imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

1.8 V 25-bit 1 : 1 or 14-bit 1 : 2 configurable registered buffer with parity and programmable output for DDR2-800 RDIMMs

Rev. 02 — 14 September 2006

Product data sheet

1. General description

The SSTUP32866 is a 1.8 V configurable register specifically designed for use on DDR2 memory modules requiring a parity checking function. It is defined in accordance with the JEDEC standard for the SSTUA32866 and SSTUB32866 registered buffers. The register is configurable (using configuration pins C0 and C1) to two topologies: 25-bit 1 : 1 or 14-bit 1 : 2, and in the latter configuration can be designated as Register A or Register B on the DIMM. It offers added features over the JEDEC standard register in that it can be configured for high or normal output drive strength, as well as for operation to 667 MT/s or 800 MT/s, simply by tying two input pins HIGH or LOW as needed.

The SSTUP32866 accepts a parity bit from the memory controller on its parity bit (PAR_IN) input, compares it with the data received on the DIMM-independent D-inputs and indicates whether a parity error has occurred on its open-drain QERR pin (active LOW). The convention is even parity, that is, valid parity is defined as an even number of ones across the DIMM-independent data inputs combined with the parity input bit.

The SSTUP32866 is packaged in a 96-ball, 6×16 grid, 0.8 mm ball pitch LFBGA package (13.5 mm \times 5.5 mm).

2. Features

- Configurable register supporting DDR2 up to 667 MT/s or 800 MT/s Registered DIMM applications
- Configurable to 25-bit 1 : 1 mode or 14-bit 1 : 2 mode
- Programmable for normal or high output drive
- Controlled multi-impedance output drivers enable optimal signal integrity and speed
- Programmable for 667 MT/s or 800 MT/s speed
- Excellent propagation delay performance
- Supports up to 450 MHz clock frequency of operation
- Optimized pinout for high-density DDR2 module design
- Chip-selects minimize power consumption by gating data outputs from changing state
- Supports SSTL_18 data inputs
- Checks parity on the DIMM-independent data inputs
- Partial parity output and input allows cascading of two SSTUP32866s for correct parity error processing
- Differential clock (CK and CK) inputs
- Supports LVCMOS switching levels on the control and RESET inputs
- Single 1.8 V supply operation (1.7 V to 2.0 V)

Available in 96-ball, 13.5 mm × 5.5 mm, 0.8 mm ball pitch LFBGA package

Applications 3.

■ 667 MT/s to 800 MT/s DDR2 registered DIMMs desiring parity checking functionality

Ordering information 4.

Type number	Solder process	Package					
		Name	Description	Version			
SSTUP32866EC/G	Pb-free (SnAgCu solder ball compound)	LFBGA96	plastic low profile fine-pitch ball grid array package; 96 balls; body $13.5 \times 5.5 \times 1.05$ mm	SOT536-			
SSTUP32866EC/S	Pb-free (SnAgCu solder ball compound)	LFBGA96	plastic low profile fine-pitch ball grid array package; 96 balls; body $13.5\times5.5\times1.05~mm$	SOT536-1			

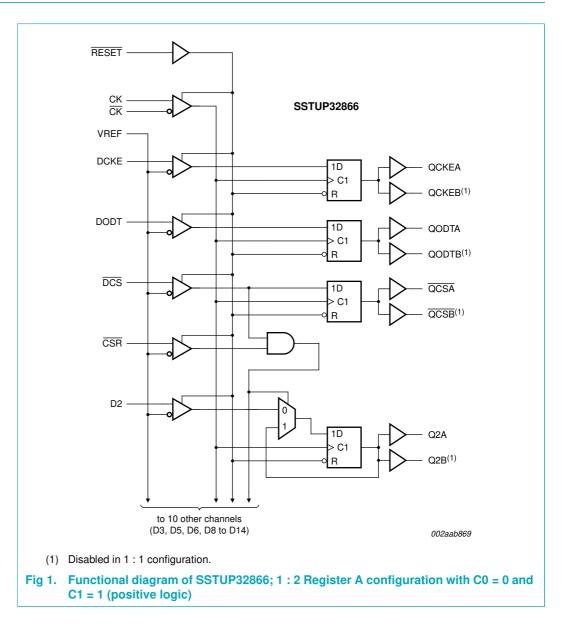
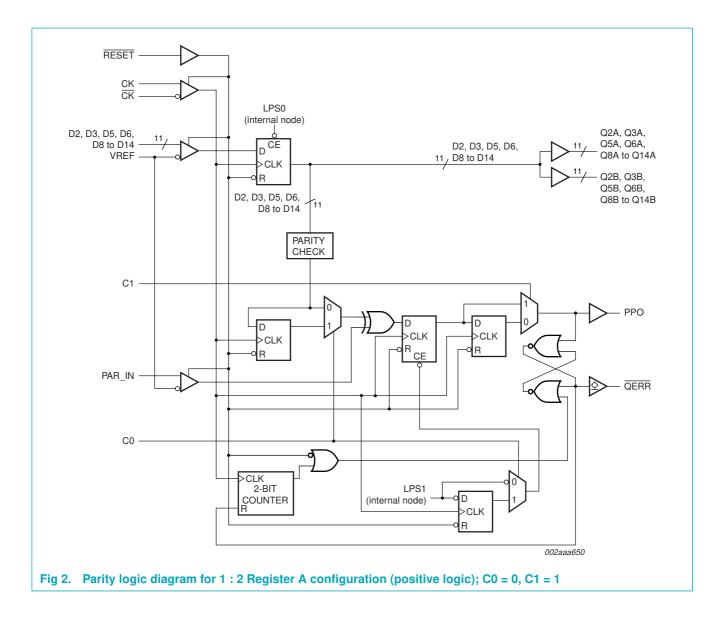

4.1 Ordering options

Table 2. **Ordering options**


Type number	Temperature range
SSTUP32866EC/G	$T_{amb} = 0 \ ^{\circ}C \ to \ +70 \ ^{\circ}C$
SSTUP32866EC/S	$T_{amb} = 0 \ ^{\circ}C \ to \ +85 \ ^{\circ}C$

1.8 V DDR2-667/800 programmable registered buffer with parity

5. Functional diagram



Philips Semiconductors

6. Pinning information

6.1 Pinning

 PPO D15 D16 QERR D17 D18 RESET DCS CSR 	VREF GND VDD GND VDD GND VDD GND VDD GND VDD GND VDD GND	VDD GND VDD GND VDD GND VDD GND QND GND VDD GND VDD VDD VDD VDD VDD	QCKE Q2 Q3 QODT Q5 Q6 C1 QCS SELAB	DNU Q15 Q16 DNU Q17 Q17 Q18 C0 DNU SELDR
D16 QERR D17 D18 N RESET DCS CSR	VDD GND VDD GND GND VDD GND VDD VDD	VDD GND VDD GND VDD GND VDD VDD VDD VDD	Q3 QODT Q5 Q6 C1 QCS	Q16 DNU Q17 Q18 C0 DNU
QERR D17 D18 N RESET DCS CSR	GND V _{DD} GND V _{DD} GND V _{DD}	GND V _{DD} GND V _{DD} GND V _{DD}	QODT Q5 Q6 C1 QCS	DNU Q17 Q18 C0 DNU
D17 D18 N RESET DCS CSR	V _{DD} GND V _{DD} GND V _{DD}	V _{DD} GND V _{DD} GND V _{DD}	Q5 Q6 C1 QCS	Q17 Q18 C0 DNU
D18 N RESET DCS CSR	GND V _{DD} GND V _{DD}	GND V _{DD} GND V _{DD}	Q6 C1 QCS	Q18 C0 DNU
N RESET	V _{DD} GND V _{DD}	V _{DD} GND V _{DD}	C1 QCS	C0 DNU
DCS	GND V _{DD}	GND V _{DD}	QCS	DNU
CSR	V _{DD}	V _{DD}		-
			SELAB	SELDR
	CND			
D19	GND	GND	Q8	Q19
D20	V_{DD}	V_{DD}	Q9	Q20
D21	GND	GND	Q10	Q21
D22	V_{DD}	V_{DD}	Q11	Q22
D23	GND	GND	Q12	Q23
D24	V _{DD}	V_{DD}	Q13	Q24
	VREF	V_{DD}	Q14	Q25
	D24			

Fig 4. Ball mapping, 1:1 register (C0 = 0, C1 = 0)

SSTUP32866 2

Philips Semiconductors

1.8 V DDR2-667/800 programmable registered buffer with parity

	1	2	3	4	5	6
А	DCKE	PPO	VREF	V _{DD}	QCKEA	QCKEB
В	D2	DNU	GND	GND	Q2A	Q2B
С	D3	DNU	V _{DD}	V _{DD}	Q3A	Q3B
D	DODT	QERR	GND	GND	QODTA	QODTB
E	D5	n.c.	V _{DD}	V _{DD}	Q5A	Q5B
F	D6	n.c.	GND	GND	Q6A	Q6B
G	PAR_IN	RESET	V _{DD}	V _{DD}	C1	C0
Н	СК	DCS	GND	GND	QCSA	QCSB
J	CK	CSR	V _{DD}	V _{DD}	SELAB	SELDR
К	D8	DNU	GND	GND	Q8A	Q8B
L	D9	DNU	V _{DD}	V _{DD}	Q9A	Q9B
М	D10	DNU	GND	GND	Q10A	Q10B
Ν	D11	DNU	V _{DD}	V _{DD}	Q11A	Q11B
Р	D12	DNU	GND	GND	Q12A	Q12B
R	D13	DNU	V _{DD}	V _{DD}	Q13A	Q13B
т	D14	DNU	VREF	V _{DD}	Q14A	Q14B
						002aab872

Fig 5. Ball mapping, 1 : 2 Register A (C0 = 0, C1 = 1)

	1	2	3	4	5	6
Α	D1	PPO	VREF	V _{DD}	Q1A	Q1B
В	D2	DNU	GND	GND	Q2A	Q2B
С	D3	DNU	V _{DD}	V _{DD}	Q3A	Q3B
D	D4	QERR	GND	GND	Q4A	Q4B
Е	D5	DNU	V _{DD}	V _{DD}	Q5A	Q5B
F	D6	DNU	GND	GND	Q6A	Q6B
G	PAR_IN	RESET	V _{DD}	V _{DD}	C1	C0
н	СК	DCS	GND	GND	QCSA	QCSB
J	СК	CSR	V _{DD}	V _{DD}	SELAB	SELDR
К	D8	DNU	GND	GND	Q8A	Q8B
L	D9	DNU	V _{DD}	V _{DD}	Q9A	Q9B
М	D10	DNU	GND	GND	Q10A	Q10B
Ν	DODT	DNU	V _{DD}	V _{DD}	QODTA	QODTB
Ρ	D12	DNU	GND	GND	Q12A	Q12B
R	D13	DNU	V _{DD}	V _{DD}	Q13A	Q13B
т	DCKE	DNU	VREF	V _{DD}	QCKEA	QCKEB
		•				002aab873

Fig 6. Ball mapping, 1 : 2 Register B (C0 = 1, C1 = 1)

6.2 Pin description

Table 3. Pin d	escription		
Symbol	Pin	Туре	Description
GND	B3, B4, D3, D4, F3, F4, H3, H4, K3, K4, M3, M4, P3, P4	ground input	ground
V _{DD}	A4, C3, C4, E3, E4, G3, G4, J3, J4, L3, L4, N3, N4, R3, R4, T4	1.8 V nominal	power supply voltage
VREF	A3, T3	0.9 V nominal	input reference voltage
СК	H1	differential input	positive master clock input
CK	J1	differential input	negative master clock input
C0 C1	G6 G5	LVCMOS inputs	Configuration control inputs; Register A or Register B and 1 : 1 mode or 1 : 2 mode select.
SELDR	J6	LVCMOS input	Selects output drive strength: HIGH for normal drive, LOW for high drive. This pin will default HIGH if left open-circuit (built-in weak pull-up resistor).
SELAB	J5	LVCMOS input	Selects speed grade: HIGH for DDR2-667, LOW for DDR2-800. This pin will default HIGH if left open-circuit (built-in weak pull-up resistor).
RESET	G2	LVCMOS input	Asynchronous reset input (active LOW). Resets registers and disables VREF data and clock.
CSR	J2	SSTL_18 input	Chip select inputs (active LOW). Disables
DCS	H2		D1 to D25 ^[1] outputs switching when both inputs are HIGH.
D1 to D25	[2]	SSTL_18 input	Data input. Clocked in on the crossing of the rising edge of CK and the falling edge of \overline{CK} .
DODT	<u>[2]</u>	SSTL_18 input	The outputs of this register bit will not be suspended by the $\overline{\text{DCS}}$ and $\overline{\text{CSR}}$ control.
DCKE	[2]	SSTL_18 input	The outputs of this register bit will not be suspended by the $\overline{\text{DCS}}$ and $\overline{\text{CSR}}$ control.
PAR_IN	G1	SSTL_18 input	Parity input. Arrives one clock cycle after the corresponding data input.
Q1 to Q25, Q2A to Q14A, Q1B to Q14B	[2]	1.8 V CMOS outputs	Data outputs that are suspended by the $\overline{\text{DCS}}$ and $\overline{\text{CSR}}$ control ^[3] .
PPO	A2	1.8 V CMOS output	Partial parity out. Indicates odd parity of inputs D1 to D25 ^[1] .
$\frac{\overline{QCS}, \overline{QCSA},}{\overline{QCSB}}$	[2]	1.8 V CMOS output	Data output that will not be suspended by the $\overline{\text{DCS}}$ and $\overline{\text{CSR}}$ control.
QODT, QODTA, QODTB	[2]	1.8 V CMOS output	Data output that will not be suspended by the $\overline{\text{DCS}}$ and $\overline{\text{CSR}}$ control.

Symbol	Pin	Туре	Description
QCKE, QCKEA, QCKEB	[2]	1.8 V CMOS output	Data output that will not be suspended by the DCS and CSR control.
QERR	D2	open-drain output	Output error bit (active LOW). Generated one clock cycle after the corresponding data output
DNU	[2]	-	Do not use. Inputs are in standby-equivalent mode and outputs are driven LOW.

- [2] Depends on configuration. See Figure 4, Figure 5, and Figure 6 for ball number.
- [3] Data outputs = Q2, Q3, Q5, Q6, Q8 to Q25 when C0 = 0 and C1 = 0.
 Data outputs = Q2, Q3, Q5, Q6, Q8 to Q14 when C0 = 0 and C1 = 1.
 Data outputs = Q1 to Q6, Q8 to Q10, Q12, Q13 when C0 = 1 and C1 = 1.

7. Functional description

The SSTUP32866 is a 25-bit 1 : 1 or 14-bit 1 : 2 configurable registered buffer with parity, designed for 1.7 V to 2.0 V V_{DD} operation. Additionally, the SSTUP32866 can be programmed to deliver either normal or high output drive, and either 600 MT/s or 800 MT/s speeds.

Two programming pins, SELAB and SELDR, allow the user to respectively select speed and drive strength options by tying these pins either LOW or HIGH on the DIMM. The truth table for these options is shown in Table 6.

All clock and data inputs are compatible with the JEDEC standard for SSTL_18. The control and reset (RESET) inputs are LVCMOS. All data outputs are 1.8 V CMOS drivers that have been optimized to drive the DDR2 DIMM load, and meet SSTL_18 specifications. The error (QERR) output is 1.8 V open-drain driver.

The SSTUP32866 operates from a differential clock (CK and \overline{CK}). Data are registered at the crossing of CK going HIGH, and CK going LOW.

The C0 input controls the pinout configuration for the 1 : 2 pinout from A configuration (when LOW) to B configuration (when HIGH). The C1 input controls the pinout configuration from 25-bit 1 : 1 (when LOW) to 14-bit 1 : 2 (when HIGH).

The SSTUP32866 accepts a parity bit from the memory controller on its parity bit (PAR_IN) input, compares it with the data received on the DIMM-independent D-inputs and indicates whether a parity error has occurred on its open-drain QERR pin (active LOW). The convention is even parity, that is, valid parity is defined as an even number of ones across the DIMM-independent data inputs combined with the parity input bit.

When used as a single device, the C0 and C1 inputs are tied LOW. In this configuration, parity is checked on the PAR_IN input which arrives one cycle after the input data to which it applies. The Partial-Parity-Out (PPO) and QERR signals are produced three cycles after the corresponding data inputs.

When used in pairs, the C0 input of the first register is tied LOW and the C0 input of the second register is tied HIGH. The C1 input of both registers are tied HIGH. Parity, which arrives one cycle after the data input to which it applies, is checked on the PAR_IN input of the first device. The PPO and QERR signals are produced on the second device three clock cycles after the corresponding data inputs. The PPO output of the first register is cascaded to the PAR_IN of the second register. The QERR output of the first register is left floating and the valid error information is latched on the QERR output of the second register.

If an error occurs and the $\overline{\text{QERR}}$ output is driven LOW, it stays latched LOW for two clock cycles or until $\overline{\text{RESET}}$ is driven LOW. The DIMM-dependent signals (DCKE, $\overline{\text{DCS}}$, DODT, and $\overline{\text{CSR}}$) are not included in the parity check computation.

The device supports low-power standby operation. When RESET is LOW, the differential input receivers are disabled, and undriven (floating) data, clock and reference voltage (VREF) inputs are allowed. In addition, when RESET is LOW all registers are reset, and all outputs are forced LOW. The LVCMOS RESET input must always be held at a valid logic HIGH or LOW level.

The device also supports low-power active operation by monitoring both system chip select ($\overline{\text{DCS}}$ and $\overline{\text{CSR}}$) inputs and will gate the Qn and PPO outputs from changing states when both $\overline{\text{DCS}}$ and $\overline{\text{CSR}}$ inputs are HIGH. If either $\overline{\text{DCS}}$ or $\overline{\text{CSR}}$ input is LOW, the Qn and PPO outputs will function normally. The $\overline{\text{RESET}}$ input has priority over the $\overline{\text{DCS}}$ and $\overline{\text{CSR}}$ control and when driven LOW will force the Qn and PPO outputs LOW, and the $\overline{\text{QERR}}$ output HIGH. If the $\overline{\text{DCS}}$ control functionality is not desired, then the $\overline{\text{CSR}}$ input can be hard-wired to ground, in which case, the setup time requirement for $\overline{\text{DCS}}$ would be the same as for the other Dn data inputs. To control the low-power mode with $\overline{\text{DCS}}$ only, then the $\overline{\text{CSR}}$ input should be pulled up to V_{DD} through a pull-up resistor.

To ensure defined outputs from the register before a stable clock has been supplied, RESET must be held in the LOW state during power-up.

In the DDR2 RDIMM application, $\overline{\text{RESET}}$ is specified to be completely asynchronous with respect to CK and $\overline{\text{CK}}$. Therefore, no timing relationship can be guaranteed between the two. When entering reset, the register will be cleared and the Qn outputs will be driven LOW quickly, relative to the time to disable the differential input receivers. However, when coming out of reset, the register will become active quickly, relative to the time to enable the differential input receivers. As long as the data inputs are LOW, and the clock is stable during the time from the LOW-to-HIGH transition of $\overline{\text{RESET}}$ until the input receivers are fully enabled, the design of the SSTUP32866 must ensure that the outputs will remain LOW, thus ensuring no glitches on the output.

7.1 Function table

Table 4. Function table (each flip-flop)

L = LOW voltage level; H = HIGH voltage level; X = don't care; $\uparrow = LOW$ -to-HIGH transition; $\downarrow = HIGH$ -to-LOW transition.

Inputs							Outputs ^[1]	
RESET	DCS	CSR	СК	CK	Dn, DODTn, DCKEn	Qn	QCS	QODT, QCKE
Н	L	L	\uparrow	\downarrow	L	L	L	L
Н	L	L	\uparrow	\downarrow	Н	Н	L	Н
Н	L	L	L or H	L or H	Х	Q ₀	Q ₀	Q ₀
Н	L	Н	\uparrow	\downarrow	L	L	L	L
Н	L	Н	↑	\downarrow	Н	Н	L	Н
Н	L	Н	L or H	L or H	Х	Q ₀	Q ₀	Q ₀
Н	Н	L	\uparrow	\downarrow	L	L	Н	L
Н	Н	L	\uparrow	\downarrow	Н	Н	Н	Н
Н	Н	L	L or H	L or H	Х	Q ₀	Q ₀	Q ₀
Н	Н	Н	↑	\downarrow	L	Q ₀	Н	L
Н	Н	Н	\uparrow	\downarrow	Н	Q ₀	Н	Н
Н	Н	Н	L or H	L or H	Х	Q ₀	Q ₀	Q ₀
L	X or floating	L	L	L				

[1] Q_0 is the previous state of the associated output.

Table 5. Parity and standby function table

L = LOW voltage level; H = HIGH voltage level; X = don't care; $\uparrow = LOW$ -to-HIGH transition; $\downarrow = HIGH$ -to-LOW transition.

			Inputs				Outp	outs <mark>[1]</mark>
RESET	DCS	CSR	СК	CK	Σ of inputs = H (D1 to D25)	PAR_IN ^[2]	PPO ^[3]	QERR ^[4]
Н	L	Х	\uparrow	\downarrow	even	L	L	Н
Н	L	Х	\uparrow	\downarrow	odd	L	Н	L
Н	L	Х	\uparrow	\downarrow	even	Н	Н	L
Н	L	Х	\uparrow	\downarrow	odd	Н	L	Н
Н	Н	L	\uparrow	\downarrow	even	L	L	Н
Н	Н	L	\uparrow	\downarrow	odd	L	Н	L
Н	Н	L	\uparrow	\downarrow	even	Н	Н	L
Н	Н	L	\uparrow	\downarrow	odd	Н	L	Н
Н	Н	Н	\uparrow	\downarrow	Х	Х	PPO ₀	\overline{QERR}_0
Н	Х	Х	L or H	L or H	Х	Х	PPO ₀	\overline{QERR}_0
L	X or floating	X or floating	L	Н				

[1] PPO₀ is the previous state of output PPO; $\overline{\text{QERR}}_0$ is the previous state of output $\overline{\text{QERR}}$.

[2] Data inputs = D2, D3, D5, D6, D8 to D25 when C0 = 0 and C1 = 0.

Data inputs = D2, D3, D5, D6, D8 to D14 when C0 = 0 and C1 = 1.

Data inputs = D1 to D6, D8 to D10, D12, D13 when C0 = 1 and C1 = 1.

[3] PAR_IN arrives one clock cycle (C0 = 0), or two clock cycles (C0 = 1), after the data to which it applies.

[4] This condition assumes QERR is HIGH at the crossing of CK going HIGH and CK going LOW. If QERR is LOW, it stays latched LOW for two clock cycles or until RESET is driven LOW.

Table 6.	Speed and dri	ive programmability
Inputs		Mode
SELDR	SELAB	
L	L	DDR2-800; high output drive
L	Н	DDR2-667; high output drive
Н	L	DDR2-800; normal output drive
Н	Н	DDR2-667; normal output drive

8. Limiting values

Table 7.Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DD}	supply voltage		-0.5	+2.5	V
VI	input voltage	receiver	-0.5 <mark>[1]</mark>	+2.5 <mark>2</mark>	V
Vo	output voltage	driver	-0.5 <mark>[1]</mark>	V _{DD} + 0.5 ^[2]	V
l _{IK}	input clamping current	$V_I < 0 V \text{ or } V_I > V_{DD}$	-	-50	mA
I _{OK}	output clamping current	V_{O} < 0 V or V_{O} > V_{DD}	-	±50	mA
lo	output current	continuous; 0 V < V_O < V_{DD}	-	±50	mA
I _{CCC}	continuous current through each V_{DD} or GND pin		-	±100	mA
T _{stg}	storage temperature		-65	+150	°C
V _{esd}	electrostatic discharge voltage	Human Body Model (HBM); 1.5 kΩ; 100 pF	2	-	kV
		Machine Model (MM); 0 Ω ; 200 pF	200	-	V

[1] The input and output negative voltage ratings may be exceeded if the input and output clamping current ratings are observed.

[2] This value is limited to 2.5 V maximum.

1.8 V DDR2-667/800 programmable registered buffer with parity

9. Recommended operating conditions

Table 8.	Recommended operating co	nditions					
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{DD}	supply voltage			1.7	-	2.0	V
V _{ref}	reference voltage			$0.49 \times V_{\text{DD}}$	$0.50 \times V_{\text{DD}}$	$0.51 \times V_{\text{DD}}$	V
V _T	termination voltage			$V_{ref} - 0.040$	V _{ref}	$V_{ref} + 0.040$	V
VI	input voltage			0	-	V _{DD}	V
V _{IH(AC)}	AC HIGH-level input voltage	data (Dn), CSR, and PAR_IN inputs		V _{ref} + 0.250	-	-	V
V _{IL(AC)}	AC LOW-level input voltage	data (Dn), CSR, and PAR_IN inputs		-	-	$V_{\text{ref}} - 0.250$	V
V _{IH(DC)}	DC HIGH-level input voltage	data (Dn), CSR, and PAR_IN inputs		V _{ref} + 0.125	-	-	V
V _{IL(DC)}	DC LOW-level input voltage	data (Dn), CSR, and PAR_IN inputs		-	-	V _{ref} - 0.125	V
V _{IH}	HIGH-level input voltage	RESET, Cn, SELAB, SELDR	<u>[1]</u>	$0.65 \times V_{\text{DD}}$	-	-	V
V _{IL}	LOW-level input voltage	RESET, Cn, SELAB, SELDR	<u>[1]</u>	-	-	$0.35 \times V_{DD}$	V
V _{ICR}	common mode input voltage range	CK, CK	[2]	0.675	-	1.125	V
V _{ID}	differential input voltage	CK, CK	[2]	600	-	-	mV
I _{OH}	HIGH-level output current	SELDR either HIGH or LOW		-	-	-8	mA
I _{OL}	LOW-level output current	SELDR either HIGH or LOW		-	-	8	mA
T _{amb}	ambient temperature	operating in free air					
		SSTUP32866EC/G		0	-	70	°C
		SSTUP32866EC/S		0	-	85	°C

[1] The RESET and Cn inputs of the device must be held at valid levels (not floating) to ensure proper device operation.

[2] The differential inputs must not be floating, unless **RESET** is LOW.

1.8 V DDR2-667/800 programmable registered buffer with parity

10. Characteristics

Table 9. Characteristics

At recommended operating conditions (see <u>Table 8</u>); unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{ОН}	HIGH-level output voltage	$I_{OH} = -6 \text{ mA}; V_{DD} = 1.7 \text{ V}$	1.2	-	-	V
V _{OL}	LOW-level output voltage	$I_{OL} = 6 \text{ mA}; V_{DD} = 1.7 \text{ V}$	-	-	0.5	V
lı	input current	all inputs; $V_I = V_{DD}$ or GND; $V_{DD} = 2.0 \text{ V}$	-	-	±5	μA
I _{DD}	supply current	static Standby mode; $\overline{\text{RESET}}$ = GND; I _O = 0 mA; V _{DD} = 2.0 V	-	-	100	μA
		$ \begin{array}{l} \mbox{static Operating mode;} \\ \hline \mbox{RESET} = V_{DD}; I_{O} = 0 \mbox{ mA;} \\ V_{DD} = 2.0 V; V_{I} = V_{IH(AC)} \mbox{ or } V_{IL(AC)} \end{array} $	-	-	40	mA
I _{DDD}	dynamic operating current per MHz	clock only; $\overline{\text{RESET}} = V_{DD}$; $V_I = V_{IH(AC)}$ or $V_{IL(AC)}$; CK and \overline{CK} switching at 50 % duty cycle; $I_O = 0 \text{ mA}$; $V_{DD} = 1.8 \text{ V}$	-	16	-	μA
		per each data input, 1 : 1 mode; $\overline{RESET} = V_{DD}$; $V_I = V_{IH(AC)}$ or $V_{IL(AC)}$; CK and CK switching at 50 % duty cycle; one data input switching at half clock frequency, 50 % duty cycle; $I_O = 0$ mA; $V_{DD} = 1.8$ V	-	11	-	μΑ
		per each data input, 1 : 2 mode; $\overline{RESET} = V_{DD}$; $V_I = V_{IH(AC)}$ or $V_{IL(AC)}$; CK and \overline{CK} switching at 50 % duty cycle; one data input switching at half clock frequency, 50 % duty cycle; $I_O = 0$ mA; $V_{DD} = 1.8$ V	-	19	-	μΑ
Ci	input capacitance	data and $\overline{\text{CSR}}$ inputs; V _I = V _{ref} ± 250 mV; V _{DD} = 1.8 V	2.5	-	3.5	pF
		CK and \overline{CK} inputs; V _{ICR} = 0.9 V; V _{i(p-p)} = 600 mV; V _{DD} = 1.8 V	2	-	3	pF
		$\label{eq:RESET} \begin{array}{l} \overline{\text{RESET}} \text{ input; } V_{\text{I}} = V_{\text{DD}} \text{ or } \text{GND}; \\ V_{\text{DD}} = 1.8 \text{ V} \end{array}$	3	-	4	pF
Zo	output impedance	normal drive; instantaneous	<u>[1]</u> -	15	-	Ω
		normal drive; steady-state	-	53	-	Ω
		high drive; instantaneous	<u>[1]</u> -	7	-	Ω
		high drive; steady-state	-	53	-	Ω

[1] Instantaneous is defined as within < 2 ns following the output data transition edge.

1.8 V DDR2-667/800 programmable registered buffer with parity

Table 10. Timing requirements

At recommended operating conditions (see Table 8), unless otherwise specified. See Section 11.1.

				-		
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{clock}	clock frequency		-	-	450	MHz
tw	pulse width	CK, CK HIGH or LOW	1	-	-	ns
t _{ACT}	differential inputs active time		<u>[1][2]</u>	-	10	ns
t _{INACT}	differential inputs inactive time		<u>[1][3]</u>	-	15	ns
t _{su}	setup time	$\overline{\text{DCS}}$ before CK [↑] , $\overline{\text{CK}}\downarrow$, $\overline{\text{CSR}}$ HIGH; $\overline{\text{CSR}}$ before CK [↑] , $\overline{\text{CK}}\downarrow$, $\overline{\text{DCS}}$ HIGH	0.6	-	-	ns
		\overline{DCS} before CK \uparrow , $\overline{CK}\downarrow$, \overline{CSR} LOW	0.5	-	-	ns
		DODT, DCKE and data (Dn) before CK1, $\overrightarrow{\text{CK}}\downarrow$	0.5	-	-	ns ns
		PAR_IN before CK \uparrow , $\overline{CK}\downarrow$	0.5	-	-	ns
t _h	hold time	DCS, DODT, DCKE and data (Dn) after CK1, $\overline{\text{CK}}\downarrow$	0.4	-	-	ns
		PAR_IN after CK \uparrow , $\overline{CK}\downarrow$	0.4	-	-	ns

[1] This parameter is not necessarily production tested.

[2] VREF must be held at a valid input voltage level and data inputs must be held LOW for a minimum time of t_{ACT(max)} after RESET is taken HIGH.

[3] VREF, data and clock inputs must be held at valid levels (not floating) a minimum time of t_{INACT(max)} after RESET is taken LOW.

Table 11. Switching characteristics (667 mode, SELAB = HIGH)

At recommended operating conditions (see Table 8), unless otherwise specified. See Section 11.1.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{max}	maximum input clock frequency		450	-	-	MHz
t _{PDM}	peak propagation delay	single bit switching; from CK↑ and CK↓ to Qn	[1] 1.2	-	1.8	ns
t _{PD}	propagation delay	from CK \uparrow and $\overline{\text{CK}} \downarrow$ to PPO	0.5	-	1.8	ns
t _{LH}	LOW-to-HIGH delay	from CK \uparrow and $\overline{\text{CK}} \downarrow$ to $\overline{\text{QERR}}$	1.2	-	3	ns
t _{HL}	HIGH-to-LOW delay	from CK \uparrow and $\overline{\text{CK}} \downarrow$ to $\overline{\text{QERR}}$	1	-	2.4	ns
t _{PDMSS}	simultaneous switching peak propagation delay	from CK \uparrow and $\overline{CK}\downarrow$ to Qn	<u>[1][2]</u> _	-	2.0	ns
t _{PHL}	HIGH-to-LOW propagation delay	from $\overline{RESET} \downarrow$ to $Qn \downarrow$	-	-	3	ns
		from $\overline{\text{RESET}} \downarrow$ to $\text{PPO} \downarrow$	-	-	3	ns
t _{PLH}	LOW-to-HIGH propagation delay	from $\overline{\text{RESET}}\downarrow$ to $\overline{\text{QERR}}\uparrow$	-	-	3	ns

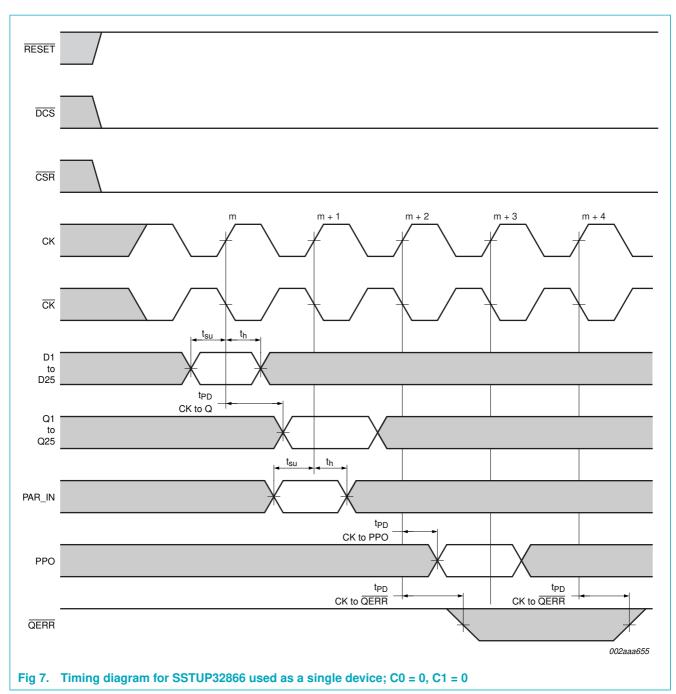
[1] Includes 350 ps of test load transmission line delay.

[2] This parameter is not necessarily production tested.

1.8 V DDR2-667/800 programmable registered buffer with parity

Table 12.	Switching characteristics (800 mode, SELAB = LOW)
At rocomm	and a parating conditions (soo Table 8) unloss athonyis

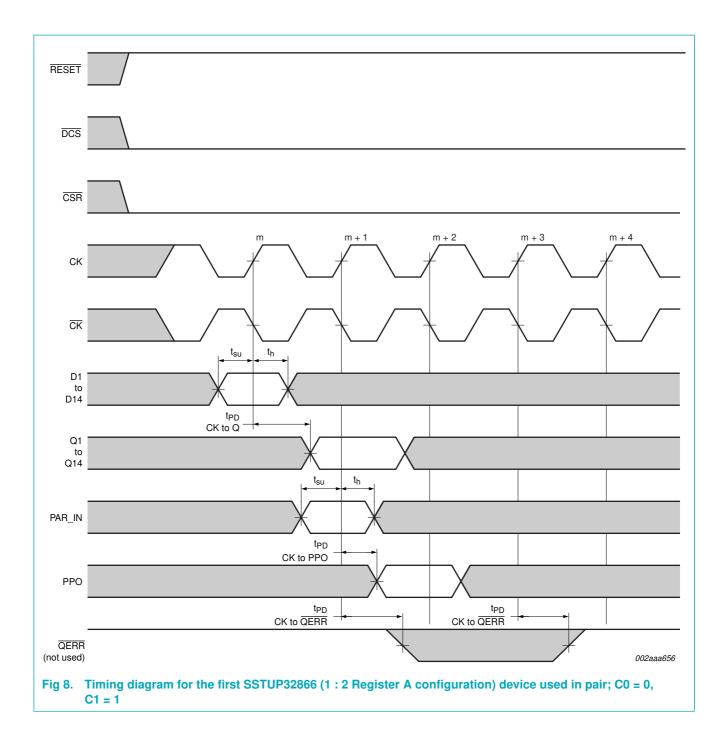
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{max}	maximum input clock frequency		450	-	-	MHz
t _{PDM}	peak propagation delay	single bit switching; from CK \uparrow and $\overline{CK} \downarrow$ to Qn	민 1.1	-	1.5	ns
t _{PD}	propagation delay	from CK \uparrow and $\overline{CK}\downarrow$ to PPO	0.5	-	1.7	ns
t _{LH}	LOW-to-HIGH delay	from CK \uparrow and $\overline{\text{CK}} \downarrow$ to $\overline{\text{QERR}}$	1.2	-	3	ns
t _{HL}	HIGH-to-LOW delay	from CK \uparrow and $\overline{\text{CK}} \downarrow$ to $\overline{\text{QERR}}$	1	-	2.4	ns
t _{PDMSS}	simultaneous switching peak propagation delay	from CK \uparrow and $\overline{\text{CK}} \downarrow$ to Qn	<u>[1][2]</u> _	-	1.6	ns
t _{PHL}	HIGH-to-LOW propagation delay	from $\overline{RESET} \downarrow$ to $Qn \downarrow$	-	-	3	ns
		from $\overline{\text{RESET}}\downarrow$ to $\text{PPO}\downarrow$	-	-	3	ns
t _{PLH}	LOW-to-HIGH propagation delay	from RESET↓ to QERR↑	-	-	3	ns

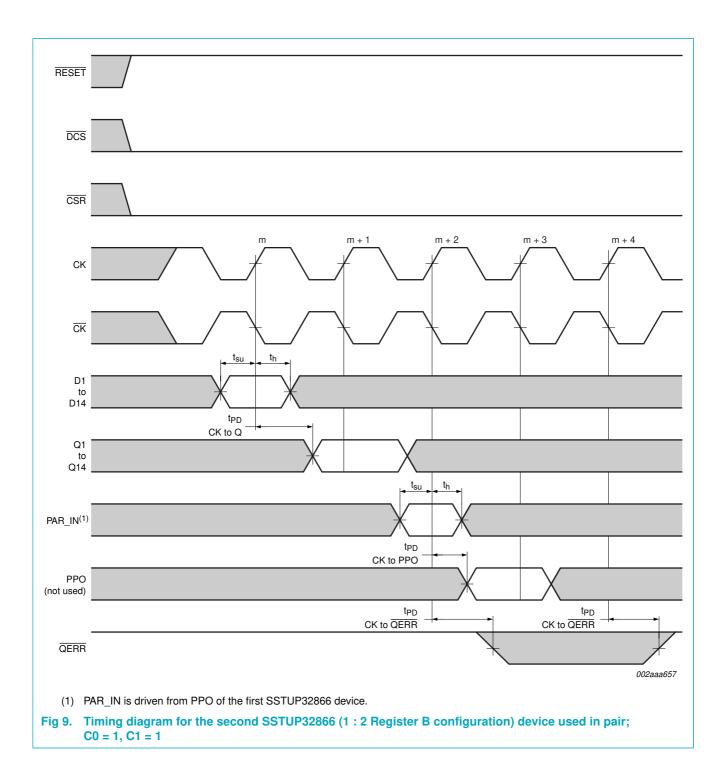

[1] Includes 350 ps of test load transmission line delay.

[2] This parameter is not necessarily production tested.

Table 13. Data output edge rates

At recommended operating conditions (see Table 8), unless otherwise specified. See Section 11.2.

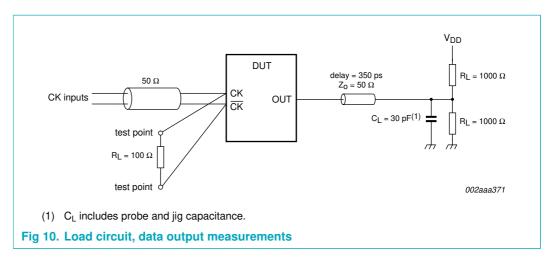

		-				
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
dV/dt_r	rising edge slew rate	from 20 % to 80 %	1	-	4	V/ns
dV/dt_f	falling edge slew rate	from 80 % to 20 %	1	-	4	V/ns
dV/dt_ Δ	absolute difference between dV/dt_r and dV/dt_f	from 20 % or 80 % to 80 % or 20 %	-	-	1	V/ns

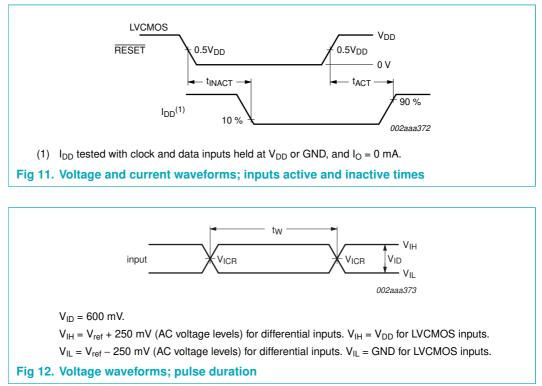

Philips Semiconductors

SSTUP32866

Philips Semiconductors

SSTUP32866

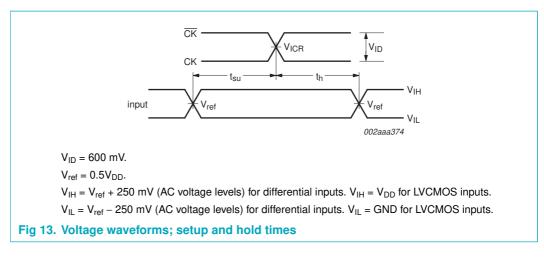

11. Test information

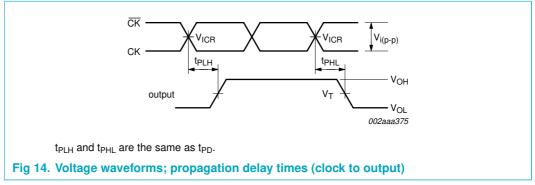

11.1 Parameter measurement information for data output load circuit

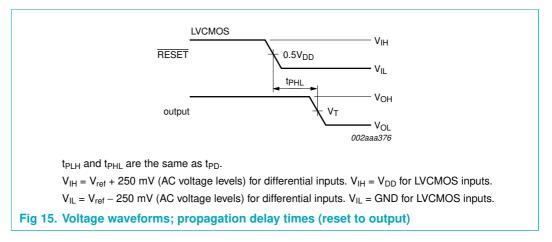
 V_{DD} = 1.8 V \pm 0.1 V.

All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz; Z₀ = 50 Ω ; input slew rate = 1 V/ns ± 20 %, unless otherwise specified.

The outputs are measured one at a time with one transition per measurement.

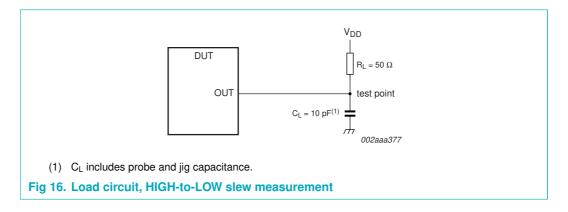


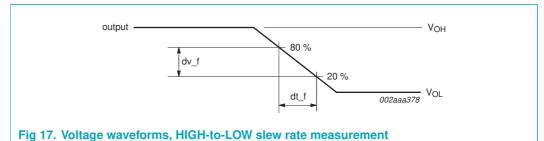


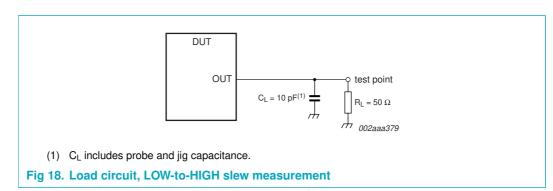

19 of 31

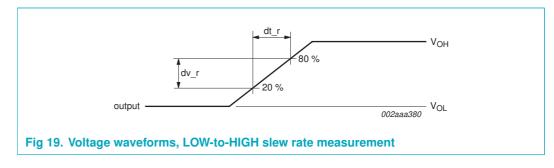
Philips Semiconductors

SSTUP32866

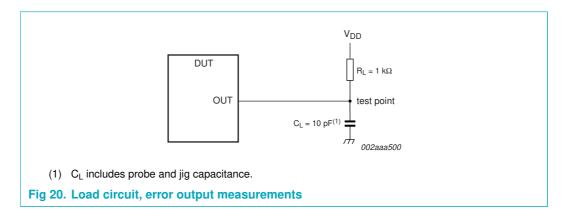


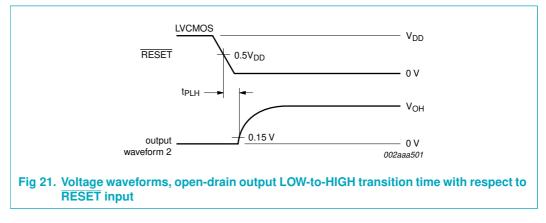

1.8 V DDR2-667/800 programmable registered buffer with parity

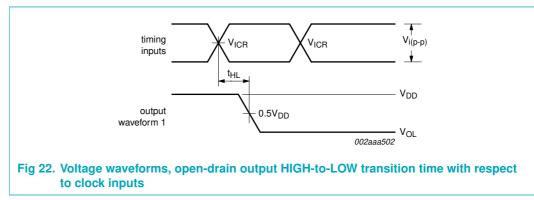

11.2 Data output slew rate measurement information


 V_{DD} = 1.8 V \pm 0.1 V.

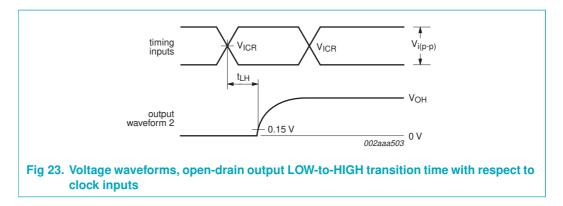
All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz; Z₀ = 50 Ω ; input slew rate = 1 V/ns ± 20 %, unless otherwise specified.

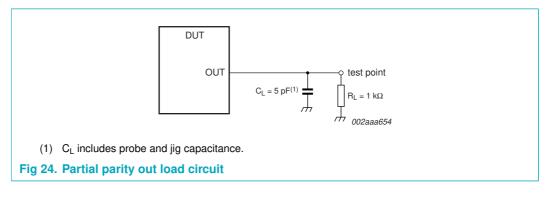


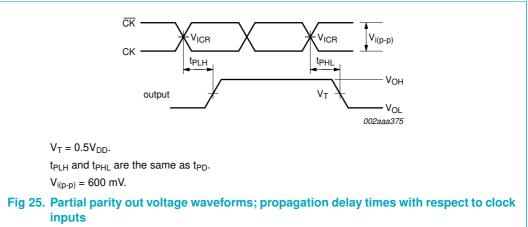


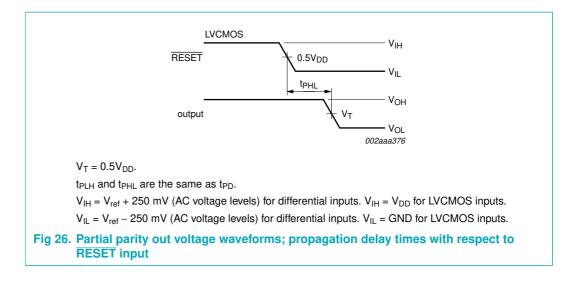

11.3 Error output load circuit and voltage measurement information

 V_{DD} = 1.8 V \pm 0.1 V.


All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz; Z₀ = 50 Ω ; input slew rate = 1 V/ns ± 20 %, unless otherwise specified.

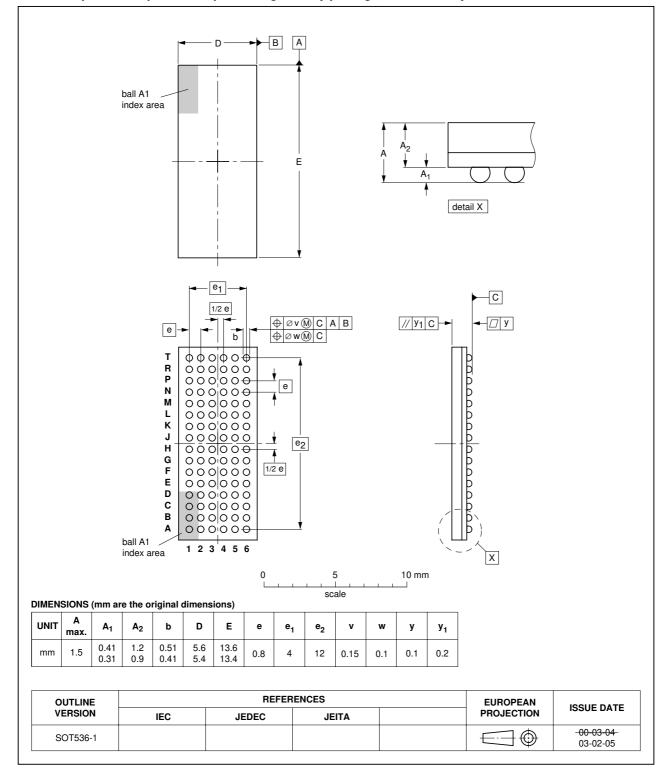

1.8 V DDR2-667/800 programmable registered buffer with parity




11.4 Partial parity out load circuit and voltage measurement information

 V_{DD} = 1.8 V \pm 0.1 V.

All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz; Z₀ = 50 Ω ; input slew rate = 1 V/ns ± 20 %, unless otherwise specified.



1.8 V DDR2-667/800 programmable registered buffer with parity

12. Package outline

LFBGA96: plastic low profile fine-pitch ball grid array package; 96 balls; body 13.5 x 5.5 x 1.05 mm SOT536-1

Fig 27. Package outline SOT536-1 (LFBGA96)