imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

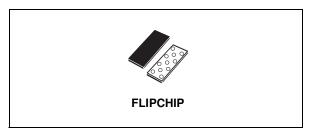
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ST4G3234

4-BIT DUAL SUPPLY BUS BUFFER LEVEL TRANSLATOR WITH A SIDE SERIES RESISTOR


- HIGH SPEED: t_{PD} = 4.4ns (MAX.) at T_A=85°C
 V_{CCB} = 1.65V; V_{CCA} = 3.0V
- LOW POWER DISSIPATION:
 I_{CCA} = I_{CCB} = 5μA(MAX.) at T_A=85°C
- SYMMETRICAL OUTPUT IMPEDANCE: $|I_{OHA}| = I_{OLA} = 10$ mA MIN at $V_{CCA} = 3.0V; V_{CCB} = 1.4V$ to 3.6V $|I_{OHA}| = I_{OLA} = 8$ mA MIN at $V_{CCA} = 2.3V; V_{CCB} = 1.4$ to 3.6V)
- BALANCED PROPAGATION DELAYS: t_{PLH} ≅ t_{PHL}
- POWER DOWN PROTECTION ON INPUTS AND OUTPUTS
- 26ΩSERIES RESISTOR ON A SIDE OUTPUTS
- OPERATING VOLTAGE RANGE:
 V_{CCA}(OPR) = 1.4V to 3.6V (1.2V Data Retent)
 V_{CCB}(OPR) = 1.4V to 3.6V (1.2V Data Retent)
- MAX DATA RATES: 380 Mbps (1.8V to 3.3V translation) 260 Mbps (<1.8V to 3.3V translation) 260 Mbps (Translate to 2.5V) 210 Mbps (Translate to 1.5V) 100 Mbps (Translate to 1.2V)
- LATCH-UP PERFORMANCE EXCEEDS 500mA (JESD 17)
- ESD PERFORMANCE: HBM > 2000V (MIL STD 883 method 3015); MM > 200V
- R_OHS Compliant for FLIPCHIP Package

DESCRIPTION

The ST4G3234 is a dual supply low voltage CMOS 4-BIT BUS BUFFER level translator fabricated with sub-micron silicon gate and five-layer metal wiring C²MOS technology. Designed for use as an interface between a 3.3V bus and a 2.5V or 1.8V bus in a mixed 3.3V/1.8V, 3.3V/2.5V, 1.8V/1.4V and 2.5V/1.8V supply systems, it achieves high speed operation while maintaining the CMOS low power dissipation.

This IC is intended for one-way asynchronous communication between data buses. The input and output power down protections disable the device when both power supply are down, so that the buses are effectively isolated.

The input tolerant buffers allow to translate V_{CCB} compatible signals and greater signals than V_{CCB} up/down to $V_{CCA}.$

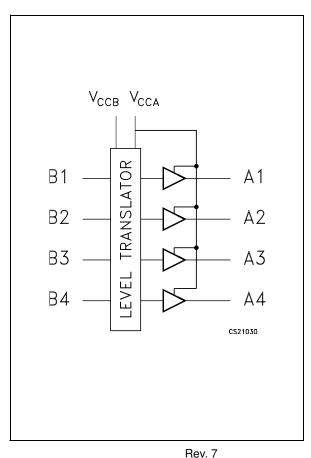
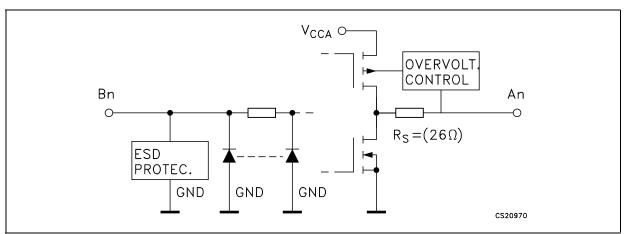


Table 1: Order Codes


PACKAGE	T & R	Comments
FLIPCHIP11	ST4G3234BJR	5000 parts per reel

All inputs are equipped with protection circuits against static discharge, giving them ESD immunity and transient excess voltage.

Figure 1: Logic Diagram

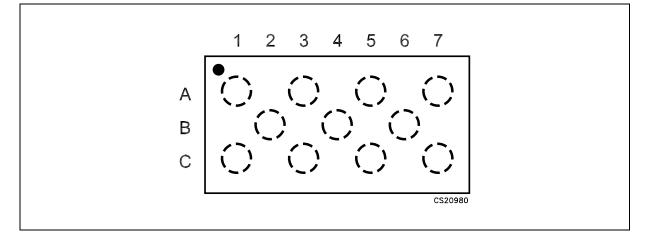

Figure 2: Input And Output Equivalent Circuit

Table 2: Pin Description

PIN°	SYMBOL	NAME AND FUNCTION
A1	A4	Data Output
A3	A3	Data Output
A5	A2	Data Output
A7	A1	Data Output
C1	B4	Data Input
C3	B3	Data Input
C5	B2	Data Input
C7	B1	Data Input
B2	GND	Ground (0V)
B6	V _{CCA}	Positive Supply Voltage
B4	V _{CCB}	Positive Supply Voltage

Figure 3: Pin Connection (top through view)

57

Table 3: Truth Table

INPUTS Bn (V _{CCB} Referred)	OUTPUTS Bn (V _{CCA} Referred)
L	L
Н	Н

Table 4: Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V _{CCA}	Output Supply Voltage	-0.5 to +4.6	V
V _{CCB}	Input Supply Voltage	-0.5 to +4.6	V
V _{OA}	DC Output Voltage (Power Down Mode: V _{CCA} =V _{CCB} =Gnd)	-0.5 to +4.6	V
V _{IB}	DC Input Voltage (Power Down Mode: V _{CCA} =V _{CCB} =Gnd)	-0.5 to +4.6	V
V _{OA}	DC Output Voltage	-0.5 to V _{CCA} + 0.5	V
V _{IB}	DC Input Voltage	-0.5 to +4.6	V
Ι _{ΙΚ}	DC Input Diode Current	- 20	mA
I _{ОК}	DC Output Diode Current	- 50	mA
I _{OA}	DC Output Current	± 50	mA
I _{CCA}	DC V _{CCA} or Ground Current	± 100	mA
I _{CCB}	DC V _{CCB} or Ground Current	± 100	mA
P _d	Power Dissipation	400	mW
T _{stg}	Storage Temperature	-65 to +150	°C
ΤL	Lead Temperature (10 sec)	260	°C

Absolute Maximum Ratings are those value beyond which damage to the device may occur. Functional operation under these conditions is not implied

Table 5: Recommended Operating Conditions

Symbol	Paramet	Value	Unit	
V _{CCA}	Supply Voltage		1.4 to 3.6	V
V _{CCB}	Supply Voltage		1.4 to 3.6	V
V _{IB}	Input Voltage (Bn)	Input Voltage (Bn)		
V _{OA}	Output Voltage (An)		0 to V _{CCA}	V
T _{op}	Operating Temperature		-40 to 85	°C
	Input Rise and Fall Time (note 1)	V _{CCB} = 3.0 to 3.6V	0 to 10	ns/V
dt/dv		$V_{CCB} = 2.3 \text{ to } 2.7 \text{V}$	0 to 20	ns/V
		V _{CCB} = 1.4 to 1.95V	0 to 100	ns/V

1) V_I from 0.8V to 2.0V at V_{CC} = 3.0V

57

Table 6: DC Specification

			Test	Condition			Value			
Symbol	Parameter	V _{CCB}	V _{CCA}		Т	A = 25 °	С	-40 to	85 °C	Unit
		(V)(*)	*) (V) (*)	Min.	Тур.	Max.	Min.	Max.		
V _{IHB}	High Level Input	1.4			$0.65V_{CCB}$			$0.65V_{CCB}$		
	Voltage (Bn)	1.8	1.4 to		$0.65V_{CCB}$			$0.65V_{CCB}$		v
		2.5	3.6V		1.6			1.6		v
		3.3			2.0			2.0		
V _{ILB}	Low Level Input	1.4					$0.35V_{CCB}$		$0.35V_{CCB}$	
	Voltage (Bn)	1.8	1.4 to				$0.35V_{CCB}$		$0.35V_{CCB}$	v
		2.5	3.6V				0.7		0.7	v
		3.3					0.8		0.8	
V _{OHA}	High Level		1.4	Ι _Ο =-100μΑ	1.2			1.2		
	Output Voltage	1.4	2.75	I _O =-10mA	2.2			2.2		v
		to	2.3	I _O =-8mA	2.0			2.0		v
		3.6V	1.65	I _O =-6mA	1.4			1.4		
			1.4	I _O =-2mA	1.1			1.1		
V _{OLA}	Low Level		1.4	I _O =100μA			0.2		0.2	
	Output Voltage	1.4	2.75	I _O =10mA			0.55		0.55	
		1.4 to	2.3	I _O =8mA			0.30		0.30	V
		3.6V	1.65	I _O =6mA			0.25		0.25	
			1.4	I _O =2mA			0.20		0.20	
I _{IB}	Input Leakage	2.7	3.6	V _{IB} =V _{CCB} or GND			± 0.5		± 5	μA
	Current	1.4	2.7	V _{IB} =3.6V or GND			± 0.5		± 5	μA
I _{OFF}	Power Off Leakage Current	0	0	V _{IB} =GND to 3.6V V _{OA} =GND to 3.6V			± 1.0		± 10	μA
I _{CCtB}	Quiescent Supply Current	1.4 to 3.6V	1.4 to 3.6V	$V_{IB} = V_{CCB}$ or GND			0.5		5	μA
I _{CCtA}	Quiescent Supply Current	1.4 to 3.6V	1.4 to 3.6V	$V_{IB} = V_{CCB}$ or GND			0.5		5	μA
ΔI _{CCtB}	Maximum Quiescent Supply Current / Input (Bn)	2.7 1.95 1.95	3.6 3.6 2.7	$V_{IB} = V_{CCB} - 0.6V$ $V_{IB} = V_{CCB}$ or GND					0.75	mA

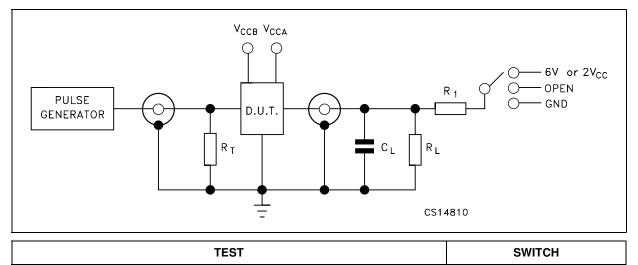
(*) V_{CC} range = 3.3±0.3; 2.5±0.2V; 1.8±0.15V

Table 7: Dynamic Switching Characteristics

			Test Condition			Value				
Symbol	Parameter	V _{CCB}	$T_{A} = 25 \text{ °C} -40$		T _A = 25 °C		-40 to 85 °C		Unit	
		(V)	(V)		Min.	Тур.	Max.	Min.	Max.	
V _{OLPA}	Dynamic Low Level	1.4	1.8	C 20pE		0.2				
	Quiet An Output	1.4-1.8	2.5	C _L =30pF V _{II} =0V V _{IH} =V _{CC}		0.25				V
		1.8-2.5	3.3	VIL = 0 V VIH = VCC		0.35				
V _{OLVA}	Dynamic Low Level	1.4	1.8	C _20pE		-0.2				
	Quiet An Output	1.4-1.8	2.5	C _L =30pF V _{IL} =0V V _{IH} =V _{CC}		-0.25				V
		1.8-2.5	3.3	VIL - VV VIH - VCC		-0.35				
V _{OHVA}	Dynamic High Level	1.4	1.8	C30pE		1.6				
	Quiet An Output	1.4-1.8	2.5	C _L =30pF V _{IL} =0V V _{IH} =V _{CC}		2.1				V
		1.8-2.5	3.3			2.7				

Table 8: AC Electrical Characteristics

			Test Condition	on	Va	lue	
Symbol	Parameter	V _{CCB}	V _{CCA}		-40 to	85 °C	Unit
		(V)	(V)		Min.	Max.	
t _{PLH}	Propagation Delay Time Bn to An	2.3 to 3.6	1.4		2.0	5.5	
t _{PHL}		1.4 to 1.95	1.4		2.0	5.5	
		2.3 to 3.6	1.65 to 1.95		2.0	5.0	
		1.4 to 1.95	1.65 to 1.95	C _L = 10 pF	2.0	5.2	ns
		1.4 to 1.95	2.3 to 2.7		2.0	4.6	
		1.4 to 1.95	3.0 to 3.6		2.0	4.3	
		2.3 to 2.7	3.0 to 3.6		1.0	3.5	
t _{PLH}	Propagation Delay Time Bn to An	2.3 to 3.6	1.4		2.0	7.5	
t _{PHL}		1.4 to 1.95	1.4		2.0	7.9	
		2.3 to 3.6	1.65 to 1.95	C _L = 30 pF	2.0	6.0	
		1.4 to 1.95	1.65 to 1.95	$R_{l} = 500 \Omega$	2.0	6.5	ns
		1.4 to 1.95	2.3 to 2.7	112 - 000 22	2.0	5.7	
		1.4 to 1.95	3.0 to 3.6		2.0	5.2	
		2.3 to 2.7	3.0 to 3.6		1.0	4.6	
t _{OSLH}	Output To Output Skew Time (note1, 2)	1.8 ± 0.15	2.5 ± 0.2	C _L = 30 pF		0.5	ns
t _{OSHL}		1.8 ± 0.15	3.3 ± 0.3	$C_L = 50 \ \mu$ R _L = 500 Ω		0.5	
		2.5 ± 0.2	3.3 ± 0.3	Π _L = 500 22		0.75	


1) Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs of the same device switching in the same direction, either HIGH or LOW ($t_{OSLH} = |t_{PLHm} - t_{PLHn}|, t_{OSHL} = |t_{PHLm} - t_{PHLn}|$ 2) Parameter guaranteed by design

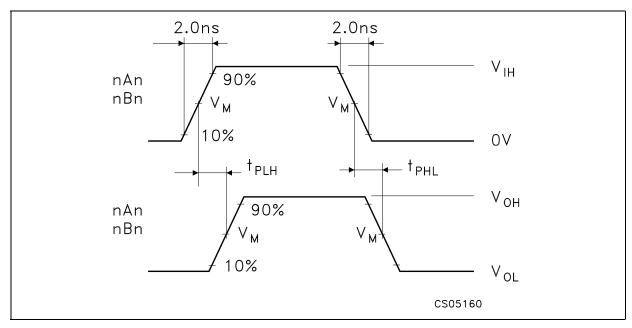
			Test Condition			Value					
Symbol	Parameter	V _{CCB}	V _{CCA}		T,	A = 25 °	°C	-40 to	85 °C	Unit	
		(V)	(V)		Min.	Тур.	Max.	Min.	Max.		
C _{INB}	Input Capacitance	open	open			7				pF	
C _O	Output Capacitance	2.5	3.3			9				pF	
C _{PD}	Power Dissipation	2.5	3.3	f=10MHz		28					
	Capacitance	1.8	3.3			28					
		1.4	2.5			25				pF	
		1.4	1.8			21					
		3.3	1.8			28					

Table 9: Capacitance Characteristics

1) CPD is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average current can be obtained by the following equation. $I_{CC(opr)} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}/4$ (per circuit)

Figure 4: Test Circuit

Open


۲J/

+		+	
ιPI	н,	t _{PHI}	

 C_L = 30pF or equivalent (includes jig and probe capacitance) R_L = R_1 = 500 Ω or equivalent R_T = Z_{OUT} of pulse generator (typically 50 Ω)

Table 10: Waveform Symbol Value

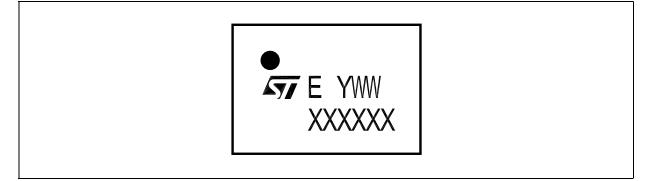
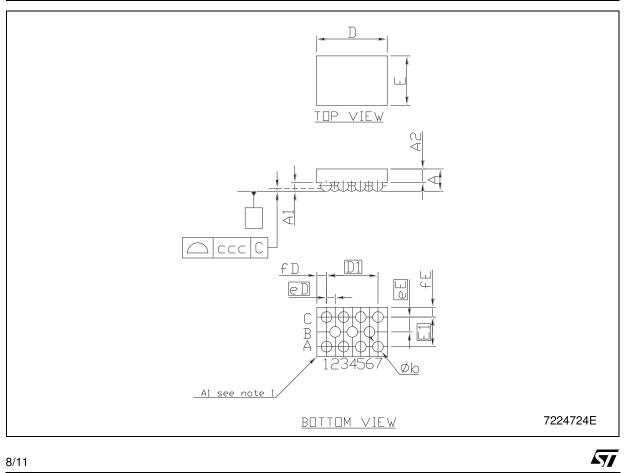
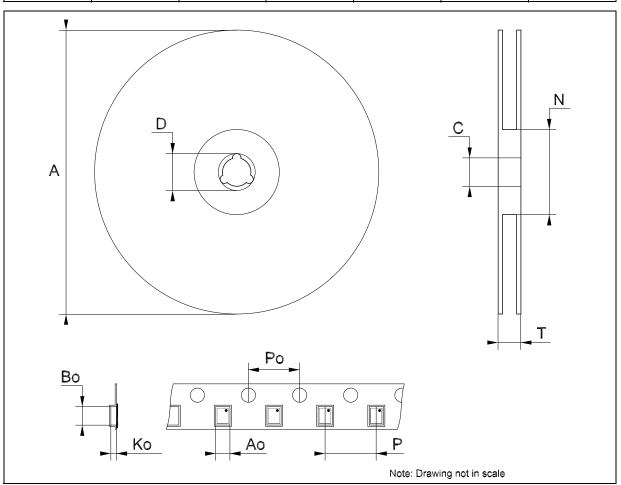

Symbol		V _{CC}					
Symbol	3.0 to 3.6V	2.3 to 2.7V	1.65 to 1.95V				
V _{IH}	V _{CC}	V _{CC}	V _{CC}				
V _M	1.5V	V _{CC} /2	V _{CC} /2				
V _X	V _{OL} +0.3V	V _{OL} +0.15V	V _{OL} +0.15V				
V _Y	V _{OL} -0.3V	V _{OL} -0.15V	V _{OL} -0.15V				

Figure 5: Waveform - Propagation Delay (f=1MHz; 50% duty cycle)

Figure 6: Marking


57

NOTE: E = Eco Level; Y = Assy Year; WW = Assy Week; X = Marking Area; Marking Code 9521


Flip-Chip11 MECHANICAL DATA

DIM		mm.			mils			
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.		
А	0.585	0.65	0.715	23.0	25.6	28.1		
A1	0.21	0.25	0.29	8.3	9.8	11.4		
A2		0.40			15.7			
b	0.265	0.315	0.365	10.4	12.4	14.4		
D	1.99	2.04	2.09	78.3	80.3	82.3		
D1		1.5			59.1			
E	1.36	1.41	1.46	53.5	55.5	57.5		
E1		0.866			34.1			
eD	0.2	0.25	0.30	7.9	9.8	11.8		
еE	0.383	0.433	0.483	15.1	17.0	19.0		
fD		0.270			10.6			
fE		0.272			10.7			
CCC		0.080			3.1			

DIM.	mm.			inch		
	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX
А			178			6.926
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
Ν	49	50	51	1.929	1.969	2.008
Т			12.4			0.488
Ao	2.29	2.34	2.39	0.090	0.092	0.094
Во	1.65	1.70	1.75	0.065	0.067	0.069
Ko	0.76	0.81	0.86	0.030	0.032	0.034
Po	3.9	4	4.1	0.153	0.157	0.161
Р	3.9	4	4.1	0.153	0.157	0.161

57

Table 11: Revision History

Date	Revision	Description of Changes
14-Oct-2004	1	First Release.
26-Oct-2004	2	Mechanical Data has been updated.
18-Nov-2004	3	Mistake V _{OHA} on table 6.
11-Feb-2005	4	Add Tape & Reel and Figure 6.
18-Feb-2005	5	Table 1 has been updated from 4000 to 5000 parts per Reel.
18-Mar-2005	6	Add Features ==> Max Data Rates.
09-May-2005	7	Table 8 and Table 9 have been updated.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

All other names are the property of their respective owners

© 2005 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

