

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

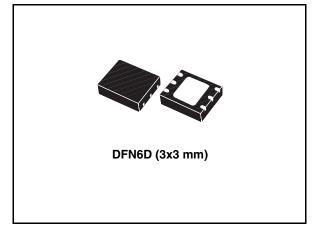
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ST1S06xx


Synchronous rectification with inhibit, 1.5 A, 1.5 MHz fixed or adjustable, step-down switching regulator

Features

- Step-down current mode PWM (1.5 MHz) DC-DC converter
- 2% DC output voltage tolerance
- Synchronous rectification
- Inhibit function
- Internal soft start
- Typical efficiency: > 90 %
- 1.5 A output current capability
- Not switching quiescent current: max 1.5 mA over temperature range
- $R_{DS(ON)}$ typ.150 m Ω
- Uses tiny capacitors and inductors
- Operative junction temp. 30 °C to 125 °C
- Available in DFN6D (3x3 mm) exposed pad

Description

The ST1S06xx is a step down DC-DC converter optimized for powering low-voltage digital core in HDD applications and, generally, to replace the high current linear solution when the power dissipation may cause an high heating of the application environment. It provides up to 1.5 A over an input voltage range of 2.7 V to 6 V. An high switching frequency (1.5 MHz) allows the use of tiny surface-mount components: as well as the resistor divider to set the output voltage value, only an inductor and two capacitors are required.

Besides, a low output ripple is guaranteed by the current mode PWM topology and by the use of low ESR SMD ceramic capacitors. The device is thermal protected and current limited to prevent damages due to accidental short circuit. The ST1S06xx is available in DFN6D (3x3 mm) package.

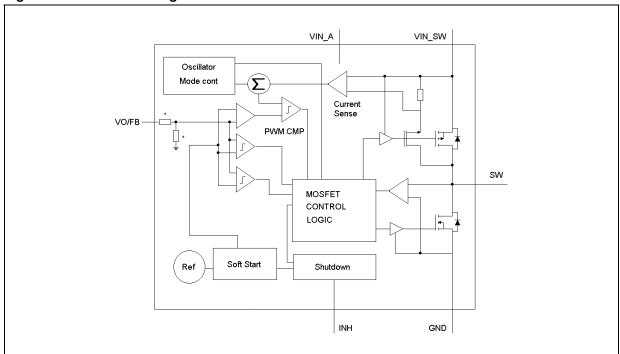
Table 1. Device summary

Part numbers	Part numbers Marking		Package
ST1S06	ST1S06	ST1S06PUR	DFN6D (3 x 3 mm)
ST1S06A	ST1S06A	ST1S06APUR	DFN6D (3 x 3 mm)
ST1S06XX12	1S0612	ST1S06PU12R	DFN6D (3 x 3 mm)
ST1S06XX33	1S0633	ST1S06PU33R	DFN6D (3 x 3 mm)

May 2009 Doc ID 12236 Rev 9 1/20

Contents ST1S06xx

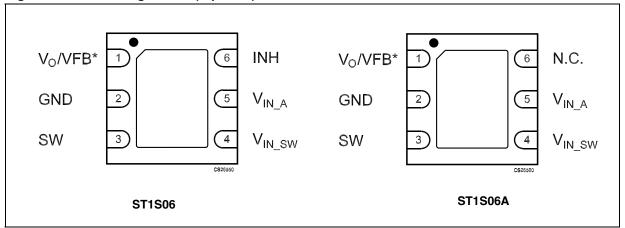
Contents


1	Diagram	. 3
2	Pin configuration	. 4
3	Maximum ratings	. 5
4	Electrical characteristics	. 6
5	Typical performance characteristics	. 9
6	Typical application	13
7	Application notes	14
8	Package mechanical data	15
9	Revision history	19

577

ST1S06xx Diagram

1 Diagram


Figure 1. Schematic diagram

Pin configuration ST1S06xx

2 Pin configuration

Figure 2. Pin configuration (top view)

 $^{^{\}star}$ Pin 1 is V_{FB} for ADJ version and V_{O} for Fixed version

Table 2. Pin description

Pin n°	Symbol	Note	
1	FB/V _O	Feedback voltage / output voltage	
2	GND	System ground	
3	SW	Switching pin	
4	V _{IN_SW}	Power supply for the mosfet switch	
5	V_{IN_A}	Power supply for analogic circuit	
6	V _{INH}	Inhibit pin to turn off the device	
		Exposed pad to be connected to GND	

ST1S06xx Maximum ratings

3 Maximum ratings

Table 3. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{IN_SW}	Positive power supply voltage	-0.3 to 7	V
V _{IN_A}	Positive power supply voltage	-0.3 to 7	٧
V _{INH}	Inhibit voltage	-0.3 to V _I + 0.3	٧
SWITCH voltage	Max. voltage of output pin	-0.3 to 7	V
V _{FB} /V _O	Feedback voltage	-0.3 to 2.5	V
V _O	Output voltage (for V _O > 1.6 V)	-0.3 to 6	٧
TJ	Max junction temperature	-40 to 150	°C
T _{STG}	Storage temperature range	-65 to 150	°C
T _{LEAD}	Lead temperature (soldering) 10 sec	260	°C

Note:

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

Table 4. Thermal data

Symbol	Parameter	Value	Unit
R _{thJA}	Thermal resistance junction-ambient	55	°C/W
R _{thJC}	Thermal resistance junction-case	10	°C/W

Electrical characteristics ST1S06xx

4 Electrical characteristics

 $V_{IN_SW}=V_{IN_A}=V_{INH}=5~V,~V_O=1.2~V,~C_I=4.7~\mu\text{F},~C_O=22~\mu\text{F},~L1=3.3~\mu\text{H},~T_J=-30~^\circ\text{C}~to~125~^\circ\text{C}~unless~otherwise~specified.}$ Typical values are referred to $T_J=25~^\circ\text{C}.$

Table 5. Electrical characteristics for ST1S06

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
FB	Feedback voltage		784	800	816	mV	
I _{FB}	V _{FB} pin bias current				600	nA	
VI	Minimum input voltage	I _O = 10mA to 1.5A	2.7			V	
	Quiescent current	V _{INH} > 1.2V			1.5	mA	
IQ	Quiescent current	V_{INH} < 0.4V, T_{J} = -30°C to 85°C			1	μΑ	
Io	Output current	V _I = 2.7 to 5.5V <i>Note 1</i>	1.5			Α	
		Device ON, V _I = 2.7 to 5.5V	1.3				
V _{INH}	Inhibit threshold	Device ON, V _I = 2.7 to 5V	1.2			V	
		Device OFF			0.4		
I _{INH}	Inhibit pin current				2	μΑ	
%V _O /ΔV _I	Reference line regulation	V _I = 2.7V to 5.5V <i>Note 1</i>		0.2	0.3	%V _O / ΔV _I	
%V _O /ΔI _O	Reference load regulation	I _O = 10mA to 1.5A <i>Note 1</i>		0.2	0.3	%V _O / ΔI _O	
PWMf _S	PWM switching frequency	V _{FB} = 0.8V	1.2	1.5	1.8	MHz	
D _{MAX}	Maximum duty cycle		80	87		%	
R _{DSON} -N	NMOS switch on resistance	I _{SW} = 750 mA		0.12		Ω	
R _{DSON} -P	PMOS switch on resistance	I _{SW} = 750 mA		0.15		Ω	
I _{SWL}	Switching current limitation	Note 1		2.3		Α	
	Efficiency Note 1	$I_O = 10$ mA to 100mA, $V_O = 3.3$ V	65			- %	
ν	Efficiency Note 1	$I_O = 100$ mA to 1.5A, $V_O = 3.3$ V	85	90		/0	
T _{SHDN}	Thermal shutdown		130	150		°C	
T _{HYS}	Thermal shutdown hysteresis			15		°C	
%V _O /ΔI _O	Load transient response	I_O = 100mA to 750mA, T_J = 25°C t_R = t_F ≥ 200ns, <i>Note 1</i>	-5		+5	%V _O	
%V _O /ΔI _O	Short circuit removal response	$I_O = 10$ mA to $I_O = $ short, $T_J = 25$ °C <i>Note 1</i>	-10		+10	%V _O	

Note: 1 Guaranteed by design, but not tested in production

 $V_{IN_SW}=V_{IN_A}=V_{INH}=5~V,~V_O=1.2~V,~C_I=4.7~\mu\text{F},~C_O=22~\mu\text{F},~L1=3.3~\mu\text{H},~T_J=-30~^\circ\text{C}~to~125~^\circ\text{C}~unless~otherwise~specified.}$ Typical values are referred to $T_J=25~^\circ\text{C}.$

Table 6. Electrical characteristics for ST1S06PM12

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
OUT	Output feedback pin		1.176	1.2	1.224	٧	
Io	I _O pin bias current	V _O = 1.5V		15	20	μΑ	
VI	Minimum input voltage	I _O = 10mA to 1.5A	2.7			V	
	Outroport surrent	V _{INH} > 1.2V			1.5	mA	
ΙQ	Quiescent current	V_{INH} < 0.4V, T_{J} = -30°C to 85°C			1	μΑ	
Io	Output current	V _I = 2.7 to 5.5V <i>Note 1</i>	1.5			Α	
		Device ON, V _I = 2.7 to 5.5V	1.3				
V_{INH}	Inhibit threshold	Device ON, V _I = 2.7 to 5V	1.2			٧	
		Device OFF			0.4		
I _{INH}	Inhibit pin current				2	μΑ	
$%V_{O}/\Delta V_{I}$	Reference line regulation	V _I = 2.7V to 5.5V <i>Note 1</i>		0.2	0.3	%V _O ΔV _I	
%V _O /ΔI _O	Reference load regulation	I _O = 10mA to 1.5A <i>Note 1</i>		0.2	0.3	%V _O ∆I _O	
PWMf _S	PWM switching frequency	V _{FB} = 0.8V	1.2	1.5	1.8	MHz	
D _{MAX}	Maximum duty cycle		80	87		%	
R _{DSON} -N	NMOS switch on resistance	I _{SW} = 750 mA		0.12		Ω	
R _{DSON} -P	PMOS switch on resistance	I _{SW} = 750 mA		0.15		Ω	
I _{SWL}	Switching current limitation	Note 1		2.3		Α	
	-m : N : 1	$I_O = 10$ mA to 100mA, $V_O = 1.2$ V	60			- %	
ν	Efficiency Note 1	$I_O = 100$ mA to 1.5A, $V_O = 1.2$ V	80	85			
T _{SHDN}	Thermal shutdown		130	150		°C	
T _{HYS}	Thermal shutdown hysteresis			15		°C	
$%V_{O}/\Delta I_{O}$	Load transient response	I_{O} = 100mA to 750mA, T_{J} = 25°C t_{R} = t_{F} ≥ 200ns, <i>Note 1</i>	-5		+5	%V _C	
$%V_{O}/\Delta I_{O}$	Short circuit removal response	$I_O = 10$ mA to $I_O = $ short, $T_J = 25$ °C <i>Note 1</i>	-10		+10	%V _C	

Note: 1 Guaranteed by design, but not tested in production

Electrical characteristics ST1S06xx

 $V_{IN_SW}=V_{IN_A}=V_{INH}=5~V,~V_O=3.3~V,~C_I=4.7~\mu\text{F},~C_O=22~\mu\text{F},~L1=3.3~\mu\text{H},~T_J=-30~^{\circ}\text{C}~to~125~^{\circ}\text{C}~unless~otherwise~specified.}$ Typical values are referred to $T_J=25~^{\circ}\text{C}.$

Table 7. Electrical characteristics for ST1S06PM33

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
OUT	Output feedback pin		3.23	3.3	3.37	٧	
Io	I _O pin bias current	V _O = 3.5V		15	20	μΑ	
VI	Minimum input voltage	I _O = 10mA to 1.5A	4.2			V	
	Quiaccent current	V _{INH} > 1.2V			1.5	mA	
IQ	Quiescent current	$V_{INH} < 0.4V, T_J = -30^{\circ}C \text{ to } 85^{\circ}C$			1	μΑ	
Io	Output current	V _I = 4.2 to 5.5V <i>Note 1</i>	1.5			Α	
		Device ON, $V_I = 4.2$ to 5.5V	1.3				
V _{INH}	Inhibit threshold	Device ON, V _I = 4.2 to 5V	1.2			V	
		Device OFF			0.4		
I _{INH}	Inhibit pin current				2	μΑ	
%V _O /ΔV _I	Reference line regulation	V _I = 4.2V to 5.5V <i>Note 1</i>		0.2	0.3	%V _O / ΔV _I	
%V _O /ΔI _O	Reference load regulation	I _O = 10mA to 1.5A <i>Note 1</i>		0.2	0.3	%V _O / ΔI _O	
PWMf _S	PWM switching frequency	V _{FB} = 0.8V	1.2	1.5	1.8	MHz	
D _{MAX}	Maximum duty cycle		80	87		%	
R _{DSON} -N	NMOS switch on resistance	I _{SW} = 750 mA		0.12		Ω	
R _{DSON} -P	PMOS switch on resistance	I _{SW} = 750 mA		0.15		Ω	
I _{SWL}	Switching current limitation	Note 1		2.3		Α	
	Ett.	$I_O = 10$ mA to 100mA, $V_O = 3.3$ V	65			%	
ν	Efficiency Note 1	$I_O = 100$ mA to 1.5A, $V_O = 3.3$ V	85	90			
T _{SHDN}	Thermal shutdown		130	150		°C	
T _{HYS}	Thermal shutdown hysteresis			15		°C	
%V _O /ΔI _O	Load transient response	I_O = 100mA to 750mA, T_J = 25°C t_R = t_F ≥ 200ns, <i>Note 1</i>	-5		+5	%V _O	
%V _O /ΔI _O	Short circuit removal response	$I_O = 10$ mA to $I_O = $ short, $T_J = 25$ °C <i>Note 1</i>	-10		+10	%V _O	

Note: 1 Guaranteed by design, but not tested in production

5 Typical performance characteristics

 V_{IN_SW} = V_{IN_A} = V_{INH} = 5 V, C_I = 4.7 μ F, C_O = 22 μ F, L1 = 3.3 μ H, unless otherwise specified. Typical values are referred to 25 °C.

Figure 3. Efficiency vs. output current

ν(%) 95 90 85 80 75 70 65 60 55 50 45 $V_0 = 1.2V$, $V_{CC} = 3.3V$ 40 500 1000 $I_0(mA)$

Figure 4. Efficiency vs. output current

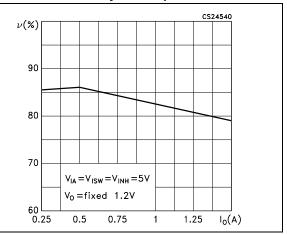


Figure 5. Efficiency vs. output current

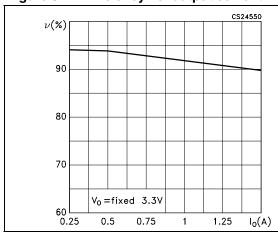


Figure 6. Efficiency vs. output current

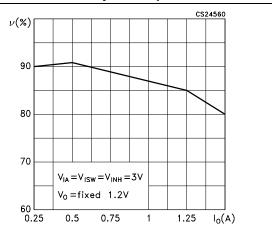


Figure 7. Efficiency vs. output current

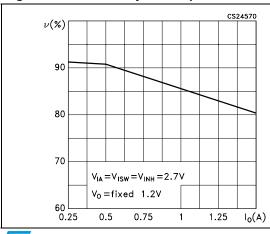


Figure 8. Efficiency vs. inductor

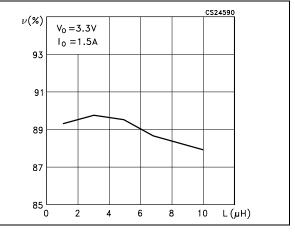
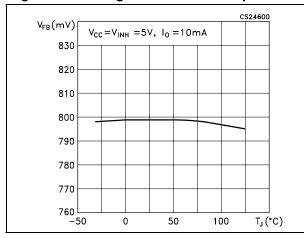



Figure 9. Voltage feedback vs. temperature Figure 10. Input voltage vs. output voltage

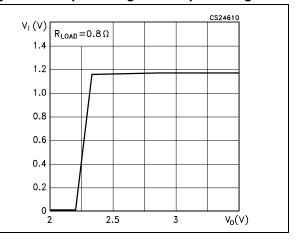
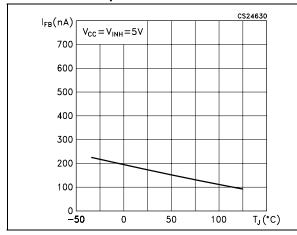



Figure 11. Feedback pin bias current vs. temperature

Figure 12. Quiescent current vs. temperature

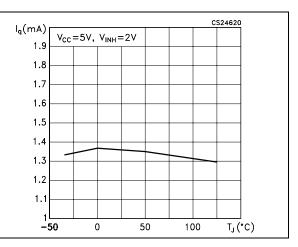
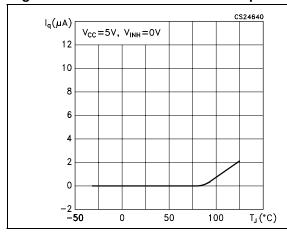



Figure 13. Quiescent current vs. temperature Figure 14. Inhibit voltage vs. input voltage

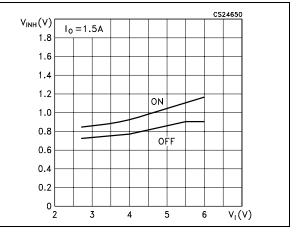


Figure 15. Inhibit voltage vs. temperature

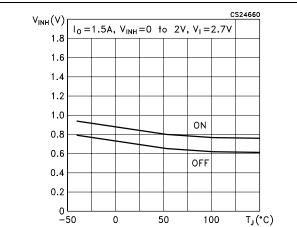


Figure 16. Inhibit voltage vs. temperature

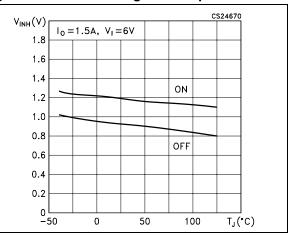


Figure 17. Line regulation vs. temperature

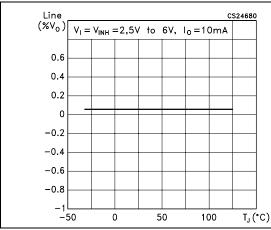


Figure 18. Load regulation vs. temperature

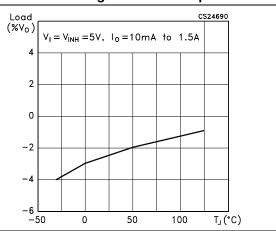


Figure 19. PWM switching frequency vs. temperature

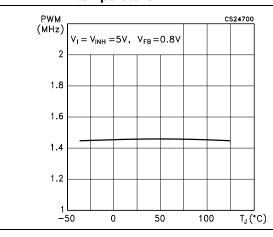


Figure 20. NMOS switch on resistance vs. temperature

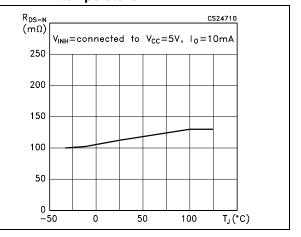
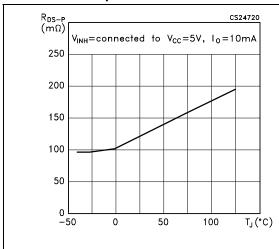



Figure 21. PMOS switch on resistance vs. temperature

Figure 22. Inhibit transient

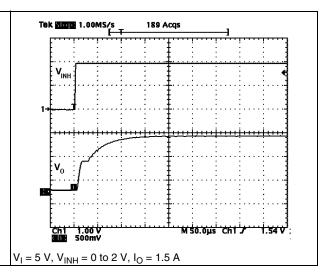
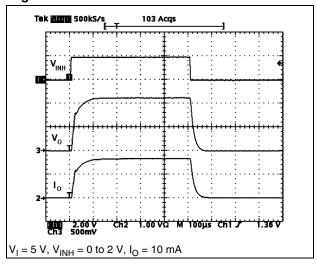
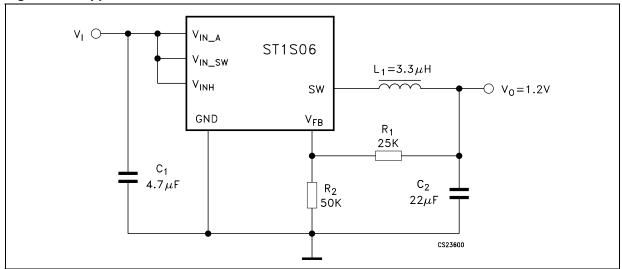



Figure 23. Inhibit transient



577

ST1S06xx Typical application

6 Typical application

Figure 24. Application circuit

Application notes ST1S06xx

7 Application notes

The ST1S06xx is an adjustable current mode PWM step-down DC-DC converter with internal 1.5 A power switch, packaged in a 6-lead DFN 3x3.

It's a complete 1.5 A switching regulator with its internal compensation eliminating additional component.

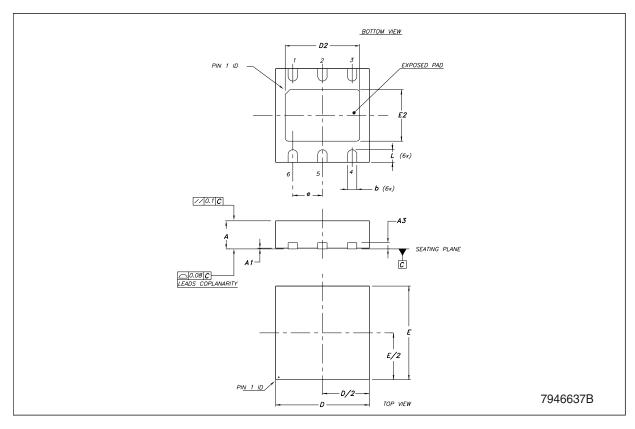
The constant frequency, current mode, PWM architecture and stable operation with ceramic capacitors results in low, predictable output ripple. However, in order to maximize the power conversion efficiency with light load, the regulator reduces automatically the switching frequency when the output load becomes less than 250 mA typically.

To clamp the error amplifier reference voltage a soft start control block generating a voltage ramp, has been implemented. Besides an on-chip power on reset of $50 = 100~\mu s$ ensure the proper operation when switching on the power supply. Other circuits fitted to the device protection are the thermal shut down block which turn off the regulator when the junction temperature exceeds 150 °C typically and the cycle-by-cycle current limiting that provides protection against shorted outputs.

Being the ST1S06xx an adjustable regulator, the output voltage is determined by an external resistor divider. The desired value is given by the following equation:

$$V_0 = V_{FB} [1 + R_1 / R_2]$$

To make the device working, only few component are required: an inductor and two capacitors and the resistor divider. The chosen inductor must be able to not saturate at the peak current level. Besides, its value can be selected keeping in account that a large inductor value increases the efficiency at low output current and reduces output voltage ripple, while a smaller inductor can be chosen when it is important to reduce the package size and the total cost of the application. Finally, the ST1S06xx has been designed to work properly with X5R or X7R SMD ceramic capacitors both at the input and at the output. this kind of capacitors, thanks to their very low series resistance (ESR), minimize the output voltage ripple. Other low ESR capacitors can be used according to the need of the application without invalidate the right functioning of the device.


8 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

DFN6D (3x3 mm) mechanical data

Dim.	mm.			inch.		
Dilli.	Min.	Тур.	Max.	Min.	Тур.	Max.
А	0.80		1.00	0.031		0.039
A1	0	0.02	0.05	0	0.001	0.002
А3		0.20			0.008	
b	0.23		0.45	0.009		0.018
D	2.90	3.00	3.10	0.114	0.118	0.122
D2	2.23		2.50	0.088		0.098
Е	2.90	3.00	3.10	0.114	0.118	0.122
E2	1.50		1.75	0.059		0.069
е		0.95			0.037	
L	0.30	0.40	0.50	0.012	0.016	0.020

Tape and reel QFNxx/DFNxx (3x3 mm) mechanical data

Dim		mm.			inch.	
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			18.4			0.724
Ao		3.3			0.130	
Во		3.3			0.130	
Ko		1.1			0.043	
Ро		4			0.157	
Р		8			0.315	

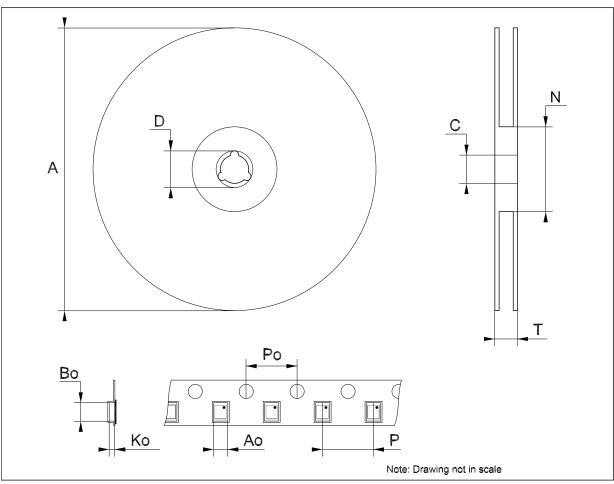


Figure 25. DFN6 (3x3 mm) footprint recommended data

577

ST1S06xx Revision history

9 Revision history

Table 8. Document revision history

Date	Revision	Changes	
08-May-2006	1	Initial release.	
06-Jun-2006	2	Table 3 updated.	
16-Oct-2006	3	Add new mechanical data DFN6D.	
09-Nov-2006	4	Mechanical data information for DFN6 update.	
03-Apr-2007	5	Tape and reel updated.	
12-Mar-2008	6	Added: Table 1 on page 1.	
15-Apr-2008	7	Modified: Figure 6 on page 9.	
10-Apr-2009	8	Modified: <i>Table 3 on page 5</i> .	
06-May-2009	9	Added: marking Table 1 on page 1.	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com