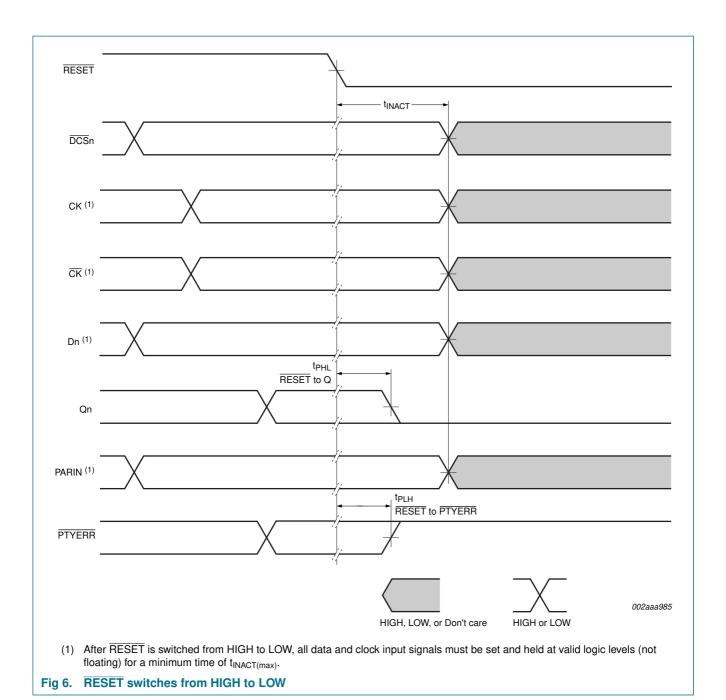
7.3.2 Parity error checking and reporting

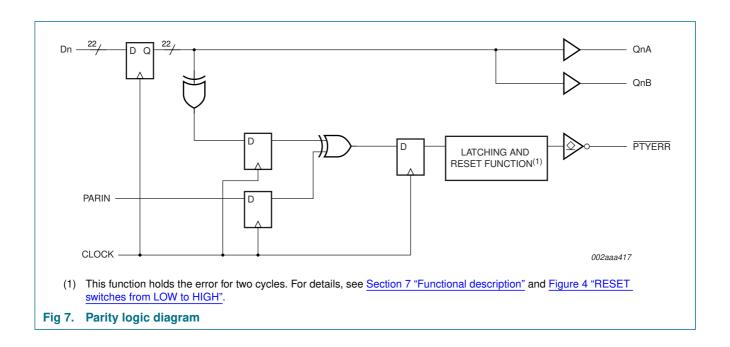
The SSTUA32S865 incorporates a parity function, whereby the signal received on input pin PARIN is received as parity to the register, one clock cycle later than the CS-gated inputs. The received parity bit is then compared to the parity calculated across these same inputs by the register parity logic to verify that the information has not been corrupted. The 22 CS-gated input signals will be latched and re-driven on the first clock, and any error will be reported one clock cycle later via the PTYERR output pin (driven LOW for two consecutive clock cycles). PTYERR is an open-drain output, allowing multiple modules to share a common signal pin for reporting the occurrence of a parity error during a valid command cycle (coincident with the re-driven signals). This output is driven LOW for two consecutive clock cycles to allow the memory controller sufficient time to sense and capture the error even. A LOW state on PTYERR indicates that a parity error has occurred.

7.3.3 Reset (RESET)


Similar to the RESET pin on the industry-standard SSTU32864, this pin is used to clear all internal latches and all outputs will be driven LOW quickly except the PTYERR output, which will be floated (and will normally default HIGH by their external pull-up).


7.3.4 Power-up sequence


The reset function for the SSTUA32S865 is similar to that of the SSTU32864 except that the PTYERR signal is also cleared and will be held clear (HIGH) for three consecutive clock cycles.


SSTUA32S865_2

© NXP B.V. 2007. All rights reserved.

8. Limiting values

Table 6. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DD}	supply voltage		-0.5	+2.5	V
VI	input voltage	receiver	<u>[1]</u> –0.5	+2.5	V
Vo	output voltage	driver	<u>[1]</u> –0.5	$V_{DD} + 0.5$	V
I _{IK}	input clamping current	$V_I < 0 \text{ V or } V_I > V_{DD}$	-	-50	mA
l _{OK}	output clamping current	$V_O < 0 \text{ V or } V_O > V_{DD}$	-	±50	mA
Io	output current	continuous; 0 V < V _O < V _{DD}	-	±50	mA
I _{CCC}	continuous current through each V_{DD} or GND pin		-	±100	mA
T _{stg}	storage temperature		-65	+150	°C
V _{esd}	electrostatic discharge voltage	Human Body Model (HBM); 1.5 k Ω ; 100 pF	2	-	kV
		Machine Model (MM); 0 Ω; 200 pF	200	-	V

^[1] The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

9. Recommended operating conditions

Table 7. Recommended operating conditions

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V_{DD}	supply voltage			1.7	-	2.0	V
V_{ref}	reference voltage			$0.49 \times V_{DD}$	$0.50 \times V_{DD}$	$0.51 \times V_{DD}$	V
V_{T}	termination voltage			$V_{ref} - 0.040$	V _{ref}	$V_{ref} + 0.040$	V
VI	input voltage			0	-	V_{DD}	V
$V_{IH(AC)}$	AC HIGH-level input voltage	data inputs (Dn)	<u>[1]</u>	$V_{ref} + 0.250$	-	-	V
V _{IL(AC)}	AC LOW-level input voltage	data inputs (Dn)	<u>[1]</u>	-	-	$V_{\text{ref}} - 0.250$	V
V _{IH(DC)}	DC HIGH-level input voltage	data inputs (Dn)	<u>[1]</u>	V _{ref} + 0.125	-	-	V
V _{IL(DC)}	DC LOW-level input voltage	data inputs (Dn)	[1]	-	-	V _{ref} - 0.125	V
V _{IH}	HIGH-level input voltage	RESET	[2]	$0.65 \times V_{DD}$	-	-	V
V _{IL}	LOW-level input voltage	RESET	[2]	-	-	$0.35 \times V_{DD}$	V
V _{ICR}	common mode input voltage range	CK, CK		0.675	-	1.125	V
V_{ID}	differential input voltage	CK, CK		600	-	-	mV
I _{OH}	HIGH-level output current			-	-	-8	mA
I _{OL}	LOW-level output current			-	-	8	mA
T _{amb}	ambient temperature	operating in free air		0	-	+70	°C

^[1] The differential inputs must not be floating, unless $\overline{\text{RESET}}$ is LOW.

^[2] The RESET input of the device must be held at valid logic levels (not floating) to ensure proper device operation.

10. Characteristics

Table 8. Characteristics

Over recommended operating conditions, unless otherwise noted.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{OH}	HIGH-level output voltage	$I_{OH} = -6 \text{ mA}; V_{DD} = 1.7 \text{ V}$	1.2	-	-	V
V_{OL}	LOW-level output voltage	$I_{OL} = 6 \text{ mA}; V_{DD} = 1.7 \text{ V}$	-	-	0.5	V
I _I	input current	all inputs; $V_I = V_{DD}$ or GND; $V_{DD} = 2.0 \text{ V}$	-	-	±5	μΑ
I_{DD}	supply current	static standby; $\overline{RESET} = GND$; $V_{DD} = 2.0 \text{ V}$	-	-	2 r	mA
		static operating; $\overline{RESET} = V_{DD}$; $V_{DD} = 2.0 \text{ V; } V_I = V_{IH(AC)} \text{ or } V_{IL(AC)}$	-	-	40	mA
I _{DDD}	dynamic operating current per MHz	clock only; $\overline{RESET} = V_{DD}$; $V_I = V_{IH(\underline{AC})}$ or $V_{IL(\underline{AC})}$; CK and \overline{CK} switching at 50 % duty cycle. $I_O = 0$ mA; $V_{DD} = 1.8$ V	-	16	-	μΑ
		per each data input; $\overline{RESET} = V_{DD}$; $V_I = V_{IH(AC)}$ or $V_{IL(AC)}$; CK and \overline{CK} switching at 50 % duty cycle. One data input switching at half clock frequency, 50 % duty cycle. $I_O = 0$ mA; $V_{DD} = 1.8$ V	-	19	-	μА
C _i	input capacitance	data inputs; $V_I = V_{ref} \pm 250 \text{ mV}$; $V_{DD} = 1.8 \text{ V}$	2.5	-	3.5	pF
		CK and $\overline{\text{CK}}$; V _{ICR} = 0.9 V; V _{ID} = 600 mV; V _{DD} = 1.8 V	2	-	3	pF
		\overline{RESET} ; $V_I = V_{DD}$ or GND; $V_{DD} = 1.8 \text{ V}$	3	-	5	рF

Table 9. Timing requirements

Over recommended operating conditions, unless otherwise noted.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f_{clock}	clock frequency		-	-	450	MHz
t _W	pulse width	CK, $\overline{\text{CK}}$ HIGH or LOW	1	-	-	ns
t _{ACT}	differential inputs active time		[1][2]	-	10	ns
t _{INACT}	differential inputs inactive time		[1][3]	-	15	ns
t _{su}	set-up time	Chip Select; DCS0, DCS1 valid before clock switching	0.7	-	-	ns
		Data; Dn valid before clock switching	0.5	-	-	ns
		PARIN before CK and CK	0.5	-	-	ns
t _h	hold time	input to remain valid after clock switching	0.5	-	-	ns
		PARIN after CK and CK	0.5	-	-	ns

^[1] This parameter is not necessarily production tested.

Table 10. Switching characteristics

Over recommended operating conditions, unless otherwise noted.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f_{max}	maximum input clock frequency		450	-	-	MHz
t _{PDM}	peak propagation delay	CK and $\overline{\text{CK}}$ to output	<u>11</u> 1.25	-	1.8	ns
t _{LH}	LOW-to-HIGH delay	CK and CK to PTYERR	1.2	-	3	ns
t _{HL}	HIGH-to-LOW delay	CK and CK to PTYERR	1	-	3	ns
t _{PLH}	LOW-to-HIGH propagation delay	from RESET to PTYERR	-	-	3	ns
t _{PDMSS}	simultaneous switching peak propagation delay	CK and CK to output	[1][2] -	-	2.0	ns
t _{PHL}	HIGH-to-LOW propagation delay	RESET to output	-	-	3	ns

^[1] Includes 350 ps of test-load transmission line delay.

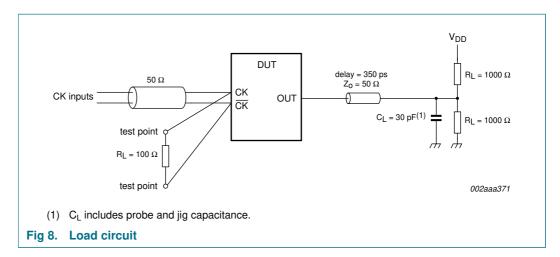
Table 11. Output edge rates

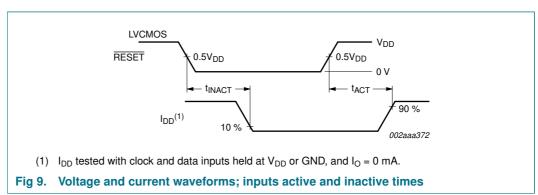
Over recommended operating conditions, unless otherwise noted.

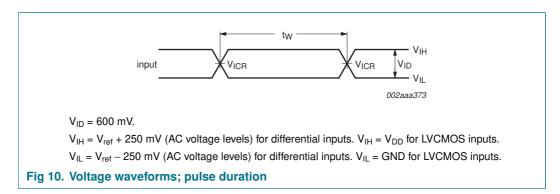
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
dV/dt_r	rising edge slew rate		1	-	4	V/ns
dV/dt_f	falling edge slew rate		1	-	4	V/ns
dV/dt_Δ	absolute difference between dV/dt_r and dV/dt_f		-	-	1	V/ns

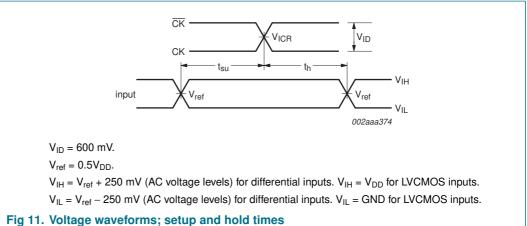
^[2] Data inputs must be active below a minimum time of $t_{ACT(max)}$ after \overline{RESET} is taken HIGH.

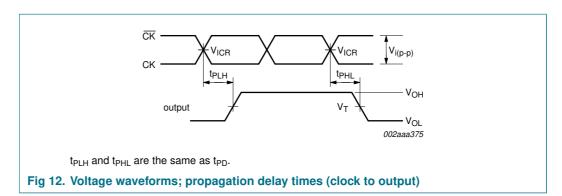
^[3] Data and clock inputs must be held at valid levels (not floating) a minimum time of t_{INACT(max)} after RESET is taken LOW.

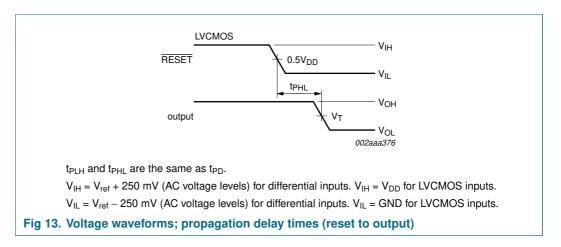

^[2] This parameter is not necessarily production tested.

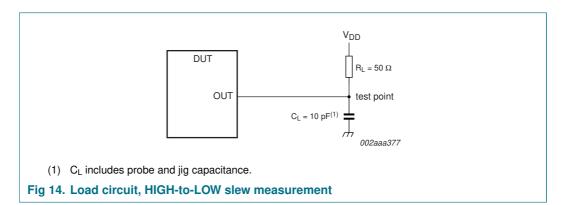

11. Test information

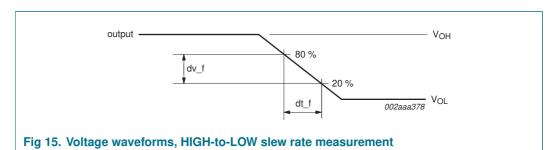

11.1 Test circuit

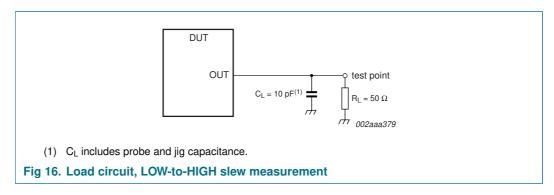

All input pulses are supplied by generators having the following characteristics: Pulse Repetition Rate (PRR) \leq 10 MHz; Z_0 = 50 Ω ; input slew rate = 1 V/ns \pm 20 %, unless otherwise specified.

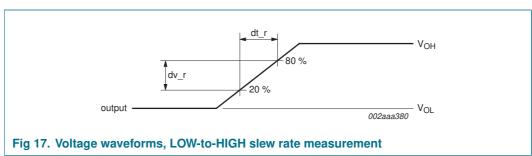

The outputs are measured one at a time with one transition per measurement.



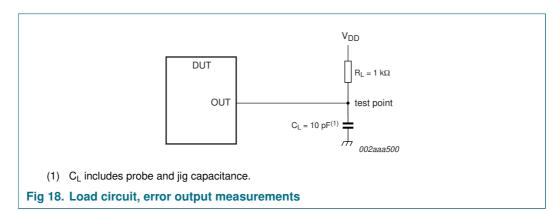



1.8 V DDR2-667 registered buffer with parity


11.2 Output slew rate measurement


 $V_{DD} = 1.8 \text{ V} \pm 0.1 \text{ V}.$

All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz; $Z_0 = 50~\Omega$; input slew rate = 1 V/ns \pm 20 %, unless otherwise specified.



1.8 V DDR2-667 registered buffer with parity

11.3 Error output load circuit and voltage measurement

 $V_{DD} = 1.8 \text{ V} \pm 0.1 \text{ V}.$

All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz; $Z_0 = 50 \Omega$; input slew rate = 1 V/ns \pm 20 %, unless otherwise specified.

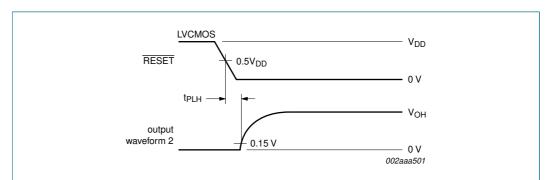


Fig 19. Voltage waveforms, open-drain output LOW-to-HIGH transition time with respect to RESET input

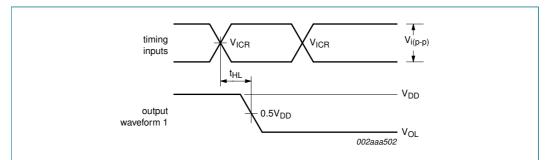


Fig 20. Voltage waveforms, open-drain output HIGH-to-LOW transition time with respect to clock inputs

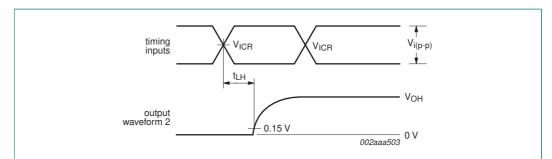


Fig 21. Voltage waveforms, open-drain output LOW-to-HIGH transition time with respect to clock inputs

12. Package outline

TFBGA160: plastic thin fine-pitch ball grid array package; 160 balls; body 9 x 13 x 0.8 mm SOT802-1

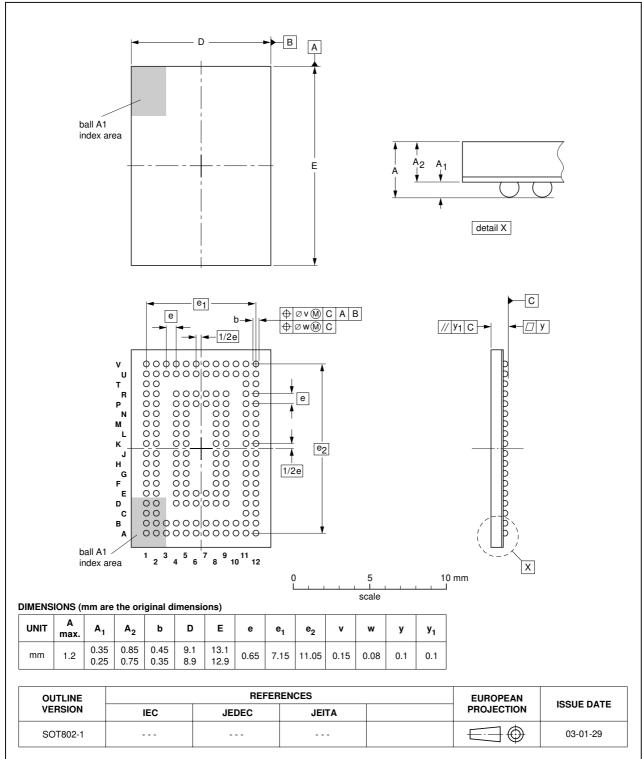


Fig 22. Package outline SOT802-1 (TFBGA160)

SSTUA32S865_2 © NXP B.V. 2007. All rights reserved.

13. Soldering

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note *AN10365 "Surface mount reflow soldering description"*.

13.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

13.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- · Through-hole components
- Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

- · Board specifications, including the board finish, solder masks and vias
- · Package footprints, including solder thieves and orientation
- · The moisture sensitivity level of the packages
- · Package placement
- · Inspection and repair
- · Lead-free soldering versus PbSn soldering

13.3 Wave soldering

Key characteristics in wave soldering are:

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- · Solder bath specifications, including temperature and impurities

13.4 Reflow soldering

Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see <u>Figure 23</u>) than a PbSn process, thus reducing the process window
- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with Table 12 and 13

Table 12. SnPb eutectic process (from J-STD-020C)

Package thickness (mm)	Package reflow temperature (°C)			
	Volume (mm³)			
	< 350	≥ 350		
< 2.5	235	220		
≥ 2.5	220	220		

Table 13. Lead-free process (from J-STD-020C)

Package thickness (mm)	Package reflow temperature (°C)				
	Volume (mm³)				
	< 350	350 to 2000	> 2000		
< 1.6	260	260	260		
1.6 to 2.5	260	250	245		
> 2.5	250	245	245		

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 23.