

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

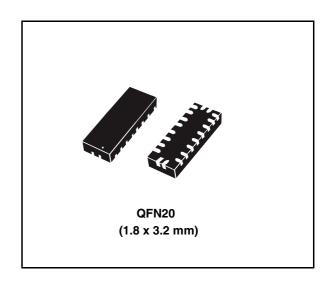
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


8-bit dual supply level translator without direction control pin

Features

- 46 MHz: 92 Mbps data transfer when V_{CCA} = 3 6 V
- Bidirectional level translation without direction control pin
- Wide voltage range of 1.65 V to 3.6 V for both V_{CCA} and V_{CCB}
- Configurable voltage translation:
 - V_{CCA} can be ≥ V_{CCB} or V_{CCA} can be ≤ V_{CCB}
- Partial power down support when V_{CCB} is grounded, all the outputs will automatically go to high impedance.
- Low quiescent current (5 µA)
- ESD performance:
 - ±4 kV HBM (human body model)

Applications

- Low voltage system level translation
- Mobile phones
- Other mobile devices

Description

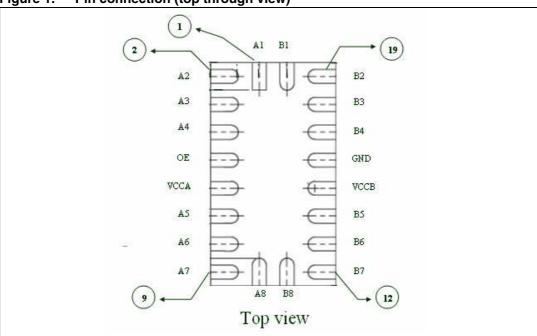
The ST2189 is an 8-bit dual supply level translator which provides the level shifting capability to allow data transfer in a multi-voltage system. Externally applied voltages, V_{CCB} and V_{CCA} , set the logic levels on either side of the device. Its architecture allows bidirectional level translation without a control pin.

The ST2189 accepts V_{CCA} from 1.65 V to 3.6 V and V_{CCB} from 1.65 V to 3.6 V, making it ideal for data transfer between low-voltage ASICs/PLD and higher voltage systems. This device has a tristate output mode which can be used to disable all I/Os.

In power down mode feature - when V_{CCB} supply is grounded, all I/Os go to high impedance automatically, with very low quiescent current on V_{CCA} supply.

Table 1. Device summary

Order code	Package	Packing		
ST2189QTR	QFN20 (3.2 x 1.8 mm)	Tape and reel		


August 2009 Doc ID 15918 Rev 1 1/21

Pin settings ST2189

1 Pin settings

1.1 Pin connection

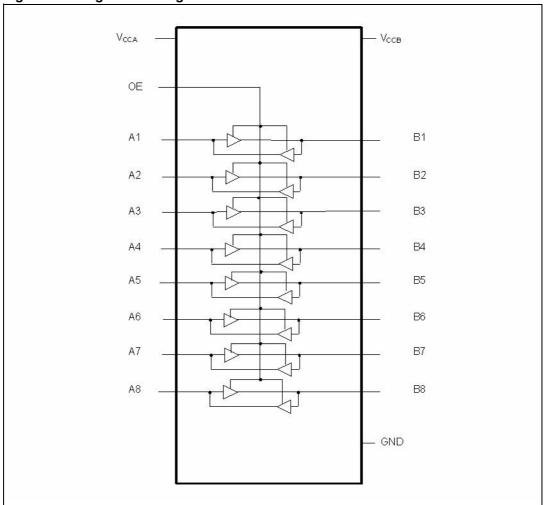
Figure 1. Pin connection (top through view)

1.2 Pin description

Table 2. Pin description

Pin number	Туре	Side	Symbol	Name and function
1	I/O	V _{CCA}	A1	Input/output 1. Referenced to V _{CCA}
2	I/O	V _{CCA}	A2	Input/output 2. Referenced to V _{CCA}
3	I/O	V _{CCA}	A3	Input/output 3. Referenced to V _{CCA}
4	I/O	V _{CCA}	A4	Input/output 4. Referenced to V _{CCA}
5	-	V _{CCA}	OE	Output enabled. Pull OE low to put all output to tri-state mode. Referenced to V _{CCA}
6	1	V _{CCA}	V _{CCA}	A port supply voltage. $V_{CCA} \le V_{CCB}$ or $V_{CCA} \ge V_{CCB}$
7	I/O	V _{CCA}	A5	Input/output 5. Referenced to V _{CCA}

ST2189 Pin settings


Table 2. Pin description (continued)

Pin number	Туре	Side	Symbol	Name and function
8	I/O	V _{CCA}	A6	Input/output 6. Referenced to V _{CCA}
9	I/O	V _{CCA}	A7	Input/output 7. Referenced to V _{CCA}
10	I/O	V _{CCA}	A8	Input/output 8. Referenced to V _{CCA}
11	I/O	V _{CCB}	B8	Input/output 8. Referenced to V _{CCB}
12	I/O	V _{CCB}	В7	Input/output 7. Referenced to V _{CCB}
13	I/O	V _{CCB}	В6	Input/output 6. Referenced to V _{CCB}
14	I/O	V _{CCB}	B5	Input/output 5. Referenced to V _{CCB}
15	-	V _{CCB}	V _{CCB}	B port supply voltage. $V_{CCB} \ge V_{CCA}$ or $V_{CCB} \le V_{CCA}$
16	-	-	GND	Ground
17	I/O	V _{CCB}	B4	Input/output 4. Referenced to V _{CCB}
18	I/O	V _{CCB}	В3	Input/output 3. Referenced to V _{CCB}
19	I/O	V _{CCB}	B2	Input/output 2. Referenced to V _{CCB}
20	I/O	V _{CCB}	B1	Input/output 1. Referenced to V_{CCB}

Logic diagram ST2189

2 Logic diagram

Figure 2. Logic block diagram

ST2189 Logic diagram

2.1 Device block diagram

Figure 3. ST2189 block diagram

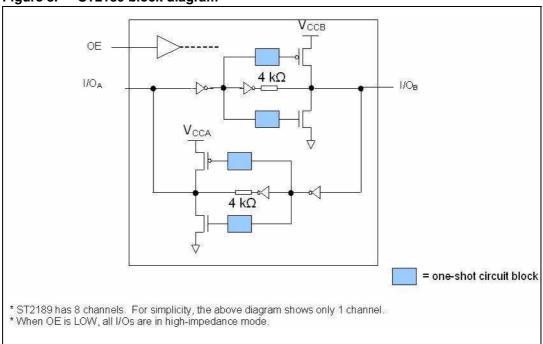
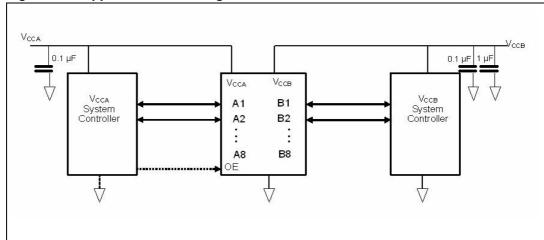



Figure 4. Application block diagram

3 Supplementary notes

3.1 Driver requirement

It must be ensured that the driver is able to source and sink a minimum of 1mA current on both sides of the device. The device requires the driver to source/sink a maximum current of $(V_{CC}/4)$ mA to/from the weak 4 k Ω output buffer in order to change the state of the output.

3.2 Load driving capability

To support the level translation without direction pin architecture, the one-shot transistor at the output side is only turned ON during state transition. After the one-shot transistor is turned OFF, only the 4 k Ω pull-up/down resistor maintains the state of the output. As a result, resistive load or pull-up resistor less than 50 k Ω is not recommended.

3.3 Ensuring low current consumption during off state

The OE pin can be tied to the enable signal which is driving the enable pin of the slave device to ensure that the device will turn off and put all I/Os to tri-state mode whenever the slave device is not needed. On the event that the enable signal driving into the slave device is active low, the signal going into the OE pin for ST2189 (active high) needs to be inverted accordingly.

Alternatively, a pull-down resistor can be added to the V_{CCB} supply. This will ensure that the V_{CCB} supply does not float whenever the supply is turned off. All the I/Os go to high impedance automatically when this happens.

3.4 Truth table

6/21

Table 3. Truth table

Enable	Bidirectional Input/Output					
OE	I/O _{VCCB}	I/O _{VCCA}				
H ⁽¹⁾	H ⁽²⁾	H ⁽¹⁾				
H ⁽¹⁾	L	L				
L	High-Z ⁽³⁾	High-Z ⁽³⁾				

- 1. High level V_{CCA} power supply referred.
- 2. High level V_{CCB} power supply referred.
- 3. Z = High impedance.

ST2189 Maximum ratings

4 Maximum ratings

Stressing the device above the rating listed in the "absolute maximum ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 4. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CCA}	Supply voltage	-0.3 to 4.6	V
V _{CCB}	Supply voltage	-0.3 to 4.6	٧
V _{OE}	DC control intput voltage	-0.3 to 4.6	٧
V _{I/OVCCA}	DC I/O _{VCCA} input voltage (OE = GND or V _{CCA})	-0.3 to 4.6	٧
V _{I/OVCCB}	DC I/O _{VCCB} input voltage (OE = GND or V _{CCA})	-0.3 to 4.6	٧
I _{IK}	DC input diode current	-20	mA
I _{I/OVCCA}	DC output current	±25	mA
I _{I/OVCCB}	DC output current	±25	mA
T _{STG}	Storage temperature	-65 to 150	°C
T _L	Lead temperature (10 seconds)	300	°C
ESD	Electrostatic discharge protection (HBM)	±4	kV

4.1 Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Min.	Туре	Max.	Unit
V _{CCA}	Supply voltage	1.65	-	3.6	V
V _{CCB}	Supply voltage	1.65	-	3.6	V
V _I	Input voltage (OE output enable pin,V _{CCA} power supply reference)	0	-	V _{CCA}	V
V _{I/OVCCA}	I/O _{VCCA} voltage	0	-	V _{CCA}	V
V _{I/OVCCB}	I/O _{VCCB} voltage	0	-	V _{CCB}	V
T _{OP}	Operating temperature	-40	-	85	°C
dt/dV	Input rise and fall time	-	-	1	ns/V

Electrical characteristics ST2189

5 Electrical characteristics

Device electrical characteristics over recommended operating conditions (unless otherwise noted). All typical values are at T_A = 25 °C.

Table 6. DC characteristics

						Va	lue		
Symbol	Parameter	V _{CCA}	V _{CCB}	Test condition	T _A =	25 °C	-40 to	85 °C	Unit
					Min	Max	Min	Max	
		1.65			1.2	-	1.2	-	
	High level	1.8			1.3	-	1.3	-	
V_{IHA}	input voltage	2.5	1.65 to 3.6		1.65	-	1.65	-	V
	(I/O _{VCCA})	3.0			2.1	-	2.1	-	
		3.6			2.6	-	2.6	-	
	Low level	1.65			-	0.3	-	0.3	
		1.8			-	0.4	-	0.4	
V_{ILA}	input voltage	2.5	1.65 to 3.6		-	0.55	-	0.55	V
	(I/O _{VCCA)}	3.0			-	0.85	-	0.85	
		3.6			-	0.95	-	0.95	
			1.65		1.2	-	1.2	-	
	High level		1.8		1.3	-	1.3	-	
V_{IHB}	input voltage	1.65 to 3.6	2.5		1.65	-	1.65	-	V
	(I/O _{VCCB})		3.0		2.1	-	2.1	-	
			3.6		2.6	-	2.6	-	
			1.65		-	0.3	-	0.3	
	Low level		1.8		-	0.4	-	0.4	
V_{ILB}	input voltage	1.65 to 3.6	2.5		-	0.55	-	0.55	V
	(I/O _{VCCB})		3.0		-	0.85	-	0.85	
			3.6		-	0.95	-	0.95	
		1.65			1.2	-	1.2	-	
	High level	1.8			1.3	-	1.3	-	
V _{IH-OE}	input voltage (OE)	2.5	1.65 to 3.6		1.4	-	1.4	-	٧
		3.0	3.0		1.65	-	1.65	-	
		3.6			2.1	-	2.1	-	

Table 6. DC characteristics (continued)

	DC Charac					Va	lue		
Symbol	Parameter	V _{CCA}	V _{CCB}	Test condition	T _A = 3	25 °C	-40 to	85 °C	Unit
					Min	Max	Min	Max	
		1.65			-	0.3	-	0.3	
	Low level	1.8	1.05 4-		-	0.4	-	0.4	
$V_{\text{IL-OE}}$	input voltage	2.5	1.65 to 3.6		-	0.55	-	0.55	V
	(OE)	3.0			-	0.85	-	0.85	
		3.6			-	0.95	-	0.95	
V _{OHA}	High level output voltage (I/O _{VCCA})	1.65 to	1.65 to	ΙΟ= -60 μΑ	0.7 V _{CCA}	-	0.7 V _{CCA}	-	V
V _{OLA}	Low level output voltage (I/O _{VCCA})	3.6	3.6	ΙΟ= +60 μΑ	-	0.4	-	0.4	V
V _{OHB}	High level output voltage (I/O _{VCCB})	1.65 to	1.65 to	ΙΟ= -60 μΑ	0.7 V _{CCB}	-	0.7 V _{CCB}	-	V
V _{OLB}	Low level output voltage (I/O _{VCCB})	3.6	3.6	ΙΟ= + 60 μΑ	-	0.4	-	0.4	V
I _{OE}	Control input leakage current (OE)	1.65 to 3.6	1.65 to 3.6	V _I = GND or V _{CCA}	-	0.2	-	2	μА
	High impedance I/O leakage	1.65 to	1.65 to	OE = GND; I/O _{VCCA} = High I/O _{VCCB} = Low	1	0.2	-	2	μΑ
I _{IO_LKG}	current (I/O _{VCCA} , I/O _{VCCB})	3.6	3.6	$OE = GND$ $I/O_{VCCA} = Low,$ $I/O_{VCCB} = High$	-	0.2	-	2	μΑ
I _{QVCCB}	Quiescent supply current V _{CCB}	1.65 to 3.6	1.65 to 3.6	OE = V _{CCA} I/O = Hi-Z	-	0.5	-	5	μА
	Quiescent	1.65 to 3.6	1.65 to 3.6	OE = V _{CCA}	-	5	-	7	
IQVCCA	supply current V _{CCA}	1.65 to 3.6	0	I/O = Hi-Z	-	0.3	-	3	μΑ
I _{OE} -	High impedance quiescent supply current VCCB	1.65 to 3.6	1.65 to 3.6	OE = GND I/O = Hi-Z	-	0.5	-	5	μА

Electrical characteristics ST2189

Table 6. DC characteristics (continued)

Symbol			V _{CCA} V _{CCB}	Test condition	Value				
	Parameter	V _{CCA}			T _A = 25 °C		-40 to 85 °C		Unit
					Min	Max	Min	Max	
I _{OE-VCCA}	High 1.65 to impedance 3.6	1.65 to 3.6	OE = GND	-	0.5	-	5		
	quiescent supply current V _{CCA}	1.65 to 3.6	0	I/O = Hi-Z	-	0.3	-	3	μΑ

5.1 AC characteristics

Table 7. For test conditions: V_{CCA} = 1.65 V (load C_L = 15 pF; driver tr = $t_f \le 2$ ns) overtemperature range -40 °C to 85 °C

Symbol	Parameter		V _{CCB} = 1	.65 V - 2.5 V	V _{CCB} = 2.	Unit	
Cymbol	Farameter	Min	Max	Min	Max	Ollit	
t _{RVCCB}	Output rise time I/O _{VCCB}		-	2.7	-	1.6	ns
t _{FVCCB}	Output fall time I/O _{VCCB}		-	1.8	-	1.2	ns
t _{RVCCA}	Output rise time I/O _{VCCA}		-	3.0	-	3.0	ns
t _{FVCCA}	Output fall time I/O _{VCCA}		-	1.8	-	1.6	ns
tuovooa	Propagation delay time	t _{PLH}	-	5.9	-	4.5	ns
t _{I/OVCCA} - VCCB	I/O _{VCCA-LH} to I/O _{VCCB-LH} I/O _{VCCA-HL} to I/O _{VCCB-HL}	t _{PHL}	-	4.0	-	4.0	ns
tuovoon	Propagation delay time	t _{PLH}	-	6.2	-	5.8	ns
t _{I/OVCCB} - VCCA	I/O _{VCCB-LH} to I/O _{VCCA-LH} I/O _{VCCB-HL} to I/O _{VCCA-HL}	t _{PHL}	-	4.3	-	3.7	ns
t _{PZL} t _{PZH}	Output enable time		-	20	-	20	ns
t _{PLZ} t _{PHZ}	Output disable time		-	160	-	180	ns
D	Data rate ⁽¹⁾		28	-	32	-	MHz
D _R	Data rate: /	Data	56	-	64	-	Mbps

Data rates are measured at worst case condition when all 8 channels are switching at the same time. Data rate is guaranteed based on the condition that output I/O signal rise/fall time is less than 15% of period of input I/O signal; input I/O signal is at 50% duty-cycle and output I/O signal duty-cycle deviation is less than 50% ± 10%.

Table 8. For test conditions: V_{CCA} = 2.5 V (load C_L = 15 pF; driver t_r = $t_f \le 2$ ns) overtemperature range -40 °C to 85 °C

Symbol	Parameter		V _{CCB} = 1	$V_{CCB} = 1.65V - 2.5 V$		V _{CCB} = 2.7V - 3.6 V	
Symbol	Parameter	Min	Max	Min	Max	Unit	
t _{RVCCB}	Output rise time I/O _{VCCB}		-	2.5	-	1.4	ns
t _{FVCCB}	Output fall time I/O _{VCCB}		-	1.6	-	1.2	ns
t _{RVCCA}	Output rise time I/O _{VCCA}		-	2.1	-	2.0	ns
t _{FVCCA}	Output fall time I/O _{VCCA}		-	1.4	-	1.4	ns
tuavaa	Propagation delay time	t _{PLH}	-	4.7	-	3.3	ns
t _{I/OVCCA} - VCCB	I/O _{VCCA-LH} to I/O _{VCCB-LH} I/O _{VCCA-HL} to I/O _{VCCB-HL}	t _{PHL}	-	2.9	-	2.6	ns
tuousen	Propagation delay time	t _{PLH}	-	4.3	-	3.8	ns
t _{I/OVCCB} - VCCA	I/O _{VCCB-LH} to I/O _{VCCA-LH} I/O _{VCCB-HL} to I/O _{VCCA-HL}	t _{PHL}	-	3.3	-	2.8	ns
t _{PZL} t _{PZH}	Output enable time		-	25	-	12	ns
t _{PLZ} t _{PHZ}	Output disable time		-	150	-	180	ns
D	Data rata(1)	Clock	40	-	42	-	MHz
D _R	Data rate ⁽¹⁾ Data		80	-	84	-	Mbps

Data rates are measured at worst case condition when all 8 channels are switching at the same time. Data rate is
guaranteed based on the condition that output I/O signal rise/fall time is less than 15% of period of input I/O signal; input I/O
signal is at 50% duty-cycle and output I/O signal duty-cycle deviation is less than 50% ± 10%.

Electrical characteristics ST2189

Table 9. For test conditions: V_{CCA} = 3.6 V (load C_L = 15 pF; driver t_r = $t_f \le 2$ ns) overtemperature range -40 °C to 85 °C

Symbol	Parameter		V _{CCB} = 1	$V_{CCB} = 1.65 \text{ V} - 2.5 \text{ V}$		V _{CCB} = 2.7 V - 3.6 V	
Symbol	Parameter	Min	Max	Min	Max	Unit	
t _{RVCCB}	Output rise time I/O _{VCCB}		-	2.5	-	1.4	ns
t _{FVCCB}	Output fall time I/O _{VCCB}		-	1.5	-	1.2	ns
t _{RVCCA}	Output rise time I/O _{VCCA}		-	1.7	-	1.7	ns
t _{FVCCA}	Output fall time I/O _{VCCA}		-	1.4	-	1.4	ns
tuavaa	Propagation delay time	t _{PLH}	-	4.4	-	3.0	ns
t _{I/OVCCA} - VCCB	I/O _{VCCA-LH} to I/O _{VCCB-LH} I/O _{VCCA-HL} to I/O _{VCCB-HL}	t _{PHL}	-	2.6	-	2.2	ns
tuavaan	Propagation delay time	t _{PLH}	-	3.8	-	3.0	ns
t _{I/OVCCB} - VCCA	I/O _{VCCB-LH} to I/O _{VCCA-LH} I/O _{VCCB-HL} to I/O _{VCCA-HL}	t _{PHL}	-	3.0	-	2.3	ns
t _{PZL} t _{PZH}	Output enable time		-	20	-	10	ns
t _{PLZ} t _{PHZ}	Output disable time		-	150	-	160	ns
D	Data rate ⁽¹⁾	Clock	43	-	46	-	MHz
D _R	Dala fale.	Data	86	-	92	-	Mbps

Data rates are measured at worst case condition when all 8 channels are switching at the same time. Data rate is
guaranteed based on the condition that output I/O signal rise/fall time is less than 15% of period of input I/O signal; input I/O
signal is at 50% duty-cycle and output I/O signal duty-cycle deviation is less than 50% ± 10%.

5.2 Capacitance characteristics

Table 10. Capacitance characteristics

	Parameter	Value							
Symbol		V _{CCA} (V)	V _{CCB} (V)	T _A = 25 °C			-40 to 85 °C		Unit
				Min	Тур	Max	Min	Max	
C _{INB}	Input capacitance	Open	Open	-	12	-	-	-	pF
C _{I/O-VCCA}	Input/output capacitance for V _{CCA} -side	1.65 - 3.6	1.65 - 3.6	-	12	-	-	-	pF
C _{I/O-VCCB}	Input/output capacitance for V _{CCB} -side	1.65 - 3.6	1.65 - 3.6	-	12	-	-	-	pF

ST2189 Test circuit

6 Test circuit

Figure 5. Test circuit

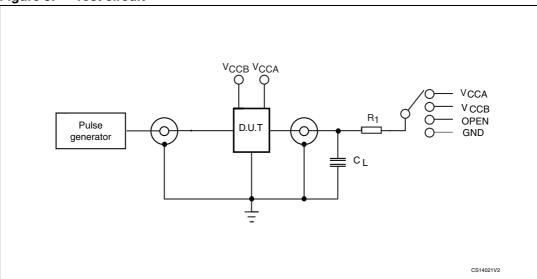
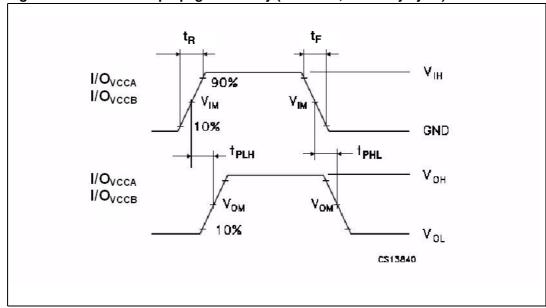


Table 11. Test circuit switches

Test	C _L	R ₁	Switch
t _{PLH} , t _{PHL}	15 pF	20 kΩ	Open
t _r , t _f	15 pF	20 kΩ	Open
t _{PZL} , t _{PLZ}	15 pF	20 kΩ	V _{CCA} or V _{CCB}
t _{PZH} , t _{PHZ}	15 pF	20 kΩ	GND


Waveforms ST2189

7 Waveforms

Table 12. Waveform symbol value

	I/O _{VCCA} -	> I/O _{VCCB}	I/O _{VCCB} -> I/O _{VCCA}		
Symbol	V _{CCB} 1.65 V - 2.5V	V _{CCB} 2.7 V - 3.6 V	V _{CCA} 1.65 V - 2.5 V	V _{CCA} 2.7 V - 3.6 V	
V _{IH}	V _{CCA}	V _{CCA}	V _{CCB}	V _{CCB}	
V _{IM}	50% V _{CCA}	50% V _{CCA}	50% V _{CCB}	50% V _{CCB}	
V _{OM}	50% V _{CCB}	50% V _{CCB}	50% V _{CCA}	50% V _{CCA}	
V _X	V _{OL} + 0.15V	V _{OL} + 0.3V	V _{OL} + 0.15V	V _{OL} + 0.3V	
V _Y	V _{OH} - 0.15V	V _{OH} - 0.3V	V _{OH} - 0.15V	V _{OH} - 0.3V	

Figure 6. Waveform - propagation delay (f = 1 MHz, 50% duty cycle)

ST2189 Waveforms

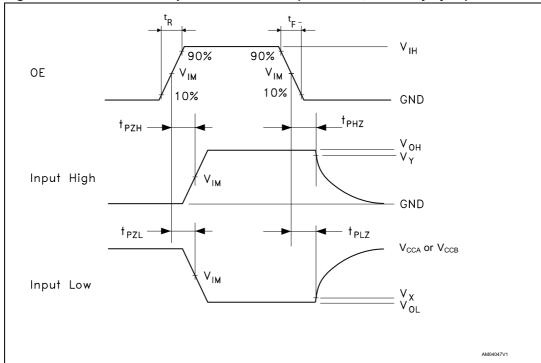
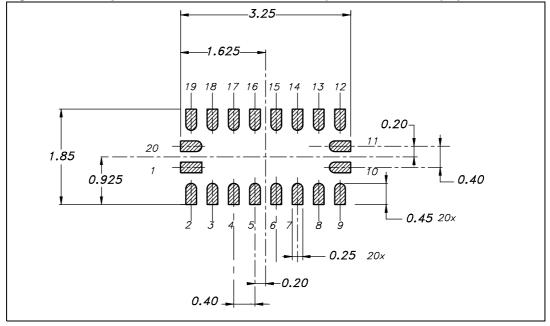



Figure 7. Waveform - output enable/disable (f = 50 kHz, 50% duty cycle)

Package information ST2189

8 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.



ST2189 Package information

Table 13. Mechanical data for QFN20 (1.8 x 3.2 x 0.5 mm) - pitch 0.4 mm

Symbol	Milimeters					
Symbol	Nom	Min	Max			
А	0.50	0.45	0.55			
A1	0.02	0	0.05			
А3	0.127	-	-			
b	0.20	0.15	0.25			
D	3.20	3.15	3.25			
E	1.80	1.75	1.85			
е	0.40	-	-			
L	0.40	0.35	0.45			

Figure 9. Footprint recommendation for QFN20 (1.8 x 3.2 x 0.5 mm) - pitch 0.4 mm

Package information ST2189

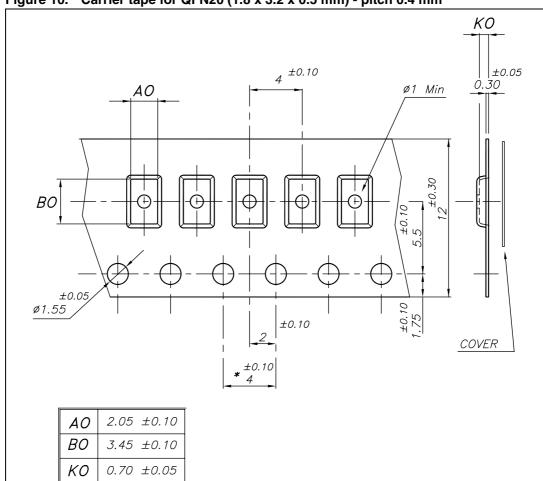


Figure 10. Carrier tape for QFN20 (1.8 x 3.2 x 0.5 mm) - pitch 0.4 mm

ST2189 Package information

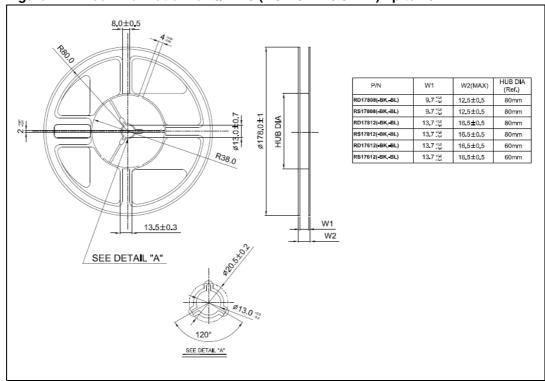


Figure 11. Reel information for QFN20 (1.8 x 3.2 x 0.5 mm) - pitch 0.4 mm

Revision history ST2189

9 Revision history

Table 14. Document revision history

Date	Rev	Changes
31-Jul-2009	1	Initial release.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

