

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

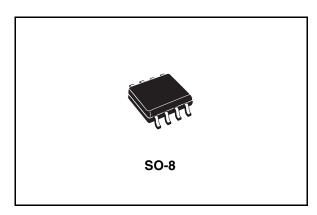
ST485EB ST485EC - ST485EX

±15 kV ESD protected, low power RS-485/RS-422 transceiver

Features

- Low quiescent current: 300 µA
- Designed for RS-485 interface application
- -7 V to 12 V common mode input voltage range
- Driver maintains high impedance in 3-state or with the power OFF
- 70 mV typical input hysteresis
- 30 ns propagation delay, 5 ns skew
- Operates from a single 5 V supply
- Current limiting and thermal shutdown for driver overload protection
- ESD protection:
 - $-\pm 15 \text{ kV (HBM)}$
 - ± 8 kV (IEC-1000-4-2 contact discharge)
- Allows up to 256 transceivers on the bus

Description


The ST485E is a low power transceiver for RS-485 and RS-422 communication. Each driver output and receiver input is protected against ± 15 kV electrostatic discharge (HBM) (ESD) shocks, without latch-up. These parts contain one driver and one receiver in half duplex configuration.

This transceiver draws 300 µA (typ.) of supply current when unloaded or fully loaded with disabled drivers.

It operates from a single 5 V supply.

Table 1. Device summary

Table 1. Device cummary						
Order codes	Temperature range	Package	Packaging			
ST485EBD	- 40 to 85 °C	SO-8 (tube)	100 parts per tube / 20 tube per box			
ST485ECDR	0 to 70 °C	SO-8 (tape and reel)	2500 parts per reel			
ST485EBDR	- 40 to 85 °C	SO-8 (tape and reel)	2500 parts per reel			
ST485EXDR	- 55 to 125 °C	SO-8 (tape and reel)	2500 parts per reel			

Driver is short-circuit current limited and is protected against excessive power dissipation by thermal shutdown circuitry that place the driver outputs into a high-impedance state.

The ST485E is designed for bi-directional data communications on multipoint bus transmission lines (half-duplex applications).

Contents

1	Pin configuration	3
2	Truth tables	4
3	Maximum ratings	5
4	Electrical characteristics	6
5	Test circuit and typical characteristics	9
6	Package mechanical data 1	4
7	Revision history 1	7

1 Pin configuration

Figure 1. Pin connections (top view)

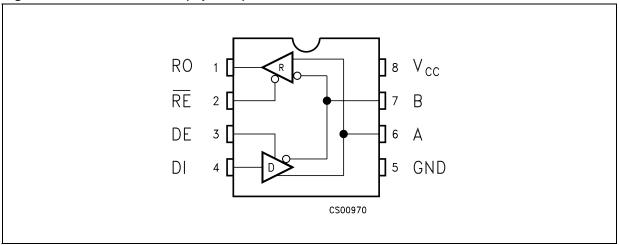


Table 2. Pin description

Pin n°	Symbol	Name and function
1	RO	Receiver output
2	RE	Receiver output enable
3	DE	Driver output enable
4	DI	Driver input
5	GND	Ground
6	A	Non-inverting receiver input and non-inverting driver output
7	В	Inverting receiver input and inverting driver output
8	V _{CC}	Supply voltage

2 Truth tables

Table 3. Truth table (driver)

Inputs			Out	puts
RE	DE	DI	В	Α
Х	Н	Н	L	Н
Х	Н	L	Н	L
Х	L	Х	Z	Z

Note: X = Don't care; Z = High impedance

Table 4. Truth table (receiver)

Inputs			Outputs
RE	DE	A-B	RO
L	L	≥ +0.2V	Н
L	L	≤ - 0.2V	L
L	L	Inputs open	Н
Н	L	Х	Z

Note: $X = Don't \ care; Z = High \ impedance$

3 Maximum ratings

Table 5. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	7	V
VI	Control input voltage (RE, DE)	-0.5 to (V _{CC} + 0.5)	V
V _{DI}	Driver input voltage (DI)	-0.5 to (V _{CC} + 0.5)	V
V _{DO}	Driver output voltage (A, B)	± 14	V
V _{RI}	Receiver input voltage (A, B)	± 14	V
V _{RO}	Receiver output voltage (RO)	-0.5 to (V _{CC} + 0.5)	V

Note: Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these is not implied.

4 Electrical characteristics

Table 6. ESD performance: transmitter outputs, receiver inputs

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
ESD	ESD protection voltage	Human body model	±15			kV
ESD	ESD protection voltage	IEC-1000-4-2	±8			kV

 V_{CC} = 5 V ± 5 %, T_A = T_{MIN} to $T_{MAX},$ unless otherwise specified. Typical values are referred to T_A = 25 °C

Table 7. DC electrical characteristics

Symbol	Parameter	Test conditions ⁽¹⁾	Min.	Тур.	Max.	Unit
V _{OD1}	Differential driver output (no load)				5	V
V _{OD2}	Differential driver output (with load)	$R_L = 27 \Omega (RS-485) (Figure 2)$ $R_L = 50 \Omega (RS-422) (Figure 2.)$	1.5		5 5	V V
ΔV _{OD}	Change in magnitude of driver differential output voltage for complementary output states	$R_L = 27 \Omega \text{ or } 50 \Omega \text{ (Figure 2)}$			0.2	V
V _{OC}	Driver common-mode output voltage	$R_L = 27 \Omega \text{ or } 50 \Omega \text{ (Figure 2)}$			3	V
ΔV _{OC}	Change in magnitude of driver common-mode output voltage for complementary output states	$R_L = 27 \Omega \text{ or } 50 \Omega \text{ (Figure 2)}$			0.2	V
V _{IH}	Input high voltage	RE, DE, DI	2.0			V
V _{IL}	Input low voltage	RE, DE, DI			0.8	V
I _{IN1}	Input current	RE, DE, DI			±2	μΑ
I _{IN2}	Input current (A, B)	$V_{CM} = 0 \text{ V or } 5.25 \text{ V, } V_{DE} = 0 \text{ V}$ $V_{IN} = 12 \text{ V}$ $V_{IN} = -7 \text{ V}$			1 -0.8	mA mA
V _{TH}	Receiver differential threshold voltage	V _{CM} = -7 to 12 V	-0.2		0.2	V
ΔV_{TH}	Receiver input hysteresis	V _{CM} = 0 V		70		mV
V _{OH}	Receiver output high voltage	I _O = -4 mA, V _{ID} = 200 mV	3.5			V
V _{OL}	Receiver output low voltage	I _O = 4 mA, V _{ID} = -200 mV			0.4	V
I _{OZR}	3-State (high impedance) output current at receiver	V _O = 0.4 to 2.4 V			± 1	μΑ
R _{IN}	Receiver input resistance	V _{CM} = -7 to 12 V	96			kΩ
I _{CC}	No load supply current ⁽²⁾	$V_{RE} = 0V \text{ or } V_{CC}$ $V_{DE} = V_{CC}$ $V_{DE} = 0 \text{ V}$		400 300	900 500	μΑ μΑ

Table 7. DC electrical characteristics (continued)

Symbol	Parameter	Test conditions ⁽¹⁾	Min.	Тур.	Max.	Unit
I _{OSD1}	Driver short-circuit current, V_O =High	$V_{O} = -7 \text{ to } 12 \text{ V}^{(3)}$	35		250	mA
I _{OSD2}	Driver short-circuit current, V _O =Low	$V_{O} = -7 \text{ to } 12 \text{ V}^{(3)}$	35		250	mA
I _{OSR}	Receiver short-circuit current	$V_O = 0 V \text{ to } V_{CC}$	7		95	mA

^{1.} All currents into device pins are positive; all out of device pins are negative; all voltages are referenced to device ground unless specified.

 V_{CC} = 5 V \pm 5 %, T_A = T_{MIN} to $T_{MAX},$ unless otherwise specified. Typical values are referred to T_A = 25 °C

Table 8. Driver switching characteristics

Symbol	Parameter	Test conditions ⁽¹⁾	Min.	Тур.	Max.	Unit
t _{PLH} t _{PHL}	Propagation delay input to output	$R_{DIFF} = 54 \Omega$, $C_{L1} = C_{L2} = 100 pF$ (See <i>Figure 4</i> and <i>Figure 6</i>)		25	45	ns
t _{SK}	Output skew to output	$R_{DIFF} = 54 \Omega$, $C_{L1} = C_{L2} = 100 pF$ (See <i>Figure 4</i> and <i>Figure 6</i>)		2	5	ns
t _{TLH} t _{THL}	Rise or fall time	$R_{DIFF} = 54 \Omega$, $C_{L1} = C_{L2} = 100 pF$ (See <i>Figure 4</i> and <i>Figure 6</i>)		15	40	ns
t _{PZH}	Output enable time	C _L = 100 pF, S2 = Closed (See <i>Figure 5</i> and <i>Figure 7</i>)		35	50	ns
t _{PZL}	Output enable time	C _L = 100 pF, S1 = Closed (See <i>Figure 5</i> and <i>Figure 7</i>)		25	40	ns
t _{PLZ}	Output disable time	C _L = 15 pF, S1 = Closed (See <i>Figure 5</i> and <i>Figure 7</i>)		25	40	ns
t _{PHZ}	Output disable time	C _L = 15 pF, S2 = Closed (See <i>Figure 5</i> and <i>Figure 7</i>)		35	50	ns

All currents into device pins are positive; all out of device pins are negative; all voltages are referenced to device ground unless specified.

*5*7

^{2.} Supply current specification is valid for loaded transmitters when $V_{DE} = 0 \text{ V}$

^{3.} Applies to peak current. See typical Operating Characteristics.

 V_{CC} = 5 V \pm 5%, T_A = T_{MIN} to $T_{MAX},$ unless otherwise specified. Typical values are referred to T_A = 25 $^{\circ}C$

Table 9. Receiver switching characteristics

Symbol	Parameter	Test conditions ⁽¹⁾	Min.	Тур.	Max.	Unit
t _{PLH} t _{PHL}	Propagation delay input to output	$R_{DIFF} = 54 \Omega$, $C_{L1} = C_{L2} = 100 pF$ (See <i>Figure 4</i> and <i>Figure 8</i>)		110	130	ns
t _{SKD}	Differential receiver skew	$R_{DIFF} = 54 \Omega$, $C_{L1} = C_{L2} = 100 pF$ (See <i>Figure 4</i> and <i>Figure 8</i>)		5	10	ns
t _{PZH}	Output enable time	C _{RL} = 15 pF, S1 = Closed (See <i>Figure 2</i> and <i>Figure 9</i>)		11	35	ns
t _{PZL}	Output enable time	C _{RL} = 15 pF, S2 = Closed (See <i>Figure 2</i> and <i>Figure 9</i>)		13	35	ns
t _{PLZ}	Output disable time	C _{RL} = 15 pF, S1 = Closed (See <i>Figure 2</i> and <i>Figure 9</i>)		13	35	ns
t _{PHZ}	Output disable time	C _{RL} = 15 pF, S2 = Closed (See <i>Figure 2</i> and <i>Figure 9</i>)		11	35	ns
f _{MAX}	Maximum data rate		5			Mbps

All currents into device pins are positive; all out of device pins are negative; all voltages are referenced to device ground unless specified

5 Test circuit and typical characteristics

Figure 2. Driver DC test load

Figure 3. Receiver timing test load

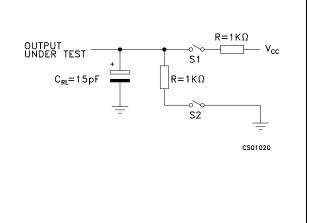


Figure 4. Drive/receiver timing test circuit

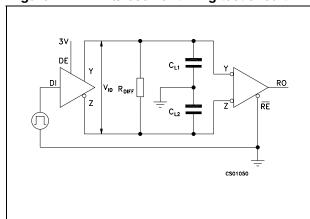


Figure 5. Driver timing test load

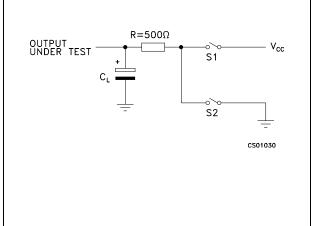


Figure 6. Driver propagation delay

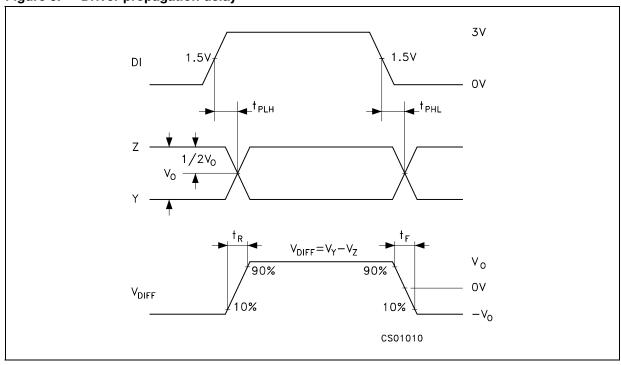


Figure 7. Driver enable and disable time

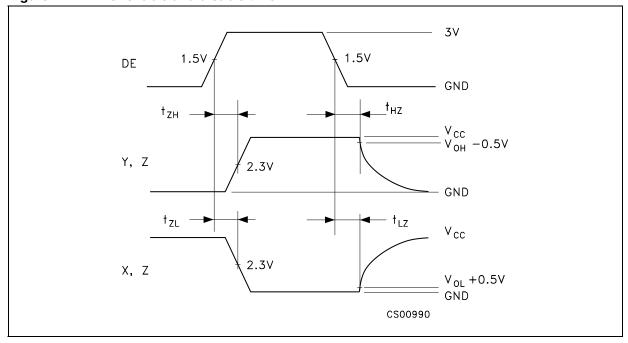


Figure 8. Receiver propagation delay

Figure 9. Receiver enable and disable time

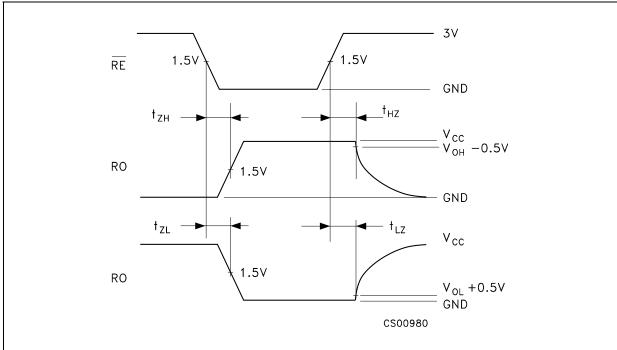


Figure 10. Receiver output current vs. output Figure 11. Receiver output current vs. output low voltage high voltage

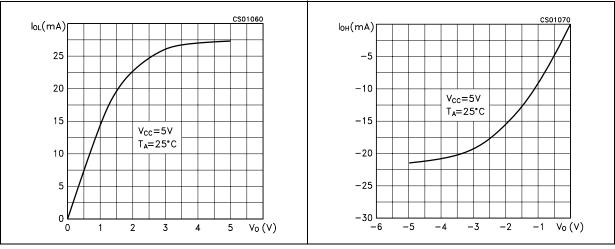


Figure 12. Driver output current vs. output low Figure 13. Driver output current vs. output voltage high voltage

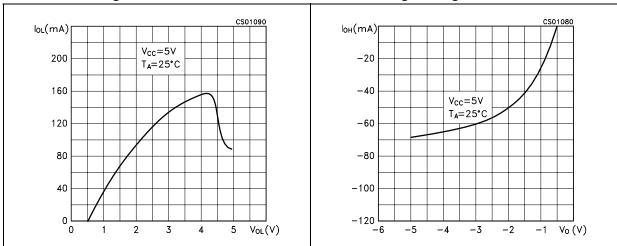
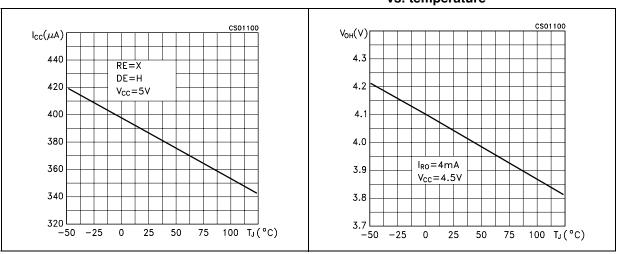
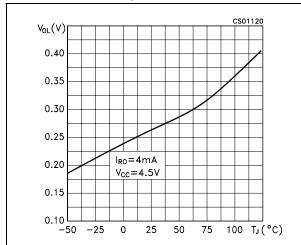
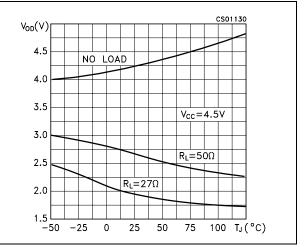



Figure 14. Supply current vs. temperature

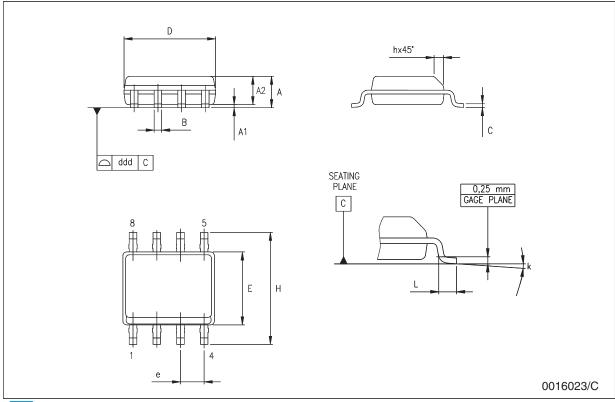

Figure 15. Receiver high level output voltage vs. temperature



12/18

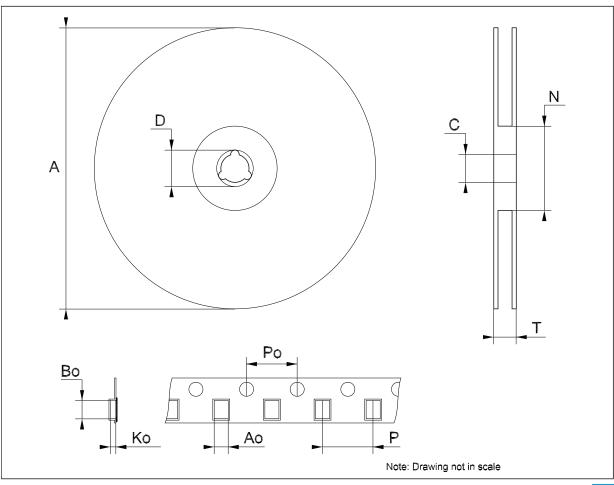
Figure 16. Receiver low level output voltage vs. temperature

Figure 17. Differential driver output voltage vs. temperature



6 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.


SO-8 mechanical data

Dim.		mm.			inch.		
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	1.35		1.75	0.053		0.069	
A1	0.10		0.25	0.04		0.010	
A2	1.10		1.65	0.043		0.065	
В	0.33		0.51	0.013		0.020	
С	0.19		0.25	0.007		0.010	
D	4.80		5.00	0.189		0.197	
E	3.80		4.00	0.150		0.157	
е		1.27			0.050		
Н	5.80		6.20	0.228		0.244	
h	0.25		0.50	0.010		0.020	
L	0.40		1.27	0.016		0.050	
k	8° (max.)					•	
ddd			0.1			0.04	

Tape & reel SO-8 mechanical data

Dim.	mm.			inch.		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			22.4			0.882
Ao	8.1		8.5	0.319		0.335
Во	5.5		5.9	0.216		0.232
Ko	2.1		2.3	0.082		0.090
Po	3.9		4.1	0.153		0.161
Р	7.9		8.1	0.311		0.319

7 Revision history

Table 10. Document revision history

Date	Revision	Changes	
21-Mar-2006	9	Order codes has been updated and new template.	
05-Jun-2006	10	Change value row 10 on the features and R _{IN} in <i>Table 7</i> .	
29-Jan-2007	11	Typo mistake on page 1.	
29-Aug-2007	12	Change value R _{IN} min. on <i>Table 7</i> .	
07-Feb-2008	13	Modified: Table 1 on page 1.	
16-Feb-2009	14	Modified: Note: on page 5.	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

