: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

RoHS compliant

Protective construction: Sealed type

FEATURES

1. Even with small form factor, sensitive enough for direct ICdriving
The dimensions of this high-density 4gap balanced armature are $31 \mathrm{~mm} \times$ $14 \mathrm{~mm} \times 11 \mathrm{~mm} 1.220$ inch $\times .551$ inch $\times .433$ inch. Despite this small size, high sensitivity is achieved by a mechanism that incorporates highefficiency polarized magnetic circuits along with our exclusive spring alignment method. With an minimum operating power of about 150 mW , nominal operating power of 240 mW , this relay can be directly driven by transistor or chip controllers.

1a1b/2a 8A polarized power relays

2. High switching capability

High contact pressure, low contact bounce, and forced separation structure that radically improves resistance to contact welding (1 Form A 1 Form B type equivalent to TV-3). Strong against lamp inductive loads, maximum switching capacity has reached 3,040 VA (8 A 380 V AC).
3. High breakdown voltage - Optimal for control in 250 V power circuits High breakdown voltage has been achieved. Between contacts and coil of 3,750 Vrms; Surge breakdown voltage between coil and contact of $6,000 \mathrm{~V}$, and between open contacts of 1,200 Vrms mean that these relays are suitable even for 250 V power circuit control.
4. Improved stability Conforms to all types of safety standards
Insulating distance of more than 3 mm .118 inch secured. Complies with Japan Electrical Appliance and Material Safety Law requirements for operating 200 V power supply circuits, and conforms with UL, CSA and VDE standards.
5. Latching types available In addition to single side stable types, convenient 2 coil latching types with memory functions are also available. Moreover, we offer 2 Form A specifications which, with double pole switching for applications such as 250 \checkmark power circuit switching, can enable safer designs.
6. Automatic cleaning possible The sealed design means that these relays can undergo immersion in automatic washing systems and are suitable for automatic soldering. Even in difficult environments, the contacts remain reliable.
7. Easy to design PC board patterns Features $4 / 10$ dual-in-line terminals. Because the lead spacing has a pitch greater than 7.54 mm .297 inch, designers can make easy adjustments with the width of the land size. This, along with the large insulation distance, simplifies the drawing of PC board patterns.
8. To improve soldering efficiency, preapplication of solder to the terminals is recommended
9. Sockets for PC board and soldering are available

ORDERING INFORMATION

ontact arrangement
1: 1 Form A 1 Form B
2: 2 Form A
Operating function
Nil: Single side stable
L2: 2 coil latching
Nominal coil voltage
DC 3, 5, 6, 9, 12, 24, 48 V
Contact material
F : AgSnO2 type contact

TYPES

Contact arrangement	Nominal coil voltage	Single side stable	2 coil latching
		Part No.	Part No.
1 Form A 1 Form B	3V DC	ST1-DC3V-F	ST1-L2-DC3V-F
	5V DC	ST1-DC5V-F	ST1-L2-DC5V-F
	6V DC	ST1-DC6V-F	ST1-L2-DC6V-F
	9V DC	ST1-DC9V-F	ST1-L2-DC9V-F
	12 V DC	ST1-DC12V-F	ST1-L2-DC12V-F
	24V DC	ST1-DC24V-F	ST1-L2-DC24V-F
	48 V DC	ST1-DC48V-F	ST1-L2-DC48V-F
2 Form A	3V DC	ST2-DC3V-F	ST2-L2-DC3V-F
	5V DC	ST2-DC5V-F	ST2-L2-DC5V-F
	6V DC	ST2-DC6V-F	ST2-L2-DC6V-F
	9V DC	ST2-DC9V-F	ST2-L2-DC9V-F
	12 V DC	ST2-DC12V-F	ST2-L2-DC12V-F
	24 V DC	ST2-DC24V-F	ST2-L2-DC24V-F
	48 V DC	ST2-DC48V-F	ST2-L2-DC48V-F

Standard packing: Carton: 50 pcs.; Case: 500 pcs.

* Terminal sockets available.

RATING

1. Coil data
1) Single side stable

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right. \text {) }} \end{gathered}$	Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
3V DC	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage (Initial)	75 mA	38Ω	Approx. 240 mW	$150 \% \mathrm{~V}$ of nominal voltage
5V DC			47 mA	105Ω		
6V DC			40 mA	150Ω		
9V DC			25 mA	360Ω		
12 V DC			20 mA	600Ω		
24V DC			10 mA	2,400 2		
48 V DC			4.7 mA	9,000 ${ }^{\text {a }}$		

2) 2 coil latching

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		perating nt $\left.0^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	$\begin{array}{r} \text { Coil re } \\ {[\pm 10 \%] \text { (at }} \end{array}$	stance $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Nomina p	perating er	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
			Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
3V DC	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	75 mA	75 mA	40Ω	40Ω	Approx. 240mW	Approx. 240mW	$150 \% \mathrm{~V}$ of nominal voltage
5V DC			45 mA	45 mA	110Ω	110Ω			
6V DC			37.5 mA	37.5 mA	155Ω	155Ω			
9V DC			25 mA	25 mA	360Ω	360Ω			
12 V DC			18.8 mA	18.8 mA	640Ω	640Ω			
24V DC			10 mA	10 mA	2,400	2,400 Ω			
48V DC			4.7 mA	4.7 mA	10,200	10,200			

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		1 Form A 1 Form B, 2 Form A
	Contact material		Au-flashed AgSnO_{2} type
	Contact resistance (Initial)		Max. $30 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
Rating	Max. switching power (resistive load)		3,040 VA, 150 W
	Max. switching voltage		380 V AC, 250 V DC
	Max. switching current		8 A
	Min. switching capacity (Reference value)*1		100 mA 5 V DC
Electrical characteristics	Insulation resistance (Initial) (at $25^{\circ} \mathrm{C}, 50 \%$ relative humidity)		Min. 1,000M Ω (at 500V DC) Measurement at same location as "Breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	1,200 Vrms for 1 min . (Detection current: 10 mA)
		Between contact sets	2,000 Vrms for 1 min . (Detection current: 10 mA)
		Between contact and coil	3,750 Vrms for 1 min . (Detection current: 10 mA)
	Surge breakdown voltage (Initial)*2		6,000 V (Between contact and coil)
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 15 ms [Max. 15 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.)
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 10 ms [Max. 15 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)
Mechanical characteristics	Shock resistance	Functional	Min. $196 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 2 mm (Detection time: $10 \mu \mathrm{~s}$.)
		Destructive	10 to 55 Hz at double amplitude of 3 mm
Expected life	Mechanical		Min. 10^{7} (at 180 times/min.)
Conditions	Conditions for operation, transport and storage ${ }^{\text {* }}$		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+140^{\circ} \mathrm{F}$; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
Unit weight			Approx. 10g . 353 oz

Notes: *1. This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2. Wave is standard shock voltage of $\pm 1.2 \times 50 \mu \mathrm{~s}$ according to JEC-212-1981
*3. The upper limit of the ambient temperature is the maximum temperature that can satisfy the coil temperature rise value. Refer to Usage, transport and storage conditions in NOTES.

3. Electrical life

Condition: Resistive load, ON : OFF=1s : 5s

Types	Switching capacity	No. of operations
1 Form A 1 Form B, 2 Form A	8 A 250 V AC	Min. 1×10^{5}

REFERENCE DATA

2. Coil temperature rise

3. Influence of adjacent mounting

CAD Data

Tolerance: $\pm 0.1 \pm .004$

General tolerance: $\pm 0.5 \pm .020$
Schematic (Bottom view)
Single side stable
1 Form A 1 Form B 2 Form A
2 coil latching

1 Form A 1 Form B
2 Form A

SAFETY STANDARDS

UL (Recognized)		CSA (Certified)		VDE (Certified)		TV rating (UL/CSA)	
File No.	Contact rating	File No.	Contact rating	File No.	Contact rating	File No.	Rating
E43028	8 A 250 V AC	LR26550	8A 250V AC	40017740	8 A 250 V AC ($\cos \phi=1.0)$	UL: E43028	TV-3
	5A 30V DC		5A 30V DC		5 A 30 V DC (0ms)	CSA: LR26550	TV-3
	1/4HP 125, 250V AC		1/4HP 125, 250V AC		4A 250V AC $(\cos \phi=0.4)$		

EN/IEC VDE Certified
INSULATION CHARACTERISTICS (IEC61810-1)

Item	Characteristics
Clearance/Creepage distance (IEC61810-1)	Min. 1.5/2.5mm
Category of protection (IEC61810-1)	RT III
Tracking resistance (IEC60112)	PTI 100
Insulation material group	III a
Over voltage category	II
Rated voltage	250V
Pollution degree	2
Type of insulation (Between contact and coil)	Basic insulation
Type of insulation (Between open contacts)	Micro disconnection

NOTES

1. For cautions for use, please read "GENERAL APPLICATION GUIDELINES".
2. PC board patterns for 2 coil latching

types

When applying relays in power supply operation circuits for finished products regulated by the Electrical Appliance and Material Safety Law, use the pattern shown below.

3. Soldering should be done under the following conditions: 1)
$250^{\circ} \mathrm{C} 482^{\circ} \mathrm{F}$ within 10 s
$300^{\circ} \mathrm{C} 572^{\circ} \mathrm{F}$ within 5 s
$350^{\circ} \mathrm{C} 662^{\circ} \mathrm{F}$ within 3 s
2) For automatic cleaning, the boiling method is recommended. Avoid ultrasonic cleaning which subjects the relays to high frequency vibrations, which may cause the contacts to stick. It is recommended that a fluorinated hydrocarbon or other alcoholic solvents be used.
4. When using, please be aware that the a contact and b contact sides of 1 Form A 1 Form B type may go on simultaneously at operate time and release time.

ACCESSORIES

RoHS compliant

TYPES

Product name	Part No.
Terminal socket for PC board	ST-PS
Terminal socket for soldering	ST-SS

FEATURES

1. Possible to fit or remove the chassis with one touch ($\mathbf{t}=\mathbf{0 . 6} \mathbf{~ m m}$ to 2.2 mm . 024 inch to .087 inch)
2. Easy design of PC board pattern
($2.54 \mathrm{~mm} \times 4$ pitch DIL terminal array)

3. High breakdown voltage.

SPECIFICATIONS

Item	Specifications
Breakdown voltage (Initial)	Between contact and coil: 4,000 Vrms for 1 min . (Detection current: 10 mA) Between contact and terminal: 2,000 Vrms for 1 min .
Insulation resistance (Initial)	Min. 1,000 M 2 between terminals (500V DC)
Heat resistance	$150^{\circ} \mathrm{C} 302^{\circ} \mathrm{F}$ for 1 hr
Max. continuous current	10 A
Relay insertion life	15 times
DIMENSIONS (mm inch)	m inch) The CAD data of the products with a CAD Data mark can be downloaded from: http://industrial.panasonic.com/ac/e/
Terminal socket for PC	ard Terminal socket for soldering

CAD Data

CAD Data

PRECAUTIONS FOR USE (SOCKET)

1. PC board mounting method PC board pattern

The terminal configuration is symmetrical on the left and right, so an arrow mark \uparrow is stamped on the socket to prevent misinsertion. We recommend printing the same arrow mark $\hat{\imath}$ on the component mounting side (side opposite from pattern) of the PC board. In this case, the terminal configuration becomes the terminal nos. noted near the drilling holes.
2. Chassis cutout

Chassis cutting dimensions

If the chassis hole is punched with a press, set so the release R on the front side (A side).
The range for chassis thickness is 0.6 to 2.2 mm . 024 to .087 inch.
3. Relay mounting and removal
(1) Align the directions of the relay and socket.

(2) Insert the relay all the way in, so it is securely in place.

(3) Press the part indicated by A in the B direction, and fasten by placing the hook on the relay.

(4) When removing the relay, completely release the hooks on both sides and pull the relay out.

Electromechanical Control Business Division
■ 1006, Oaza Kadoma, Kadoma-shi, Osaka 571-8506, Japan industrial.panasonic.com/ac/e/

