imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

1.8 V 25-bit 1 : 1 or 14-bit 1 : 2 configurable registered buffer with parity for DDR2-800 RDIMM applications

Rev. 04 — 15 April 2010

Product data sheet

1. General description

The SSTUB32866 is a 1.8 V configurable register specifically designed for use on DDR2 memory modules requiring a parity checking function. The register is configurable (using configuration pins C0 and C1) to two topologies: 25-bit 1 : 1 or 14-bit 1 : 2, and in the latter configuration can be designated as Register A or Register B on the DIMM.

The SSTUB32866 accepts a parity bit from the memory controller on its parity bit (PAR_IN) input, compares it with the data received on the DIMM-independent D-inputs and indicates whether a parity error has occurred on its open-drain QERR pin (active LOW). The convention is even parity, that is, valid parity is defined as an even number of ones across the DIMM-independent data inputs combined with the parity input bit.

The SSTUB32866 is packaged in a 96-ball, 6 \times 16 grid, 0.8 mm ball pitch LFBGA package (13.5 mm \times 5.5 mm).

2. Features and benefits

- Configurable register supporting DDR2 up to 800 MT/s Registered DIMM applications
- Configurable to 25-bit 1 : 1 mode or 14-bit 1 : 2 mode
- Controlled output impedance drivers enable optimal signal integrity and speed
- Meets or exceeds SSTUB32866 JEDEC standard speed performance
- Supports up to 450 MHz clock frequency of operation
- Optimized pinout for high-density DDR2 module design
- Chip-selects minimize power consumption by gating data outputs from changing state
- Supports SSTL_18 data inputs
- Checks parity on the DIMM-independent data inputs
- Partial parity output and input allows cascading of two SSTUB32866s for correct parity error processing
- Differential clock (CK and CK) inputs
- Supports LVCMOS switching levels on the control and RESET inputs
- Single 1.8 V supply operation (1.7 V to 2.0 V)
- Available in 96-ball, 13.5 mm × 5.5 mm, 0.8 mm ball pitch LFBGA package

3. Applications

■ 400 MT/s to 800 MT/s DDR2 registered DIMMs desiring parity checking functionality

1.8 V DDR2-800 configurable registered buffer with parity

4. Ordering information

able 1. Ordering information								
Type number	Solder process	Package						
		Name	Description	Version				
SSTUB32866EC/G	Pb-free (SnAgCu solder ball compound)	LFBGA96	plastic low profile fine-pitch ball grid array package; 96 balls; body $13.5 \times 5.5 \times 1.05$ mm	SOT536-1				
SSTUB32866EC/S	Pb-free (SnAgCu solder ball compound)	LFBGA96	plastic low profile fine-pitch ball grid array package; 96 balls; body $13.5\times5.5\times1.05~mm$	SOT536-1				

4.1 Ordering options

Table 2. Ordering options

Type number	Temperature range
SSTUB32866EC/G	$T_{amb} = 0 \ ^{\circ}C \ to \ +70 \ ^{\circ}C$
SSTUB32866EC/S	$T_{amb} = 0 \ ^{\circ}C \ to \ +85 \ ^{\circ}C$

1.8 V DDR2-800 configurable registered buffer with parity

5. Functional diagram

NXP Semiconductors

1.8 V DDR2-800 configurable registered buffer with parity

1.8 V DDR2-800 configurable registered buffer with parity

6. Pinning information

6.1 Pinning

	1	2	3	4	5	6
А	DCKE	PPO	VREF	V_{DD}	QCKE	DNU
В	D2	D15	GND	GND	Q2	Q15
С	D3	D16	V _{DD}	V _{DD}	Q3	Q16
D	DODT	QERR	GND	GND	QODT	DNU
E	D5	D17	V _{DD}	V _{DD}	Q5	Q17
F	D6	D18	GND	GND	Q6	Q18
G	PAR_IN	RESET	V _{DD}	V _{DD}	C1	C0
н	СК	DCS	GND	GND	QCS	DNU
J	СК	CSR	V _{DD}	V _{DD}	n.c.	n.c.
К	D8	D19	GND	GND	Q8	Q19
L	D9	D20	V _{DD}	V _{DD}	Q9	Q20
М	D10	D21	GND	GND	Q10	Q21
Ν	D11	D22	V _{DD}	V _{DD}	Q11	Q22
Р	D12	D23	GND	GND	Q12	Q23
R	D13	D24	V _{DD}	V _{DD}	Q13	Q24
т	D14	D25	VREF	V _{DD}	Q14	Q25
						002aab10

Fig 4. Ball mapping, 1:1 register (C0 = 0, C1 = 0)

All information provided in this document is subject to legal disclaimers.

NXP Semiconductors

1.8 V DDR2-800 configurable registered buffer with parity

	1	2	3	4	5	6
А	DCKE	PPO	VREF	V _{DD}	QCKEA	QCKEB
В	D2	DNU	GND	GND	Q2A	Q2B
С	D3	DNU	V _{DD}	V _{DD}	Q3A	Q3B
D	DODT	QERR	GND	GND	QODTA	QODTB
E	D5	n.c.	V _{DD}	V _{DD}	Q5A	Q5B
F	D6	n.c.	GND	GND	Q6A	Q6B
G	PAR_IN	RESET	V _{DD}	V _{DD}	C1	C0
н	СК	DCS	GND	GND	QCSA	QCSB
J	СК	CSR	V _{DD}	V _{DD}	n.c.	n.c.
К	D8	DNU	GND	GND	Q8A	Q8B
L	D9	DNU	V _{DD}	V _{DD}	Q9A	Q9B
М	D10	DNU	GND	GND	Q10A	Q10B
Ν	D11	DNU	V _{DD}	V _{DD}	Q11A	Q11B
Р	D12	DNU	GND	GND	Q12A	Q12B
R	D13	DNU	V _{DD}	V _{DD}	Q13A	Q13B
т	D14	DNU	VREF	V _{DD}	Q14A	Q14B
						002aab109

Fig 5. Ball mapping, 1 : 2 Register A (C0 = 0, C1 = 1)

	1	2	3	4	5	6
А	D1	PPO	VREF	V_{DD}	Q1A	Q1B
В	D2	DNU	GND	GND	Q2A	Q2B
С	D3	DNU	V _{DD}	V _{DD}	Q3A	Q3B
D	D4	QERR	GND	GND	Q4A	Q4B
Е	D5	DNU	V _{DD}	V _{DD}	Q5A	Q5B
F	D6	DNU	GND	GND	Q6A	Q6B
G	PAR_IN	RESET	V _{DD}	V _{DD}	C1	C0
н	СК	DCS	GND	GND	QCSA	QCSB
J	CK	CSR	V _{DD}	V _{DD}	n.c.	n.c.
к	D8	DNU	GND	GND	Q8A	Q8B
L	D9	DNU	V _{DD}	V _{DD}	Q9A	Q9B
М	D10	DNU	GND	GND	Q10A	Q10B
Ν	DODT	DNU	V _{DD}	V _{DD}	QODTA	QODTB
Ρ	D12	DNU	GND	GND	Q12A	Q12B
R	D13	DNU	V _{DD}	V _{DD}	Q13A	Q13B
т	DCKE	DNU	VREF	V _{DD}	QCKEA	QCKEB
						002aab11

Fig 6. Ball mapping, 1 : 2 Register B (C0 = 1, C1 = 1)

All information provided in this document is subject to legal disclaimers.

SSTUB32866_4

6 of 30

.....

. .

_

SSTUB32866

1.8 V DDR2-800 configurable registered buffer with parity

6.2 Pin description

. ...

Table 3. Pin	description		
Symbol	Pin	Туре	Description
GND	B3, B4, D3, D4, F3, F4, H3, H4, K3, K4, M3, M4, P3, P4	ground input	ground
V _{DD}	A4, C3, C4, E3, E4, G3, G4, J3, J4, L3, L4, N3, N4, R3, R4, T4	1.8 V nominal	power supply voltage
VREF	A3, T3	0.9 V nominal	input reference voltage
СК	H1	differential input	positive master clock input
CK	J1	differential input	negative master clock input
C0	G6	LVCMOS inputs	Configuration control inputs; Register A or Register B and
C1	G5		1 : 1 mode or 1 : 2 mode select.
RESET	G2	LVCMOS input	Asynchronous reset input (active LOW). Resets registers and disables VREF data and clock.
CSR	J2	SSTL_18 input	Chip select inputs (active LOW). Disables D1 to D25[1]
DCS	H2		outputs switching when both inputs are HIGH.
D1 to D25	[2]	SSTL_18 input	Data input. Clocked in on the crossing of the rising edge of CK and the falling edge of \overline{CK} .
DODT	[2]	SSTL_18 input	The outputs of this register bit will not be suspended by the DCS and CSR control.
DCKE	[2]	SSTL_18 input	The outputs of this register bit will not be suspended by the DCS and CSR control.
PAR_IN	G1	SSTL_18 input	Parity input. Arrives one clock cycle after the corresponding data input.
Q1 to Q25, Q2A to Q14A, Q1B to Q14B	[2]	1.8 V CMOS outputs	Data outputs that are suspended by the $\overline{\text{DCS}}$ and $\overline{\text{CSR}}$ control. ^[3]
PPO	A2	1.8 V CMOS output	Partial parity out. Indicates odd parity of inputs D1 to D25.[1]
QCS, QCSA, QCSB	[2]	1.8 V CMOS output	Data output that will not be suspended by the $\overline{\text{DCS}}$ and $\overline{\text{CSR}}$ control.
QODT, QODTA, QODTB	[2]	1.8 V CMOS output	Data output that will not be suspended by the $\overline{\text{DCS}}$ and $\overline{\text{CSR}}$ control.
QCKE, QCKEA, QCKEB	[2]	1.8 V CMOS output	Data output that will not be suspended by the $\overline{\text{DCS}}$ and $\overline{\text{CSR}}$ control.
QERR	D2	open-drain output	Output error bit (active LOW). Generated one clock cycle after the corresponding data output.
n.c.	[2]	-	Not connected. Ball present but no internal connection to the die.
DNU	[2]	-	Do not use. Inputs are in standby-equivalent mode and outputs are driven LOW.

Data inputs = D2, D3, D5, D6, D8 to D25 when C0 = 0 and C1 = 0.
 Data inputs = D2, D3, D5, D6, D8 to D14 when C0 = 0 and C1 = 1.
 Data inputs = D1 to D6, D8 to D10, D12, D13 when C0 = 1 and C1 = 1.

[2] Depends on configuration. See Figure 4, Figure 5, and Figure 6 for ball number.

All information provided in this document is subject to legal disclaimers.

1.8 V DDR2-800 configurable registered buffer with parity

7. Functional description

The SSTUB32866 is a 25-bit 1 : 1 or 14-bit 1 : 2 configurable registered buffer with parity, designed for 1.7 V to 2.0 V V_{DD} operation.

All clock and data inputs are compatible with the JEDEC standard for SSTL_18. The control and reset (RESET) inputs are LVCMOS. All data outputs are 1.8 V CMOS drivers that have been optimized to drive the DDR2 DIMM load, and meet SSTL_18 specifications. The error (QERR) output is 1.8 V open-drain driver.

The SSTUB32866 operates from a differential clock (CK and \overline{CK}). Data are registered at the crossing of CK going HIGH, and \overline{CK} going LOW.

The C0 input controls the pinout configuration for the 1 : 2 pinout from A configuration (when LOW) to B configuration (when HIGH). The C1 input controls the pinout configuration from 25-bit 1 : 1 (when LOW) to 14-bit 1 : 2 (when HIGH).

The SSTUB32866 accepts a parity bit from the memory controller on its parity bit (PAR_IN) input, compares it with the data received on the DIMM-independent D-inputs and indicates whether a parity error has occurred on its open-drain QERR pin (active LOW). The convention is even parity, that is, valid parity is defined as an even number of ones across the DIMM-independent data inputs combined with the parity input bit.

When used as a single device, the C0 and C1 inputs are tied LOW. In this configuration, parity is checked on the PAR_IN input which arrives one cycle after the input data to which it applies. The Partial-Parity-Out (PPO) and QERR signals are produced three cycles after the corresponding data inputs.

When used in pairs, the C0 input of the first register is tied LOW and the C0 input of the second register is tied HIGH. The C1 input of both registers are tied HIGH. Parity, which arrives one cycle after the data input to which it applies, is checked on the PAR_IN input of the first device. The PPO and QERR signals are produced on the second device three clock cycles after the corresponding data inputs. The PPO output of the first register is cascaded to the PAR_IN of the second register. The QERR output of the first register is left floating and the valid error information is latched on the QERR output of the second register.

If an error occurs and the QERR output is driven LOW, it stays latched LOW for two clock cycles or until RESET is driven LOW. The DIMM-dependent signals (DCKE, DCS, DODT, and CSR) are not included in the parity check computation.

The device supports low-power standby operation. When RESET is LOW, the differential input receivers are disabled, and undriven (floating) data, clock and reference voltage (VREF) inputs are allowed. In addition, when RESET is LOW all registers are reset, and all outputs are forced LOW. The LVCMOS RESET input must always be held at a valid logic HIGH or LOW level.

1.8 V DDR2-800 configurable registered buffer with parity

The device also supports low-power active operation by monitoring both system chip select (\overline{DCS} and \overline{CSR}) inputs and will gate the Qn and PPO outputs from changing states when both \overline{DCS} and \overline{CSR} inputs are HIGH. If either \overline{DCS} or \overline{CSR} input is LOW, the Qn and PPO outputs will function normally. The RESET input has priority over the \overline{DCS} and \overline{CSR} control and when driven LOW will force the Qn and PPO outputs LOW, and the QERR output HIGH. If the \overline{DCS} control functionality is not desired, then the \overline{CSR} input can be hard-wired to ground, in which case, the set-up time requirement for \overline{DCS} would be the same as for the other Dn data inputs. To control the low-power mode with \overline{DCS} only, then the \overline{CSR} input should be pulled up to V_{DD} through a pull-up resistor.

To ensure defined outputs from the register before a stable clock has been supplied, RESET must be held in the LOW state during power-up.

In the DDR2 RDIMM application, RESET is specified to be completely asynchronous with respect to CK and CK. Therefore, no timing relationship can be guaranteed between the two. When entering reset, the register will be cleared and the Qn outputs will be driven LOW quickly, relative to the time to disable the differential input receivers. However, when coming out of reset, the register will become active quickly, relative to the time to enable the differential input receivers. As long as the data inputs are LOW, and the clock is stable during the time from the LOW to HIGH transition of RESET until the input receivers are fully enabled, the design of the SSTUB32866 must ensure that the outputs will remain LOW, thus ensuring no glitches on the output.

7.1 Function table

Table 4. Function table (each flip-flop) L = LOW voltage level; H = HIGH voltage level; X = don't care; $\uparrow = LOW$ to HIGH transition; $\checkmark = HIGH$ to LOW transition.

		In	puts				Outputs ^[1]	
RESET	DCS	CSR	СК	СК	Dn, DODTn, DCKEn	Qn	QCS	QODT, QCKE
Н	L	L	\uparrow	\downarrow	L	L	L	L
Н	L	L	\uparrow	\downarrow	Н	Н	L	Н
Н	L	L	L or H	L or H	Х	Q ₀	Q ₀	Q ₀
Н	L	Н	\uparrow	\downarrow	L	L	L	L
Н	L	Н	\uparrow	\downarrow	Н	Н	L	Н
Н	L	Н	L or H	L or H	Х	Q ₀	Q ₀	Q ₀
Н	Н	L	\uparrow	\downarrow	L	L	Н	L
Н	Н	L	\uparrow	\downarrow	Н	Н	Н	Н
Н	Н	L	L or H	L or H	Х	Q ₀	Q ₀	Q ₀
Н	Н	Н	\uparrow	\downarrow	L	Q ₀	Н	L
Н	Н	Н	\uparrow	\downarrow	Н	Q ₀	Н	Н
Н	Н	Н	L or H	L or H	Х	Q ₀	Q ₀	Q ₀
L	X or floating	L	L	L				

[1] Q₀ is the previous state of the associated output.

1.8 V DDR2-800 configurable registered buffer with parity

			Inputs				Outp	outs ^[1]
RESET	DCS	CSR	СК	СК	Σ of inputs = H (D1 to D25)	PAR_IN ^[2]	PPO ^[3]	QERR ^[4]
Н	L	Х	\uparrow	\downarrow	even	L	L	Н
Н	L	Х	\uparrow	\downarrow	odd	L	Н	L
Н	L	Х	\uparrow	\downarrow	even	Н	Н	L
Н	L	Х	\uparrow	\downarrow	odd	Н	L	Н
Н	Н	L	\uparrow	\downarrow	even	L	L	Н
Н	Н	L	\uparrow	\downarrow	odd	L	Н	L
Н	Н	L	\uparrow	\downarrow	even	Н	Н	L
Н	Н	L	\uparrow	\downarrow	odd	Н	L	Н
Н	Н	Н	\uparrow	\downarrow	Х	Х	PPO ₀	QERR ₀
Н	Х	Х	L or H	L or H	Х	Х	PPO ₀	QERR ₀
L	X or floating	X or floating	L	Н				

Table 5. Parity and standby function table

L = LOW voltage level; H = HIGH voltage level; X = don't care; \uparrow = LOW to HIGH transition; \downarrow = HIGH to LOW transition.

[1] PPO₀ is the previous state of output PPO; $\overline{\text{QERR}}_0$ is the previous state of output $\overline{\text{QERR}}$.

[2] Data inputs = D2, D3, D5, D6, D8 to D25 when C0 = 0 and C1 = 0.
 Data inputs = D2, D3, D5, D6, D8 to D14 when C0 = 0 and C1 = 1.
 Data inputs = D1 to D6, D8 to D10, D12, D13 when C0 = 1 and C1 = 1.

[3] PAR_IN arrives one clock cycle (C0 = 0), or two clock cycles (C0 = 1), after the data to which it applies.

[4] This condition assumes QERR is HIGH at the crossing of CK going HIGH and CK going LOW. If QERR is LOW, it stays latched LOW for two clock cycles or until RESET is driven LOW.

8. Limiting values

Table 6.Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DD}	supply voltage		-0.5	+2.5	V
VI	input voltage	receiver	-0.5 <mark>[1]</mark>	+2.5 <mark>2</mark>	V
Vo	output voltage	driver	-0.5 <mark>[1]</mark>	V _{DD} + 0.5 ^[2]	V
I _{IK}	input clamping current	$V_{I} < 0 V \text{ or } V_{I} > V_{DD}$	-	-50	mA
Ι _{ΟΚ}	output clamping current	$V_O < 0 V \text{ or } V_O > V_{DD}$	-	±50	mA
lo	output current	continuous; 0 V < V_O < V_{DD}	-	±50	mA
I _{CCC}	continuous current through each V_{DD} or GND pin		-	±100	mA
T _{stg}	storage temperature		-65	+150	°C
V _{ESD}	electrostatic discharge	Human Body Model (HBM); 1.5 k Ω ; 100 pF	2	-	kV
	voltage	Machine Model (MM); 0 Ω; 200 pF	200	-	V

[1] The input and output negative voltage ratings may be exceeded if the input and output clamping current ratings are observed.

[2] This value is limited to 2.5 V maximum.

SSTUB32866_4
Product data sheet

1.8 V DDR2-800 configurable registered buffer with parity

9. Recommended operating conditions

Recommended operating cor	nditions					
Parameter	Conditions		Min	Тур	Max	Unit
supply voltage			1.7	-	2.0	V
reference voltage			$0.49 \times V_{\text{DD}}$	$0.50\times V_{DD}$	$0.51 \times V_{\text{DD}}$	V
termination voltage			$V_{ref} - 0.040$	V _{ref}	$V_{ref} + 0.040$	V
input voltage			0	-	V _{DD}	V
AC HIGH-level input voltage	data (Dn), CSR, and PAR_IN inputs		V _{ref} + 0.250	-	-	V
AC LOW-level input voltage	data (Dn), CSR, and PAR_IN inputs		-	-	$V_{ref} - 0.250$	V
DC HIGH-level input voltage	data (Dn), CSR, and PAR_IN inputs		V _{ref} + 0.125	-	-	V
DC LOW-level input voltage	data (Dn), CSR, and PAR_IN inputs		-	-	$V_{ref} - 0.125 \\$	V
HIGH-level input voltage	RESET, Cn	[1]	$0.65 \times V_{\text{DD}}$	-	-	V
LOW-level input voltage	RESET, Cn	[1]	-	-	$0.35 \times V_{DD}$	V
common mode input voltage range	CK, CK	[2]	0.675	-	1.125	V
differential input voltage	CK, CK	[2]	600	-	-	mV
HIGH-level output current			-	-	-8	mA
LOW-level output current			-	-	8	mA
ambient temperature	operating in free air					
	SSTUB32866EC/G		0	-	70	°C
	SSTUB32866EC/S		0	-	85	°C
	Recommended operating conservations Parameter supply voltage reference voltage termination voltage input voltage AC HIGH-level input voltage AC LOW-level input voltage DC HIGH-level input voltage DC LOW-level input voltage LOW-level input voltage common mode input voltage range differential input voltage HIGH-level output current LOW-level output current	ParameterConditionssupply voltage	ParameterConditionssupply voltage	ParameterConditionsMinsupply voltage1.7reference voltage0.49 × V_DDtermination voltage0input voltage0AC HIGH-level input voltagedata (Dn), CSR, and PAR_IN inputsVref + 0.250AC LOW-level input voltagedata (Dn), CSR, and PAR_IN inputs-DC HIGH-level input voltagedata (Dn), CSR, and PAR_IN inputs-DC HIGH-level input voltagedata (Dn), CSR, and PAR_IN inputs-DC LOW-level input voltagedata (Dn), CSR, and PAR_IN inputs-DC LOW-level input voltageRESET, Cn110.65 × V_DDLOW-level input voltageRESET, Cn110.675ingeCK, CK120.67511common mode input voltageCK, CK12600HIGH-level output currentLOW-level output currentambient temperatureoperating in free airSSTUB32866EC/G0SSTUB32866EC/S0	ParameterConditionsMinTypsupply voltage1.7-reference voltage0.49 × Vpp0.50 × Vpptermination voltage0-input voltage0-AC HIGH-level input voltagedata (Dn), CSR, and PAR_IN inputsVref + 0.250AC LOW-level input voltagedata (Dn), CSR, and PAR_IN inputs-DC HIGH-level input voltagedata (Dn), CSR, and PAR_IN inputs-DC HIGH-level input voltagedata (Dn), CSR, and PAR_IN inputs-DC LOW-level input voltagedata (Dn), CSR, and PAR_IN inputs-DC LOW-level input voltagedata (Dn), CSR, and PAR_IN inputs-DC LOW-level input voltageRESET, Cn110.65 × VppHIGH-level input voltageRESET, Cn11-common mode input voltageCK, CK120.0075-differential input voltageCK, CK12600-HIGH-level output currentLOW-level output currentLOW-level output currentLOW-level output currentLOW-level output currentambient temperatureoperating in free airSSTUB32866EC/G0SSTUB32866EC/S0Additional current <t< td=""><td>ParameterConditionsMinTypMaxsupply voltage1.7-2.0reference voltage0.49 × Vpp0.50 × Vpp0.51 × Vpptermination voltage$V_{ref} - 0.040$$V_{ref} + 0.040$$V_{ref} + 0.040$input voltage0-$V_{po}$AC HIGH-level input voltagedata (Dn), CSR, and PAR_IN inputs$V_{ref} + 0.250$AC LOW-level input voltagedata (Dn), CSR, and PAR_IN inputs$V_{ref} + 0.125$DC HIGH-level input voltagedata (Dn), CSR, and PAR_IN inputs$V_{ref} + 0.125$DC LOW-level input voltagedata (Dn), CSR, and PAR_IN inputs$V_{ref} + 0.125$DC LOW-level input voltageRESET, Cn110.65 × VppLOW-level input voltageRESET, Cn110.35 × Vpncommon mode input voltageCK, CK12600HIGH-level output current8LOW-level output current8LOW-level output current8ambient temperatureoperating in free air70STUB32866EC/S070STUB32866EC/S0-8-</td></t<>	ParameterConditionsMinTypMaxsupply voltage1.7-2.0reference voltage0.49 × Vpp0.50 × Vpp0.51 × Vpptermination voltage $V_{ref} - 0.040$ $V_{ref} + 0.040$ $V_{ref} + 0.040$ input voltage0- V_{po} AC HIGH-level input voltagedata (Dn), CSR, and PAR_IN inputs $V_{ref} + 0.250$ AC LOW-level input voltagedata (Dn), CSR, and PAR_IN inputs $V_{ref} + 0.125$ DC HIGH-level input voltagedata (Dn), CSR, and PAR_IN inputs $V_{ref} + 0.125$ DC LOW-level input voltagedata (Dn), CSR, and PAR_IN inputs $V_{ref} + 0.125$ DC LOW-level input voltageRESET, Cn110.65 × VppLOW-level input voltageRESET, Cn110.35 × Vpncommon mode input voltageCK, CK12600HIGH-level output current8LOW-level output current8LOW-level output current8ambient temperatureoperating in free air70STUB32866EC/S070STUB32866EC/S0-8-

[1] The RESET and Cn inputs of the device must be held at valid levels (not floating) to ensure proper device operation.

[2] The differential inputs must not be floating, unless RESET is LOW.

1.8 V DDR2-800 configurable registered buffer with parity

10. Characteristics

Table 8. Characteristics

At recommended operating conditions (see <u>Table 7</u>); unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OH}	HIGH-level output voltage	$I_{OH} = -6 \text{ mA}; V_{DD} = 1.7 \text{ V}$	1.2	-	-	V
V _{OL}	LOW-level output voltage	$I_{OL}=6\ mA;\ V_{DD}=1.7\ V$	-	-	0.5	V
l _l	input current	all inputs; $V_I = V_{DD}$ or GND; $V_{DD} = 2.0 V$	-	-	±5	μA
I _{DD}	supply current	static Standby mode; $\overline{\text{RESET}}$ = GND; I _O = 0 mA; V _{DD} = 2.0 V	-	-	2	mA
		static Operating mode; $\overline{\text{RESET}} = V_{DD}$; $I_O = 0 \text{ mA}$; $V_{DD} = 2.0 \text{ V}$; $V_I = V_{IH(AC)} \text{ or } V_{IL(AC)}$	-	-	40	mA
I _{DDD}	dynamic operating current per MHz	clock only; $\overline{\text{RESET}} = V_{DD}$; $V_I = V_{IH(AC)}$ or $V_{IL(AC)}$; CK and $\overline{\text{CK}}$ switching at 50 % duty cycle; $I_O = 0$ mA; $V_{DD} = 1.8$ V	-	16	-	μA
		per each data input, 1 : 1 mode; $\overrightarrow{RESET} = V_{DD}; V_I = V_{IH(AC)} \text{ or } V_{IL(AC)};$ CK and CK switching at 50 % duty cycle; one data input switching at half clock frequency, 50 % duty cycle; $I_O = 0 \text{ mA}; V_{DD} = 1.8 \text{ V}$	-	11	-	μΑ
		per each data input, 1 : 2 mode; RESET = V_{DD} ; $V_I = V_{IH(AC)}$ or $V_{IL(AC)}$; CK and \overline{CK} switching at 50 % duty cycle; one data input switching at half clock frequency, 50 % duty cycle; $I_O = 0$ mA; $V_{DD} = 1.8$ V	-	19	-	μΑ
Ci	input capacitance	data and $\overline{\text{CSR}}$ inputs; V _I = V _{ref} ± 250 mV; V _{DD} = 1.8 V	2.5	-	3.5	pF
		CK and \overline{CK} inputs; V _{ICR} = 0.9 V; V _{i(p-p)} = 600 mV; V _{DD} = 1.8 V	2	-	3	pF
		$\overline{\text{RESET}} \text{ input; } V_{\text{I}} = V_{\text{DD}} \text{ or GND;} \\ V_{\text{DD}} = 1.8 \text{ V}$	3	-	4	pF
Input RES	SET					
V _{IL}	LOW-level input voltage		-0.5	-	$+0.3V_{DD}$	V
V _{IH}	HIGH-level input voltage		$0.7V_{DD}$	-	2.5	V
l _l	input current	$V_{I} = V_{DD}$	-5	-	+5	μA
l _l	leakage current	$V_1 = V_{SS}$	-100	-25	-10	μA

1.8 V DDR2-800 configurable registered buffer with parity

Table 9. Timing requirements

At recommended operating conditions (see Table 7), unless otherwise specified. See Section 11.1.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
f _{clock}	clock frequency			-	-	450	MHz
tw	pulse width	CK, CK HIGH or LOW		1	-	-	ns
t _{ACT}	differential inputs active time		[1][2]	-	-	10	ns
t _{INACT}	differential inputs inactive time		[1][3]	-	-	15	ns
t _{su}	set-up time	$\frac{\overline{\text{DCS}}}{\text{CSR}} \text{ before CK}^{\uparrow}, \overline{\text{CK}}^{\downarrow}, \overline{\text{CSR}} \text{ HIGH};$ $\overline{\text{CSR}} \text{ before CK}^{\uparrow}, \overline{\text{CK}}^{\downarrow}, \overline{\text{DCS}} \text{ HIGH}$		0.6	-	-	ns
		DCS before CK \uparrow , $\overline{CK}\downarrow$, \overline{CSR} LOW		0.5	-	-	ns
		DODT, DCKE and data (Dn) before CK \uparrow , CK \downarrow		0.5	-	-	ns
		PAR_IN before CK \uparrow , $\overline{CK}\downarrow$		0.5	-	-	ns
t _h	hold time	DCS, DODT, DCKE and data (Dn) after CK1, $\overrightarrow{\text{CK}}\downarrow$		0.4	-	-	ns
		PAR_IN after CK \uparrow , $\overline{CK}\downarrow$		0.4	-	-	ns

[1] This parameter is not necessarily production tested.

[2] VREF must be held at a valid input voltage level and data inputs must be held LOW for a minimum time of t_{ACT(max)} after RESET is taken HIGH.

[3] VREF, data and clock inputs must be held at valid levels (not floating) a minimum time of t_{INACT(max)} after RESET is taken LOW.

Table 10. Switching characteristics

At recommended operating conditions (see Table 7), unless otherwise specified. See Section 11.1.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{max}	maximum input clock frequency		450	-	-	MHz
t _{PDM}	peak propagation delay	single bit switching; from CK↑ and CK↓ to Qn	빈 1.1	-	1.5	ns
t _{PD}	propagation delay	from CK \uparrow and $\overline{CK}\downarrow$ to PPO	0.5	-	1.7	ns
t _{LH}	LOW to HIGH delay	from CK [↑] and $\overline{CK}\downarrow$ to \overline{QERR}	1.2	-	3	ns
t _{HL}	HIGH to LOW delay	from CK [↑] and $\overline{CK}\downarrow$ to \overline{QERR}	1	-	2.4	ns
t _{PDMSS}	simultaneous switching peak propagation delay	from CK \uparrow and $\overline{CK}\downarrow$ to Qn	<u>[1][2]</u> _	-	1.6	ns
t _{PHL}	HIGH to LOW propagation delay	from RESET↓ to Qn↓	-	-	3	ns
		from RESET↓ to PPO↓	-	-	3	ns
t _{PLH}	LOW to HIGH propagation delay	from RESET↓ to QERR↑	-	-	3	ns

[1] Includes 350 ps of test load transmission line delay.

[2] This parameter is not necessarily production tested.

Table 11. Data output edge rates

At recommended operating conditions (see Table 7), unless otherwise specified. See Section 11.2.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
dV/dt_r	rising edge slew rate	from 20 % to 80 %	1	-	4	V/ns
dV/dt_f	falling edge slew rate	from 80 % to 20 %	1	-	4	V/ns
dV/dt_{Δ}	absolute difference between dV/dt_r and dV/dt_f	from 20 % or 80 % to 80 % or 20 %	-	-	1	V/ns

1.8 V DDR2-800 configurable registered buffer with parity

10.1 Timing diagrams

NXP Semiconductors

SSTUB32866

1.8 V DDR2-800 configurable registered buffer with parity

NXP Semiconductors

SSTUB32866

1.8 V DDR2-800 configurable registered buffer with parity

1.8 V DDR2-800 configurable registered buffer with parity

11. Test information

11.1 Parameter measurement information for data output load circuit

 V_{DD} = 1.8 V \pm 0.1 V.

All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz; Z_o = 50 Ω ; input slew rate = 1 V/ns \pm 20 %, unless otherwise specified.

The outputs are measured one at a time with one transition per measurement.

NXP Semiconductors

SSTUB32866

1.8 V DDR2-800 configurable registered buffer with parity

1.8 V DDR2-800 configurable registered buffer with parity

11.2 Data output slew rate measurement information

 V_{DD} = 1.8 V \pm 0.1 V.

All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz; Z₀ = 50 Ω ; input slew rate = 1 V/ns \pm 20 %, unless otherwise specified.

1.8 V DDR2-800 configurable registered buffer with parity

11.3 Error output load circuit and voltage measurement information

 V_{DD} = 1.8 V \pm 0.1 V.

All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz; Z₀ = 50 Ω ; input slew rate = 1 V/ns \pm 20 %, unless otherwise specified.

1.8 V DDR2-800 configurable registered buffer with parity

11.4 Partial parity out load circuit and voltage measurement information

 $V_{DD} = 1.8 V \pm 0.1 V.$

All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz; Z₀ = 50 Ω ; input slew rate = 1 V/ns \pm 20 %, unless otherwise specified.

NXP Semiconductors

SSTUB32866

1.8 V DDR2-800 configurable registered buffer with parity

1.8 V DDR2-800 configurable registered buffer with parity

12. Package outline

LFBGA96: plastic low profile fine-pitch ball grid array package; 96 balls; body 13.5 x 5.5 x 1.05 mm SOT536-1

Fig 27. Package outline SOT536-1 (LFBGA96)

All information provided in this document is subject to legal disclaimers.

13. Soldering of SMD packages

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note *AN10365 "Surface mount reflow soldering description"*.

13.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

13.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- Through-hole components
- Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

- · Board specifications, including the board finish, solder masks and vias
- · Package footprints, including solder thieves and orientation
- · The moisture sensitivity level of the packages
- Package placement
- Inspection and repair
- Lead-free soldering versus SnPb soldering

13.3 Wave soldering

Key characteristics in wave soldering are:

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- · Solder bath specifications, including temperature and impurities

1.8 V DDR2-800 configurable registered buffer with parity

13.4 Reflow soldering

Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see <u>Figure 28</u>) than a SnPb process, thus reducing the process window
- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with Table 12 and 13

Table 12. SnPb eutectic process (from J-STD-020C)

Package thickness (mm)	Package reflow temperature (°C)		
	Volume (mm ³)		
	< 350	≥ 350	
< 2.5	235	220	
≥ 2.5	220	220	

Table 13. Lead-free process (from J-STD-020C)

Package thickness (mm)	Package reflow temperature (°C)			
	Volume (mm ³)			
	< 350	350 to 2000	> 2000	
< 1.6	260	260	260	
1.6 to 2.5	260	250	245	
> 2.5	250	245	245	

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 28.