

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: [info@chipsmall.com](mailto:info@chipsmall.com) Web: [www.chipsmall.com](http://www.chipsmall.com)

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

## Features

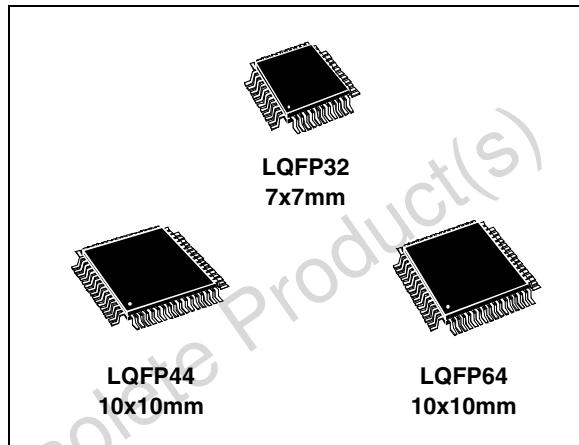
### ■ Memories

- 16K to 60K High Density Flash (HDFlash) or ROM with read-out protection capability. In-Application Programming and In-Circuit Programming for HDFlash devices
- 1.5 to 2K RAM
- HDFlash endurance: 100 cycles, data retention 40 years at 85°C

### ■ Clock, Reset and Supply Management

- Low power crystal/ceramic resonator oscillators and bypass for external clock
- PLL for 2x frequency multiplication
- 5 power saving modes: Halt, Auto Wake Up From Halt, Active Halt, Wait and Slow

### ■ Interrupt Management


- Nested interrupt controller
- 14 interrupt vectors plus TRAP and RESET
- TLI top level interrupt (on 64-pin devices)
- Up to 21 external interrupt lines (on 4 vectors)

### ■ Up to 48 I/O Ports

- Up to 48 multifunctional bidirectional I/O lines
- Up to 36 alternate function lines
- Up to 6 high sink outputs

### ■ 5 Timers

- 16-bit timer with 2 input captures, 2 output compares, external clock input, PWM and pulse generator modes
- 8-bit timer with 1 or 2 input captures, 1 or 2 output compares, PWM and pulse generator modes
- 8-bit PWM auto-reload timer with 1 or 2 input captures, 2 or 4 independent PWM output channels, output compare and time base interrupt, external clock with event detector



- Main clock controller with real-time base and clock output
- Window watchdog timer

### ■ Up to 3 Communications Interfaces

- SPI synchronous serial interface
- Master/slave LINSCI™ asynchronous serial interface
- Master-only LINSCI™ asynchronous serial interface

### ■ Analog Peripheral (Low Current Coupling)

- 10-bit A/D converter with up to 16 inputs
- Up to 9 robust ports (low current coupling)

### ■ Instruction Set

- 8-bit data manipulation
- 63 basic instructions
- 17 main addressing modes
- 8 x 8 unsigned multiply instruction

### ■ Development Tools

- Full hardware/software development package

**Table 1. Device Summary**

| Features               | ST72361AR9/ST72361J9/<br>ST72361K9                        | ST72361AR7/ST72361J7/<br>ST72361K7 | ST72361AR6/ST72361J6/<br>ST72361K6 |
|------------------------|-----------------------------------------------------------|------------------------------------|------------------------------------|
| Program memory - bytes | 60K                                                       | 48K                                | 32K                                |
| RAM (stack) - bytes    | 2K (256)                                                  | 2K (256)                           | 1.5K (256)                         |
| Operating Supply       | 4.5V to 5.5V                                              |                                    |                                    |
| CPU Frequency          | External Resonator Osc. w/ PLLx2/8 MHz                    |                                    |                                    |
| Max. Temp. Range       | -40°C to +125°C                                           |                                    |                                    |
| Packages               | LQFP64 10x10mm (AR), LQFP44 10x10mm (J), LQFP32 7x7mm (K) |                                    |                                    |

---

## Table of Contents

---

|                                                   |           |
|---------------------------------------------------|-----------|
| <b>1 DESCRIPTION</b> .....                        | <b>4</b>  |
| <b>2 PIN DESCRIPTION</b> .....                    | <b>5</b>  |
| <b>3 REGISTER AND MEMORY MAP</b> .....            | <b>11</b> |
| <b>4 FLASH PROGRAM MEMORY</b> .....               | <b>14</b> |
| 4.1 INTRODUCTION .....                            | 14        |
| 4.2 MAIN FEATURES .....                           | 14        |
| 4.3 STRUCTURE .....                               | 14        |
| 4.4 ICC INTERFACE .....                           | 15        |
| 4.5 ICP (IN-CIRCUIT PROGRAMMING) .....            | 16        |
| 4.6 IAP (IN-APPLICATION PROGRAMMING) .....        | 16        |
| 4.7 RELATED DOCUMENTATION .....                   | 16        |
| 4.8 REGISTER DESCRIPTION .....                    | 16        |
| <b>5 CENTRAL PROCESSING UNIT</b> .....            | <b>17</b> |
| 5.1 INTRODUCTION .....                            | 17        |
| 5.2 MAIN FEATURES .....                           | 17        |
| 5.3 CPU REGISTERS .....                           | 17        |
| <b>6 SUPPLY, RESET AND CLOCK MANAGEMENT</b> ..... | <b>20</b> |
| 6.1 PHASE LOCKED LOOP .....                       | 20        |
| 6.2 MULTI-OSCILLATOR (MO) .....                   | 21        |
| 6.3 RESET SEQUENCE MANAGER (RSM) .....            | 22        |
| 6.4 SYSTEM INTEGRITY MANAGEMENT (SI) .....        | 24        |
| <b>7 INTERRUPTS</b> .....                         | <b>28</b> |
| 7.1 INTRODUCTION .....                            | 28        |
| 7.2 MASKING AND PROCESSING FLOW .....             | 28        |
| 7.3 INTERRUPTS AND LOW POWER MODES .....          | 30        |
| 7.4 CONCURRENT & NESTED MANAGEMENT .....          | 30        |
| 7.5 INTERRUPT REGISTER DESCRIPTION .....          | 31        |
| 7.6 EXTERNAL INTERRUPTS .....                     | 34        |
| <b>8 POWER SAVING MODES</b> .....                 | <b>37</b> |
| 8.1 INTRODUCTION .....                            | 37        |
| 8.2 SLOW MODE .....                               | 37        |
| 8.3 WAIT MODE .....                               | 38        |
| 8.4 HALT MODE .....                               | 39        |
| 8.5 ACTIVE HALT MODE .....                        | 40        |
| 8.6 AUTO WAKE-UP FROM HALT MODE .....             | 42        |
| <b>9 I/O PORTS</b> .....                          | <b>45</b> |
| 9.1 INTRODUCTION .....                            | 45        |
| 9.2 FUNCTIONAL DESCRIPTION .....                  | 45        |
| 9.3 I/O PORT IMPLEMENTATION .....                 | 48        |
| 9.4 LOW POWER MODES .....                         | 48        |
| 9.5 INTERRUPTS .....                              | 48        |
| 9.6 I/O PORT REGISTER CONFIGURATIONS .....        | 49        |

---

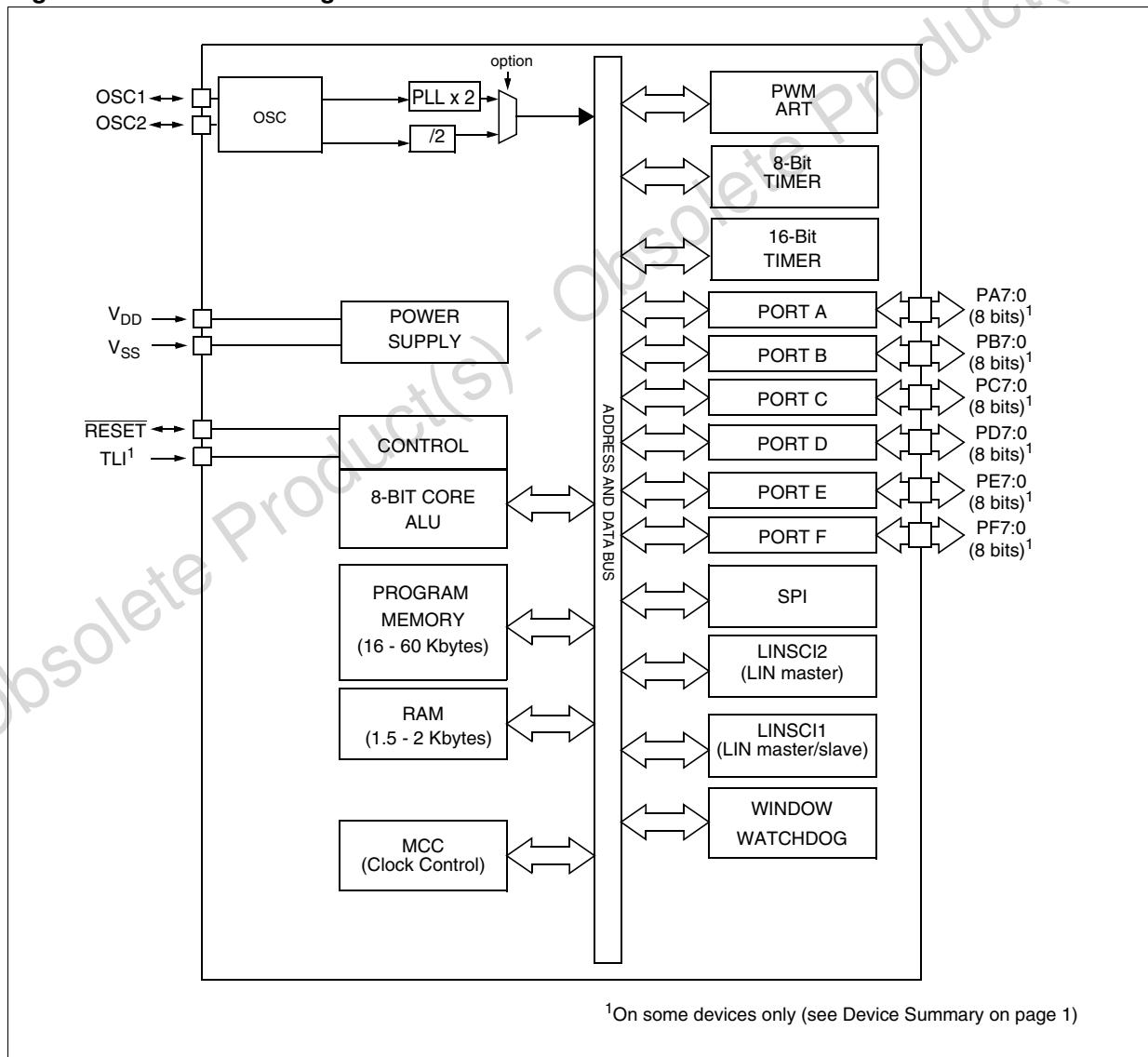
## Table of Contents

---

|                                                                     |            |
|---------------------------------------------------------------------|------------|
| <b>10 ON-CHIP PERIPHERALS .....</b>                                 | <b>52</b>  |
| 10.1 WINDOW WATCHDOG (WWDG) .....                                   | 52         |
| 10.2 MAIN CLOCK CONTROLLER WITH REAL TIME CLOCK MCC/RTC .....       | 58         |
| 10.3 PWM AUTO-RELOAD TIMER (ART) .....                              | 61         |
| 10.4 16-BIT TIMER .....                                             | 71         |
| 10.5 8-BIT TIMER (TIM8) .....                                       | 90         |
| 10.6 SERIAL PERIPHERAL INTERFACE (SPI) .....                        | 108        |
| 10.7 LINSCI SERIAL COMMUNICATION INTERFACE (LIN MASTER/SLAVE) ..... | 120        |
| 10.8 LINSCI SERIAL COMMUNICATION INTERFACE (LIN MASTER ONLY) .....  | 151        |
| 10.9 10-BIT A/D CONVERTER (ADC) .....                               | 168        |
| <b>11 INSTRUCTION SET .....</b>                                     | <b>172</b> |
| 11.1 CPU ADDRESSING MODES .....                                     | 172        |
| 11.2 INSTRUCTION GROUPS .....                                       | 175        |
| <b>12 ELECTRICAL CHARACTERISTICS .....</b>                          | <b>178</b> |
| 12.1 PARAMETER CONDITIONS .....                                     | 178        |
| 12.2 ABSOLUTE MAXIMUM RATINGS .....                                 | 179        |
| 12.3 OPERATING CONDITIONS .....                                     | 180        |
| 12.4 SUPPLY CURRENT CHARACTERISTICS .....                           | 182        |
| 12.5 CLOCK AND TIMING CHARACTERISTICS .....                         | 185        |
| 12.6 AUTO WAKEUP FROM HALT OSCILLATOR (AWU) .....                   | 188        |
| 12.7 MEMORY CHARACTERISTICS .....                                   | 189        |
| 12.8 EMC CHARACTERISTICS .....                                      | 190        |
| 12.9 I/O PORT PIN CHARACTERISTICS .....                             | 193        |
| 12.10 CONTROL PIN CHARACTERISTICS .....                             | 198        |
| 12.11 TIMER PERIPHERAL CHARACTERISTICS .....                        | 201        |
| 12.12 COMMUNICATION INTERFACE CHARACTERISTICS .....                 | 202        |
| 12.13 10-BIT ADC CHARACTERISTICS .....                              | 204        |
| <b>13 PACKAGE CHARACTERISTICS .....</b>                             | <b>208</b> |
| 13.1 PACKAGE MECHANICAL DATA .....                                  | 208        |
| 13.2 THERMAL CHARACTERISTICS .....                                  | 209        |
| 13.3 SOLDERING AND GLUEABILITY INFORMATION .....                    | 209        |
| <b>14 DEVICE CONFIGURATION AND ORDERING INFORMATION .....</b>       | <b>210</b> |
| 14.1 FLASH OPTION BYTES .....                                       | 210        |
| 14.2 TRANSFER OF CUSTOMER CODE .....                                | 212        |
| <b>15 DEVELOPMENT TOOLS .....</b>                                   | <b>217</b> |
| <b>16 IMPORTANT NOTES .....</b>                                     | <b>218</b> |
| 16.1 ALL DEVICES .....                                              | 218        |
| 16.2 FLASH/FASTRON DEVICES ONLY .....                               | 221        |
| 16.3 ROM DEVICES ONLY .....                                         | 223        |
| <b>17 REVISION HISTORY .....</b>                                    | <b>224</b> |

## 1 DESCRIPTION

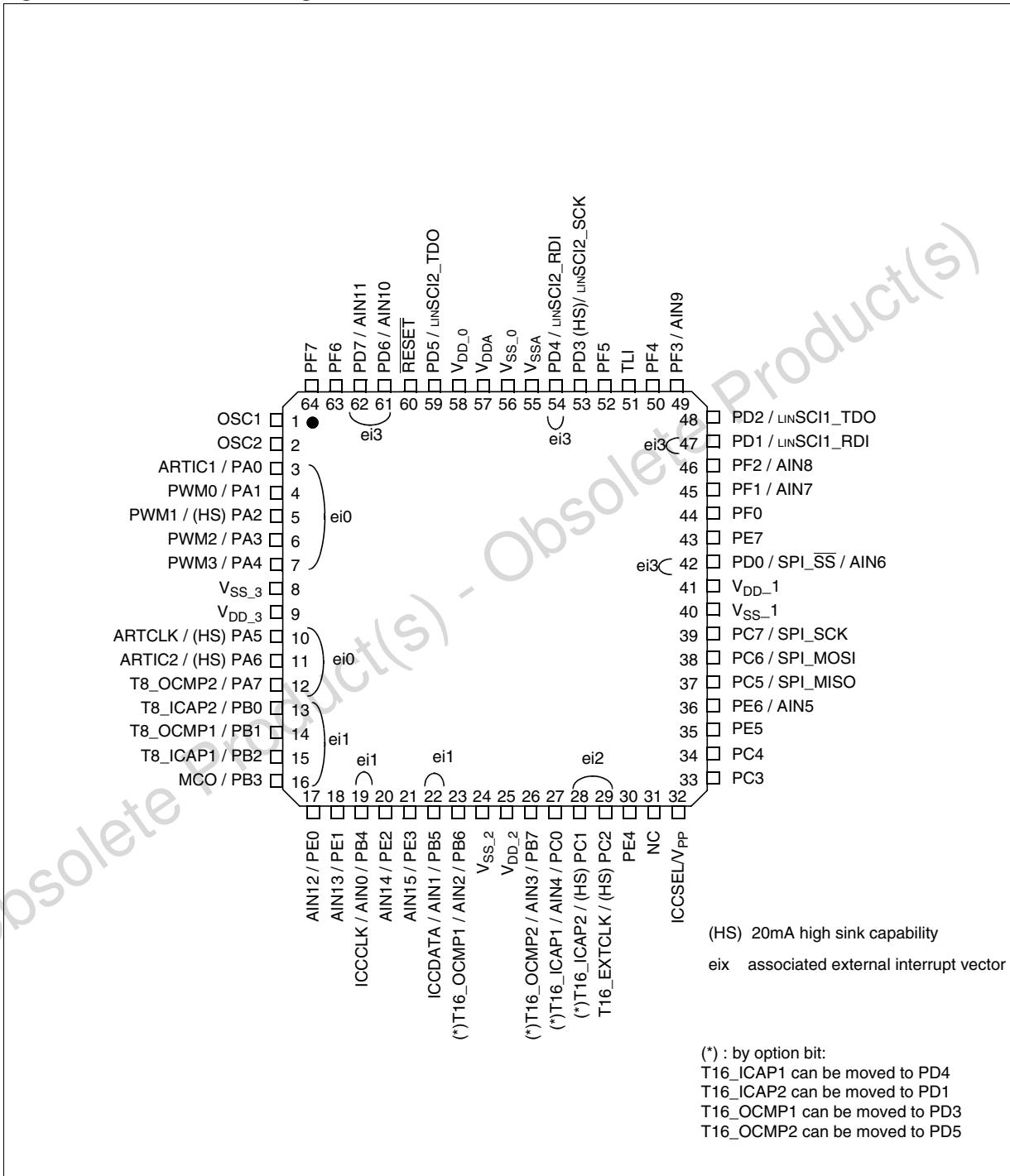
The ST72361 devices are members of the ST7 microcontroller family designed for mid-range applications with LIN (Local Interconnect Network) interface.


All devices are based on a common industry-standard 8-bit core, featuring an enhanced instruction set and are available with Flash or ROM program memory. The ST7 family architecture offers both power and flexibility to software developers, enabling the design of highly efficient and compact application code.

The on-chip peripherals include an A/D converter, a PWM Autoreload timer, 2 general purpose timers, 2 asynchronous serial interfaces, and an SPI interface.

For power economy, microcontroller can switch dynamically into WAIT, SLOW, Active-Halt, Auto Wake-up from HALT (AWU) or HALT mode when the application is in idle or stand-by state.

Typical applications are consumer, home, office and industrial products.


**Figure 1. Device Block Diagram**



<sup>1</sup>On some devices only (see Device Summary on page 1)

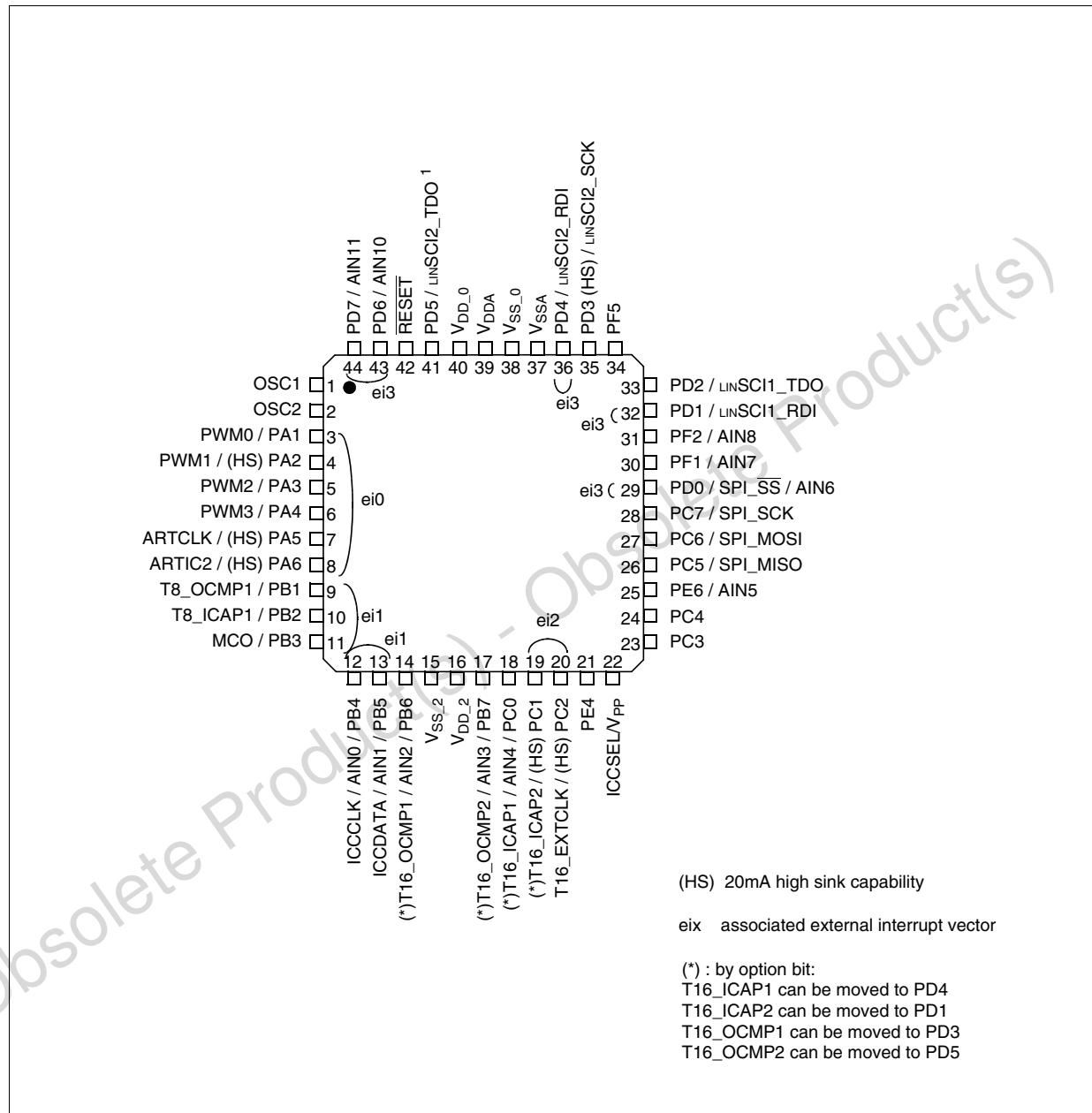

## 2 PIN DESCRIPTION

Figure 2. LQFP 64-Pin Package Pinout



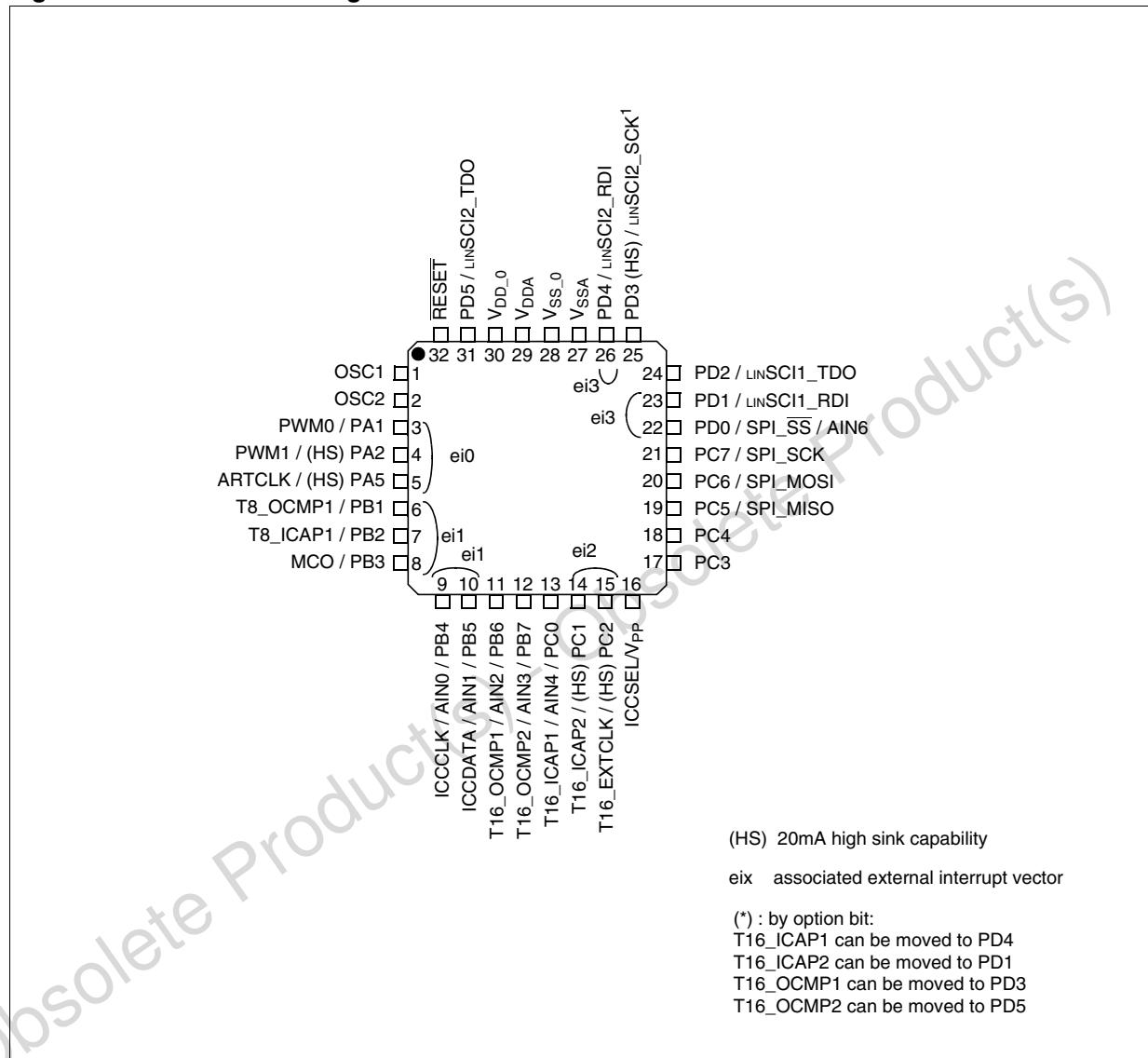

## PIN DESCRIPTION (Cont'd)

Figure 3. LQFP 44-Pin Package Pinout



## PIN DESCRIPTION (Cont'd)

Figure 4. LQFP 32-Pin Package Pinout



For external pin connection guidelines, refer to “[ELECTRICAL CHARACTERISTICS](#)” on page 178.

**PIN DESCRIPTION (Cont'd)**

For external pin connection guidelines, refer to "[ELECTRICAL CHARACTERISTICS](#)" on page 178.

**Legend / Abbreviations for Table 2:**

Type: I = input, O = output, S = supply

In/Output level: C<sub>T</sub> = CMOS 0.3V<sub>DD</sub>/0.7V<sub>DD</sub> with Schmitt trigger

T<sub>T</sub> = TTL 0.8V / 2V with Schmitt trigger

Output level: HS = 20mA high sink (on N-buffer only)

Port and control configuration:

– Input: float = floating, wpu = weak pull-up, int = interrupt<sup>1)</sup>, ana = analog, RB = robust

– Output: OD = open drain, PP = push-pull

Refer to "[I/O PORTS](#)" on page 45 for more details on the software configuration of the I/O ports.

The RESET configuration of each pin is shown in bold which is valid as long as the device is in reset state.

**Table 2. Device Pin Description**

| LQFP64 | Pin n° |        |                      | Pin Name | Type | Level          |        | Port  |     |     |        | Main function (after reset) | Alternate function |                                                             |                        |
|--------|--------|--------|----------------------|----------|------|----------------|--------|-------|-----|-----|--------|-----------------------------|--------------------|-------------------------------------------------------------|------------------------|
|        | LQFP44 | LQFP32 |                      |          |      | Input          | Output | Input |     |     | Output |                             |                    |                                                             |                        |
|        |        |        |                      |          |      |                |        | float | wpu | int | ana    | OD                          | PP                 |                                                             |                        |
| 1      | 1      | 1      | OSC1 <sup>3)</sup>   |          | I    |                |        |       |     |     |        |                             |                    | External clock input or Resonator oscillator inverter input |                        |
| 2      | 2      | 2      | OSC2 <sup>3)</sup>   |          | I/O  |                |        |       |     |     |        |                             |                    | Resonator oscillator inverter output                        |                        |
| 3      | -      | -      | PA0 / ARTIC1         |          | I/O  | C <sub>T</sub> |        | X     | ei0 |     |        | X                           | X                  | Port A0                                                     | ART Input Capture 1    |
| 4      | 3      | 3      | PA1 / PWM0           |          | I/O  | C <sub>T</sub> |        | X     |     | ei0 |        | X                           | X                  | Port A1                                                     | ART PWM Output 0       |
| 5      | 4      | 4      | PA2 (HS) / PWM1      |          | I/O  | C <sub>T</sub> | HS     | X     | ei0 |     |        | X                           | X                  | Port A2                                                     | ART PWM Output 1       |
| 6      | 5      | -      | PA3 / PWM2           |          | I/O  | C <sub>T</sub> |        | X     |     | ei0 |        | X                           | X                  | Port A3                                                     | ART PWM Output 2       |
| 7      | 6      | -      | PA4 / PWM3           |          | I/O  | C <sub>T</sub> |        | X     | ei0 |     |        | X                           | X                  | Port A4                                                     | ART PWM Output 3       |
| 8      | -      | -      | V <sub>SS_3</sub>    |          | S    |                |        |       |     |     |        |                             |                    | Digital Ground Voltage                                      |                        |
| 9      | -      | -      | V <sub>DD_3</sub>    |          | S    |                |        |       |     |     |        |                             |                    | Digital Main Supply Voltage                                 |                        |
| 10     | 7      | 5      | PA5 (HS) / ARTCLK    |          | I/O  | C <sub>T</sub> | HS     | X     | ei0 |     |        | X                           | X                  | Port A5                                                     | ART External Clock     |
| 11     | 8      | -      | PA6 (HS) / ARTIC2    |          | I/O  | C <sub>T</sub> | HS     | X     | ei0 |     |        | X                           | X                  | Port A6                                                     | ART Input Capture 2    |
| 12     | -      | -      | PA7 / T8_OCMP2       |          | I/O  | C <sub>T</sub> |        | X     |     | ei0 |        | X                           | X                  | Port A7                                                     | TIM8 Output Compare 2  |
| 13     | -      | -      | PB0 / T8_ICAP2       |          | I/O  | C <sub>T</sub> |        | X     | ei1 |     |        | X                           | X                  | Port B0                                                     | TIM8 Input Capture 2   |
| 14     | 9      | 6      | PB1 / T8_OCMP1       |          | I/O  | C <sub>T</sub> |        | X     |     | ei1 |        | X                           | X                  | Port B1                                                     | TIM8 Output Compare 1  |
| 15     | 10     | 7      | PB2 / T8_ICAP1       |          | I/O  | C <sub>T</sub> |        | X     | ei1 |     |        | X                           | X                  | Port B2                                                     | TIM8 Input Capture 1   |
| 16     | 11     | 8      | PB3 / MCO            |          | I/O  | C <sub>T</sub> |        | X     |     | ei1 |        | X                           | X                  | Port B3                                                     | Main clock out (fosc2) |
| 17     | -      | -      | PE0 / AIN12          |          | I/O  | T <sub>T</sub> |        | X     | X   |     | RB     | X                           | X                  | Port E0                                                     | ADC Analog Input 12    |
| 18     | -      | -      | PE1 / AIN13          |          | I/O  | T <sub>T</sub> |        | X     | X   |     | RB     | X                           | X                  | Port E1                                                     | ADC Analog Input 13    |
| 19     | 12     | 9      | PB4 / AIN0 / ICCCLK  |          | I/O  | C <sub>T</sub> |        | X     | ei1 |     | RB     | X                           | X                  | Port B4                                                     | ICC Clock input        |
| 20     | -      | -      | PE2 / AIN14          |          | I/O  | T <sub>T</sub> |        | X     | X   |     | RB     | X                           | X                  | Port E2                                                     | ADC Analog Input 14    |
| 21     | -      | -      | PE3 / AIN15          |          | I/O  | T <sub>T</sub> |        | X     | X   |     | RB     | X                           | X                  | Port E3                                                     | ADC Analog Input 15    |
| 22     | 13     | 10     | PB5 / AIN1 / ICCDATA |          | I/O  | C <sub>T</sub> |        | X     |     | ei1 | RB     | X                           | X                  | Port B5                                                     | ICC Data input         |
|        |        |        |                      |          |      |                |        |       |     |     |        |                             |                    | ADC Analog Input 1                                          |                        |

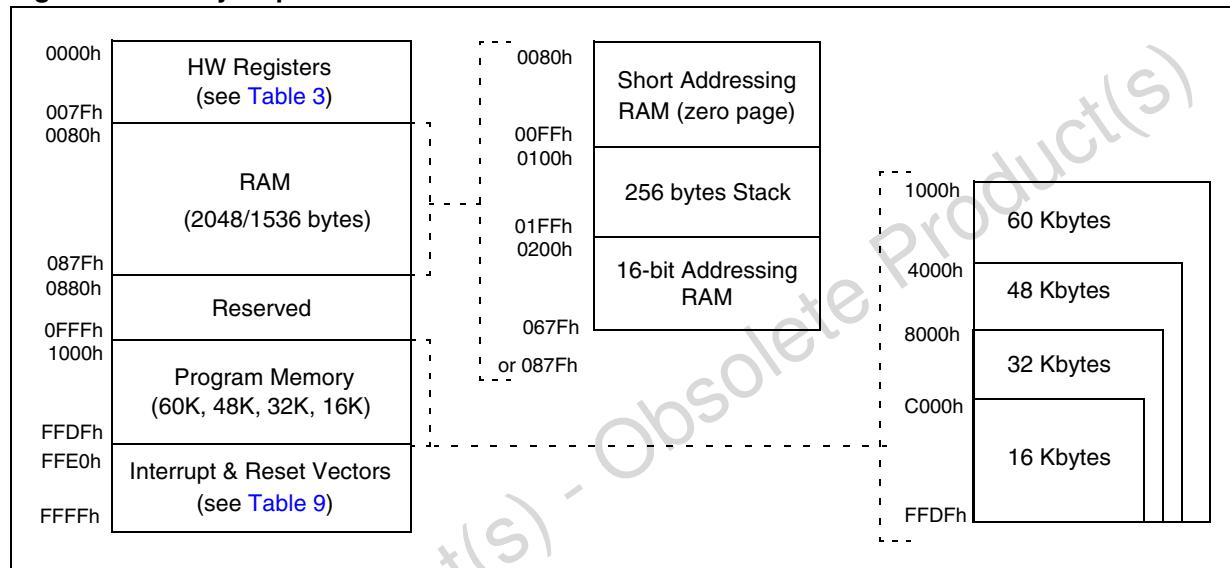
| Pin n° | Pin Name | Type | Level                  |        | Port           |               |     |        |    | Main function (after reset) | Alternate function |         |                                                           |                             |  |
|--------|----------|------|------------------------|--------|----------------|---------------|-----|--------|----|-----------------------------|--------------------|---------|-----------------------------------------------------------|-----------------------------|--|
|        |          |      | Input                  | Output | Input          |               |     | Output |    |                             |                    |         |                                                           |                             |  |
|        |          |      |                        |        | float          | wpu           | int | ana    | OD | PP                          |                    |         |                                                           |                             |  |
| 23     | 14       | 11   | PB6 / AIN2 / T16_OCMP1 | I/O    | C <sub>T</sub> | X             | X   |        | RB | X                           | X                  | Port B6 | TIM16 Output Compare 1                                    | ADC Analog Input 2          |  |
| 24     | 15       | -    | V <sub>SS_2</sub>      | S      |                |               |     |        |    |                             |                    |         | Digital Ground Voltage                                    |                             |  |
| 25     | 16       | -    | V <sub>DD_2</sub>      | S      |                |               |     |        |    |                             |                    |         | Digital Main Supply Voltage                               |                             |  |
| 26     | 17       | 12   | PB7 / AIN3 / T16_OCMP2 | I/O    | C <sub>T</sub> | X             | X   |        | RB | X                           | X                  | Port B7 | TIM16 Output Compare 2                                    | ADC Analog Input 3          |  |
| 27     | 18       | 13   | PC0 / AIN4 / T16_ICAP1 | I/O    | C <sub>T</sub> | X             | X   |        | RB | X                           | X                  | Port C0 | TIM16 Input Capture 1                                     | ADC Analog Input 4          |  |
| 28     | 19       | 14   | PC1 (HS) / T16_ICAP2   | I/O    | C <sub>T</sub> | HS            | X   | ei2    |    | X                           | X                  | Port C1 | TIM16 Input Capture 2                                     |                             |  |
| 29     | 20       | 15   | PC2 (HS) / T16_EXTCLK  | I/O    | C <sub>T</sub> | HS            | X   | ei2    |    | X                           | X                  | Port C2 | TIM16 External Clock input                                |                             |  |
| 30     | 21       | -    | PE4                    | I/O    | T <sub>T</sub> | X             | X   |        |    | X                           | X                  | Port E4 |                                                           |                             |  |
| 31     | -        | -    | NC                     |        |                | Not Connected |     |        |    |                             |                    |         |                                                           |                             |  |
| 32     | 22       | 16   | V <sub>PP</sub>        | I      |                |               |     |        |    |                             |                    |         | Flash programming voltage. Must be tied low in user mode. |                             |  |
| 33     | 23       | 17   | PC3                    | I/O    | C <sub>T</sub> | X             | X   |        |    | X                           | X                  | Port C3 |                                                           |                             |  |
| 34     | 24       | 18   | PC4                    | I/O    | C <sub>T</sub> | X             |     |        |    |                             | X <sup>2)</sup>    | Port C4 |                                                           |                             |  |
| 35     | -        | -    | PE5                    | I/O    | T <sub>T</sub> | X             | X   |        |    | X                           | X                  | Port E5 |                                                           |                             |  |
| 36     | 25       | -    | PE6 / AIN5             | I/O    | T <sub>T</sub> | X             | X   |        | X  | X                           | X                  | Port E6 | ADC Analog Input 5                                        |                             |  |
| 37     | 26       | 19   | PC5 / MISO             | I/O    | C <sub>T</sub> | X             | X   |        |    | X                           | X                  | Port C5 | SPI Master In/Slave Out                                   |                             |  |
| 38     | 27       | 20   | PC6 / MOSI             | I/O    | C <sub>T</sub> | X             | X   |        |    | X                           | X                  | Port C6 | SPI Master Out/Slave In                                   |                             |  |
| 39     | 28       | 21   | PC7 / SCK              | I/O    | C <sub>T</sub> | X             | X   |        |    | X                           | X                  | Port C7 | SPI Serial Clock                                          |                             |  |
| 40     | -        | -    | V <sub>SS_1</sub>      | S      |                |               |     |        |    |                             |                    |         | Digital Ground Voltage                                    |                             |  |
| 41     | -        | -    | V <sub>DD_1</sub>      | S      |                |               |     |        |    |                             |                    |         | Digital Main Supply Voltage                               |                             |  |
| 42     | 29       | 22   | PD0 / SS/ AIN6         | I/O    | C <sub>T</sub> | X             | ei3 |        | X  | X                           | X                  | Port D0 | SPI Slave Select                                          | ADC Analog Input 6          |  |
| 43     | -        | -    | PE7                    | I/O    | T <sub>T</sub> | X             | X   |        |    | X                           | X                  | Port E7 |                                                           |                             |  |
| 44     | -        | -    | PF0                    | I/O    | T <sub>T</sub> | X             | X   |        |    | X                           | X                  | Port F0 |                                                           |                             |  |
| 45     | 30       | -    | PF1 / AIN7             | I/O    | T <sub>T</sub> | X             | X   |        | X  | X                           | X                  | Port F1 | ADC Analog Input 7                                        |                             |  |
| 46     | 31       | -    | PF2 / AIN8             | I/O    | T <sub>T</sub> | X             | X   |        | X  | X                           | X                  | Port F2 | ADC Analog Input 8                                        |                             |  |
| 47     | 32       | 23   | PD1 / SCI1_RDI         | I/O    | C <sub>T</sub> | X             | ei3 |        | X  | X                           |                    | Port D1 | LINSCI1 Receive Data input                                |                             |  |
| 48     | 33       | 24   | PD2 / SCI1_TDO         | I/O    | C <sub>T</sub> | X             | X   |        |    | X                           | X                  | Port D2 | LINSCI1 Transmit Data output                              |                             |  |
| 49     | -        | -    | PF3 / AIN9             | I/O    | T <sub>T</sub> | X             | X   |        | X  | X                           | X                  | Port F3 | ADC Analog Input 9                                        |                             |  |
| 50     | -        | -    | PF4                    | I/O    | T <sub>T</sub> | X             | X   |        |    | X                           | X                  | Port F4 |                                                           |                             |  |
| 51     | -        | -    | TLI                    | I      | C <sub>T</sub> | X             | X   |        |    |                             |                    |         | Top level interrupt input pin                             |                             |  |
| 52     | 34       | -    | PF5                    | I/O    | T <sub>T</sub> | X             | X   |        |    | X                           | X                  | Port F5 |                                                           |                             |  |
| 53     | 35       | 25   | PD3 (HS) / SCI2_SCK    | I/O    | C <sub>T</sub> | HS            | X   | X      |    |                             | X                  | X       | Port D3                                                   | LINSCI2 Serial Clock Output |  |

| Pin n° | Pin Name | Type | Level             |        | Port           |     |        |     | Main function (after reset) | Alternate function |                                      |
|--------|----------|------|-------------------|--------|----------------|-----|--------|-----|-----------------------------|--------------------|--------------------------------------|
|        |          |      | Input             | Output | Input          |     | Output |     |                             |                    |                                      |
|        |          |      |                   |        | float          | wpu | int    | ana | OD                          | PP                 |                                      |
| 54     | 36       | 26   | PD4 / SCI2_RDI    | I/O    | C <sub>T</sub> | X   |        | ei3 | X                           | X                  | Port D4 LINSCI2 Receive Data input   |
| 55     | 37       | 27   | V <sub>SSA</sub>  | S      |                |     |        |     |                             |                    | Analog Ground Voltage                |
| 56     | 38       | 28   | V <sub>SS_0</sub> | S      |                |     |        |     |                             |                    | Digital Ground Voltage               |
| 57     | 39       | 29   | V <sub>DDA</sub>  | I      |                |     |        |     |                             |                    | Analog Reference Voltage for ADC     |
| 58     | 40       | 30   | V <sub>DD_0</sub> | S      |                |     |        |     |                             |                    | Digital Main Supply Voltage          |
| 59     | 41       | 31   | PD5 / SCI2_TDO    | I/O    | C <sub>T</sub> | X   | X      |     | X                           | X                  | Port D5 LINSCI2 Transmit Data output |
| 60     | 42       | 32   | RESET             | I/O    | C <sub>T</sub> |     |        |     |                             |                    | Top priority non maskable interrupt. |
| 61     | 43       | -    | PD6 / AIN10       | I/O    | C <sub>T</sub> | X   | ei3    | X   | X                           | X                  | Port D6 ADC Analog Input 10          |
| 62     | 44       | -    | PD7 / AIN11       | I/O    | C <sub>T</sub> | X   | ei3    | X   | X                           | X                  | Port D7 ADC Analog Input 11          |
| 63     | -        | -    | PF6               | I/O    | T <sub>T</sub> | X   | X      |     | X                           | X                  | Port F6                              |
| 64     | -        | -    | PF7               | I/O    | T <sub>T</sub> | X   | X      |     | X                           | X                  | Port F7                              |

**Notes:**

1. In the interrupt input column, "eiX" defines the associated external interrupt vector. If the weak pull-up column (wpu) is merged with the interrupt column (int), then the I/O configuration is pull-up interrupt input, else the configuration is floating interrupt input.
2. Input mode can be used for general purpose I/O, output mode cannot be used.
3. OSC1 and OSC2 pins connect a crystal/ceramic resonator, or an external source to the on-chip oscillator; see [Section 6](#) and [Section 12.5 "CLOCK AND TIMING CHARACTERISTICS"](#) for more details.
4. On the chip, each I/O port has eight pads. Pads that are not bonded to external pins are in input pull-up configuration after reset. The configuration of these pads must be kept at reset state to avoid added current consumption.

### 3 REGISTER AND MEMORY MAP


As shown in [Figure 5](#), the MCU is capable of addressing 64 Kbytes of memories and I/O registers.

The available memory locations consist of 128 bytes of register locations, up to 2 Kbytes of RAM and up to 60 Kbytes of user program memory.

The RAM space includes up to 256 bytes for the stack from 0100h to 01FFh. The highest address bytes contain the user reset and interrupt vectors.

**IMPORTANT:** Memory locations marked as “Reserved” must never be accessed. Accessing a reserved area can have unpredictable effects on the device.

**Figure 5. Memory Map**



**Table 3. Hardware Register Map**

| Address                 | Block  | Register Label        | Register Name                                                                    | Reset Status                    | Remarks                                                     |
|-------------------------|--------|-----------------------|----------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------|
| 0000h<br>0001h<br>0002h | Port A | PADR<br>PADDR<br>PAOR | Port A Data Register<br>Port A Data Direction Register<br>Port A Option Register | 00h <sup>1)</sup><br>00h<br>00h | R/W <sup>2)</sup><br>R/W <sup>2)</sup><br>R/W <sup>2)</sup> |
| 0003h<br>0004h<br>0005h | Port B | PBDR<br>PBDDR<br>PBOR | Port B Data Register<br>Port B Data Direction Register<br>Port B Option Register | 00h <sup>1)</sup><br>00h<br>00h | R/W <sup>2)</sup><br>R/W <sup>2)</sup><br>R/W <sup>2)</sup> |
| 0006h<br>0007h<br>0008h | Port C | PCDR<br>PCDDR<br>PCOR | Port C Data Register<br>Port C Data Direction Register<br>Port C Option Register | 00h <sup>1)</sup><br>00h<br>00h | R/W <sup>2)</sup><br>R/W <sup>2)</sup><br>R/W <sup>2)</sup> |
| 0009h<br>000Ah<br>000Bh | Port D | PDDR<br>PDDDR<br>PDOR | Port D Data Register<br>Port D Data Direction Register<br>Port D Option Register | 00h <sup>1)</sup><br>00h<br>00h | R/W <sup>2)</sup><br>R/W <sup>2)</sup><br>R/W <sup>2)</sup> |
| 000Ch<br>000Dh<br>000Eh | Port E | PEDR<br>PEDDR<br>PEOR | Port E Data Register<br>Port E Data Direction Register<br>Port E Option Register | 00h <sup>1)</sup><br>00h<br>00h | R/W <sup>2)</sup><br>R/W <sup>2)</sup><br>R/W <sup>2)</sup> |

| Address                                                                                         | Block                    | Register Label                                                                                                    | Register Name                                                                                                                                                                                                                                                                                                                                                                                               | Reset Status                                                                     | Remarks                                                                                      |
|-------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| 000Fh<br>0010h<br>0011h                                                                         | Port F                   | PFDR<br>PFDDR<br>PFOR                                                                                             | Port F Data Register<br>Port F Data Direction Register<br>Port F Option Register                                                                                                                                                                                                                                                                                                                            | 00h <sup>1)</sup><br>00h<br>00h                                                  | R/W <sup>2)</sup><br>R/W <sup>2)</sup><br>R/W <sup>2)</sup>                                  |
| 0012h<br>to<br>0020h                                                                            | Reserved Area (15 bytes) |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  |                                                                                              |
| 0021h<br>0022h<br>0023h                                                                         | SPI                      | SPIDR<br>SPICR<br>SPICSR                                                                                          | SPI Data I/O Register<br>SPI Control Register<br>SPI Control/Status Register                                                                                                                                                                                                                                                                                                                                | xxh<br>0xh<br>00h                                                                | R/W<br>R/W<br>R/W                                                                            |
| 0024h                                                                                           | FLASH                    | FCSR                                                                                                              | Flash Control/Status Register                                                                                                                                                                                                                                                                                                                                                                               | 00h                                                                              | R/W                                                                                          |
| 0025h<br>0026h<br>0027h<br>0028h<br>0029h<br>002Ah                                              | ITC                      | ISPR0<br>ISPR1<br>ISPR2<br>ISPR3<br>EICR0<br>EICR1                                                                | Interrupt Software Priority Register 0<br>Interrupt Software Priority Register 1<br>Interrupt Software Priority Register 2<br>Interrupt Software Priority Register 3<br>External Interrupt Control Register 0<br>External Interrupt Control Register 1                                                                                                                                                      | FFh<br>FFh<br>FFh<br>FFh<br>00h<br>00h                                           | R/W<br>R/W<br>R/W<br>R/W<br>R/W<br>R/W                                                       |
| 002Bh<br>002Ch                                                                                  | AWU                      | AWUCSR<br>AWUPR                                                                                                   | Auto Wake up f. Halt Control/Status Register<br>Auto Wake Up From Halt Prescaler                                                                                                                                                                                                                                                                                                                            | 00h<br>FFh                                                                       | R/W<br>R/W                                                                                   |
| 002Dh<br>002Eh                                                                                  | CKCTRL                   | SICSR<br>MCCSR                                                                                                    | System Integrity Control / Status Register<br>Main Clock Control / Status Register                                                                                                                                                                                                                                                                                                                          | 0xh<br>00h                                                                       | R/W<br>R/W                                                                                   |
| 002Fh<br>0030h                                                                                  | WWDG                     | WDGCR<br>WDGWR                                                                                                    | Watchdog Control Register<br>Watchdog Window Register                                                                                                                                                                                                                                                                                                                                                       | 7Fh<br>7Fh                                                                       | R/W<br>R/W                                                                                   |
| 0031h<br>0032h<br>0033h<br>0034h<br>0035h<br>0036h<br>0037h<br>0038h<br>0039h<br>003Ah<br>003Bh | PWM<br>ART               | PWMDCR3<br>PWMDCR2<br>PWMDCR1<br>PWMDCR0<br>PWMCR<br>ARTCSR<br>ARTCAR<br>ARTARR<br>ARTICCSR<br>ARTICR1<br>ARTICR2 | Pulse Width Modulator Duty Cycle Register 3<br>PWM Duty Cycle Register 2<br>PWM Duty Cycle Register 1<br>PWM Duty Cycle Register 0<br>PWM Control register<br>Auto-Reload Timer Control/Status Register<br>Auto-Reload Timer Counter Access Register<br>Auto-Reload Timer Auto-Reload Register<br>ART Input Capture Control/Status Register<br>ART Input Capture Register 1<br>ART Input Capture register 2 | 00h<br>00h<br>00h<br>00h<br>00h<br>00h<br>00h<br>00h<br>00h<br>00h<br>00h<br>00h | R/W<br>R/W<br>R/W<br>R/W<br>R/W<br>R/W<br>R/W<br>R/W<br>R/W<br>R/W<br>Read Only<br>Read Only |
| 003Ch<br>003Dh<br>003Eh<br>003Fh<br>0040h<br>0041h<br>0042h<br>0043h<br>0044h                   | 8-BIT<br>TIMER           | T8CR2<br>T8CR1<br>T8CSR<br>T8IC1R<br>T8OC1R<br>T8CTR<br>T8ACTR<br>T8IC2R<br>T8OC2R                                | Timer Control Register 2<br>Timer Control Register 1<br>Timer Control/Status Register<br>Timer Input Capture 1 Register<br>Timer Output Compare 1 Register<br>Timer Counter Register<br>Timer Alternate Counter Register<br>Timer Input Capture 2 Register<br>Timer Output Compare 2 Register                                                                                                               | 00h<br>00h<br>00h<br>xxh<br>00h<br>FCh<br>FCh<br>xxh<br>00h                      | R/W<br>R/W<br>Read Only<br>Read Only<br>R/W<br>Read Only<br>Read Only<br>Read Only<br>R/W    |
| 0045h<br>0046h<br>0047h                                                                         | ADC                      | ADCCSR<br>ADCDRH<br>ADCDRL                                                                                        | Control/Status Register<br>Data High Register<br>Data Low Register                                                                                                                                                                                                                                                                                                                                          | 00h<br>00h<br>00h                                                                | R/W<br>Read Only<br>Read Only                                                                |

| Address              | Block                             | Register Label         | Register Name                             | Reset Status | Remarks   |
|----------------------|-----------------------------------|------------------------|-------------------------------------------|--------------|-----------|
| 0048h                | LINSCI1<br>(LIN Master/<br>Slave) | SCI1ISR                | SCI1 Status Register                      | C0h          | Read Only |
| 0049h                |                                   | SCI1DR                 | SCI1 Data Register                        | xxh          | R/W       |
| 004Ah                |                                   | SCI1BRR                | SCI1 Baud Rate Register                   | 00h          | R/W       |
| 004Bh                |                                   | SCI1CR1                | SCI1 Control Register 1                   | xxh          | R/W       |
| 004Ch                |                                   | SCI1CR2                | SCI1 Control Register 2                   | 00h          | R/W       |
| 004Dh                |                                   | SCI1CR3                | SCI1 Control Register 3                   | 00h          | R/W       |
| 004Eh                |                                   | SCI1ERPR               | SCI1 Extended Receive Prescaler Register  | 00h          | R/W       |
| 004Fh                |                                   | SCI1ETPR               | SCI1 Extended Transmit Prescaler Register | 00h          | R/W       |
| 0050h                |                                   | Reserved Area (1 byte) |                                           |              |           |
| 0051h                | 16-BIT<br>TIMER                   | T16CR2                 | Timer Control Register 2                  | 00h          | R/W       |
| 0052h                |                                   | T16CR1                 | Timer Control Register 1                  | 00h          | R/W       |
| 0053h                |                                   | T16CSR                 | Timer Control/Status Register             | 00h          | R/W       |
| 0054h                |                                   | T16IC1HR               | Timer Input Capture 1 High Register       | xxh          | Read Only |
| 0055h                |                                   | T16IC1LR               | Timer Input Capture 1 Low Register        | xxh          | Read Only |
| 0056h                |                                   | T16OC1HR               | Timer Output Compare 1 High Register      | 80h          | R/W       |
| 0057h                |                                   | T16OC1LR               | Timer Output Compare 1 Low Register       | 00h          | R/W       |
| 0058h                |                                   | T16CHR                 | Timer Counter High Register               | FFh          | Read Only |
| 0059h                |                                   | T16CLR                 | Timer Counter Low Register                | FCh          | Read Only |
| 005Ah                |                                   | T16ACHR                | Timer Alternate Counter High Register     | FFh          | Read Only |
| 005Bh                |                                   | T16ACLR                | Timer Alternate Counter Low Register      | FCh          | Read Only |
| 005Ch                |                                   | T16IC2HR               | Timer Input Capture 2 High Register       | xxh          | Read Only |
| 005Dh                |                                   | T16IC2LR               | Timer Input Capture 2 Low Register        | xxh          | Read Only |
| 005Eh                |                                   | T16OC2HR               | Timer Output Compare 2 High Register      | 80h          | R/W       |
| 005Fh                |                                   | T16OC2LR               | Timer Output Compare 2 Low Register       | 00h          | R/W       |
| 0060h                | LINSCI2<br>(LIN Master)           | SCI2SR                 | SCI2 Status Register                      | C0h          | Read Only |
| 0061h                |                                   | SCI2DR                 | SCI2 Data Register                        | xxh          | R/W       |
| 0062h                |                                   | SCI2BRR                | SCI2 Baud Rate Register                   | 00h          | R/W       |
| 0063h                |                                   | SCI2CR1                | SCI2 Control Register 1                   | xxh          | R/W       |
| 0064h                |                                   | SCI2CR2                | SCI2 Control Register 2                   | 00h          | R/W       |
| 0065h                |                                   | SCI2CR3                | SCI2 Control Register 3                   | 00h          | R/W       |
| 0066h                |                                   | SCI2ERPR               | SCI2 Extended Receive Prescaler Register  | 00h          | R/W       |
| 0067h                |                                   | SCI2ETPR               | SCI2 Extended Transmit Prescaler Register | 00h          | R/W       |
| 0068h<br>to<br>007Fh | Reserved area (24 bytes)          |                        |                                           |              |           |

**Legend:** x = undefined, R/W = read/write

**Notes:**

1. The contents of the I/O port DR registers are readable only in output configuration. In input configuration, the values of the I/O pins are returned instead of the DR register contents.
2. The bits associated with unavailable pins must always keep their reset value.

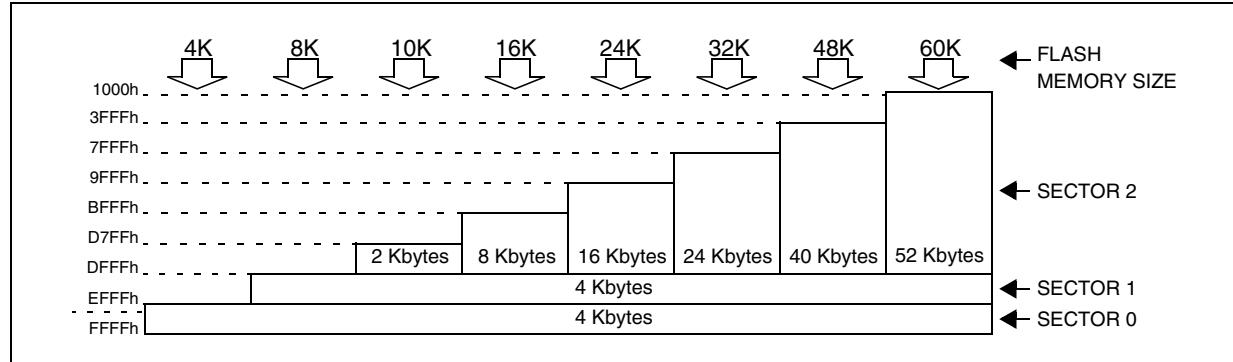
## 4 FLASH PROGRAM MEMORY

### 4.1 INTRODUCTION

The ST7 dual voltage High Density Flash (HDFlash) is a non-volatile memory that can be electrically erased as a single block or by individual sectors and programmed on a Byte-by-Byte basis using an external  $V_{PP}$  supply.

The HDFlash devices can be programmed and erased off-board (plugged in a programming tool) or on-board using ICP (In-Circuit Programming) or IAP (In-Application Programming).

The array matrix organisation allows each sector to be erased and reprogrammed without affecting other sectors.


### 4.2 MAIN FEATURES

- 3 Flash programming modes:
  - Insertion in a programming tool. In this mode, all sectors including option bytes can be programmed or erased.
  - ICP (In-Circuit Programming). In this mode, all sectors including option bytes can be programmed or erased without removing the device from the application board.
  - IAP (In-Application Programming). In this mode, all sectors except Sector 0, can be programmed or erased without removing the device from the application board and while the application is running.
- ICT (In-Circuit Testing) for downloading and executing user application test patterns in RAM
- Read-out protection
- Register Access Security System (RASS) to prevent accidental programming or erasing

### 4.3 STRUCTURE

The Flash memory is organised in sectors and can be used for both code and data storage.

**Figure 6. Memory Map and Sector Address**



Depending on the overall Flash memory size in the microcontroller device, there are up to three user sectors (see [Table 3](#)). Each of these sectors can be erased independently to avoid unnecessary erasing of the whole Flash memory when only a partial erasing is required.

The first two sectors have a fixed size of 4 Kbytes (see [Figure 6](#)). They are mapped in the upper part of the ST7 addressing space so the reset and interrupt vectors are located in Sector 0 (F000h-FFFFh).

**Table 4. Sectors available in Flash devices**

| Flash Size (bytes) | Available Sectors |
|--------------------|-------------------|
| 4K                 | Sector 0          |
| 8K                 | Sectors 0,1       |
| > 8K               | Sectors 0,1, 2    |

#### 4.3.1 Read-out Protection

Read-out protection, when selected, provides a protection against Program Memory content extraction and against write access to Flash memory. Even if no protection can be considered as totally unbreakable, the feature provides a very high level of protection for a general purpose microcontroller.

In Flash devices, this protection is removed by reprogramming the option. In this case, the entire program memory is first automatically erased and the device can be reprogrammed.

Read-out protection selection depends on the device type:

- In Flash devices it is enabled and removed through the FMP\_R bit in the option byte.
- In ROM devices it is enabled by mask option specified in the Option List.

## FLASH PROGRAM MEMORY (Cont'd)

## 4.4 ICC INTERFACE

ICC (In-Circuit Communication) needs a minimum of four and up to six pins to be connected to the programming tool (see Figure 7). These pins are:

- RESET: device reset
- V<sub>SS</sub>: device power supply ground

- ICCCLK: ICC output serial clock pin
- ICCDATA: ICC input/output serial data pin
- ICCSEL/V<sub>PP</sub>: programming voltage
- OSC1(or OSCIN): main clock input for external source (optional)
- V<sub>DD</sub>: application board power supply (see Figure 7, Note 3)

Figure 7. Typical ICC Interface



## Notes:

1. If the ICCCLK or ICCDATA pins are only used as outputs in the application, no signal isolation is necessary. As soon as the Programming Tool is plugged to the board, even if an ICC session is not in progress, the ICCCLK and ICCDATA pins are not available for the application. If they are used as inputs by the application, isolation such as a serial resistor has to be implemented in case another device forces the signal. Refer to the Programming Tool documentation for recommended resistor values.

2. During the ICC session, the programming tool must control the RESET pin. This can lead to conflicts between the programming tool and the application reset circuit if it drives more than 5mA at high level (push pull output or pull-up resistor < 1K). A schottky diode can be used to isolate the application RESET circuit in this case. When using a classical RC network with R > 1K or a reset man-

agement IC with open drain output and pull-up resistor > 1K, no additional components are needed. In all cases the user must ensure that no external reset is generated by the application during the ICC session.

3. The use of Pin 7 of the ICC connector depends on the Programming Tool architecture. This pin must be connected when using most ST Programming Tools (it is used to monitor the application power supply). Please refer to the Programming Tool manual.

4. Pin 9 has to be connected to the OSC1 or OSCIN pin of the ST7 when the clock is not available in the application or if the selected clock option is not programmed in the option byte. ST7 devices with multi-oscillator capability need to have OSC2 grounded in this case.

## FLASH PROGRAM MEMORY (Cont'd)

### 4.5 ICP (IN-CIRCUIT PROGRAMMING)

To perform ICP the microcontroller must be switched to ICC (In-Circuit Communication) mode by an external controller or programming tool.

Depending on the ICP code downloaded in RAM, Flash memory programming can be fully customized (number of bytes to program, program locations, or selection serial communication interface for downloading).

When using an STMicroelectronics or third-party programming tool that supports ICP and the specific microcontroller device, the user needs only to implement the ICP hardware interface on the application board (see [Figure 7](#)). For more details on the pin locations, refer to the device pinout description.

### 4.6 IAP (IN-APPLICATION PROGRAMMING)

This mode uses a BootLoader program previously stored in Sector 0 by the user (in ICP mode or by plugging the device in a programming tool).

This mode is fully controlled by user software. This allows it to be adapted to the user application, (user-defined strategy for entering programming mode, choice of communications protocol used to fetch the data to be stored, etc.). For example, it is possible to download code from the SPI, SCI or other type of serial interface and program it in the Flash. IAP mode can be used to program any of the Flash sectors except Sector 0, which is write/erase protected to allow recovery in case errors occur during the programming operation.

### 4.7 RELATED DOCUMENTATION

For details on Flash programming and ICC protocol, refer to the *ST7 Flash Programming Reference Manual* and to the *ST7 ICC Protocol Reference Manual*.

### 4.8 REGISTER DESCRIPTION

#### FLASH CONTROL/STATUS REGISTER (FCSR)

Read/Write

Reset Value: 0000 0000 (00h)

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

This register is reserved for use by Programming Tool software. It controls the Flash programming and erasing operations.

**Table 5. Flash Control/Status Register Address and Reset Value**

| Address (Hex.) | Register Label             | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----------------|----------------------------|---|---|---|---|---|---|---|---|
| 0024h          | <b>FCSR</b><br>Reset Value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

## 5 CENTRAL PROCESSING UNIT

### 5.1 INTRODUCTION

This CPU has a full 8-bit architecture and contains six internal registers allowing efficient 8-bit data manipulation.

### 5.2 MAIN FEATURES

- Enable executing 63 basic instructions
- Fast 8-bit by 8-bit multiply
- 17 main addressing modes (with indirect addressing mode)
- Two 8-bit index registers
- 16-bit stack pointer
- Low power HALT and WAIT modes
- Priority maskable hardware interrupts
- Non-maskable software/hardware interrupts

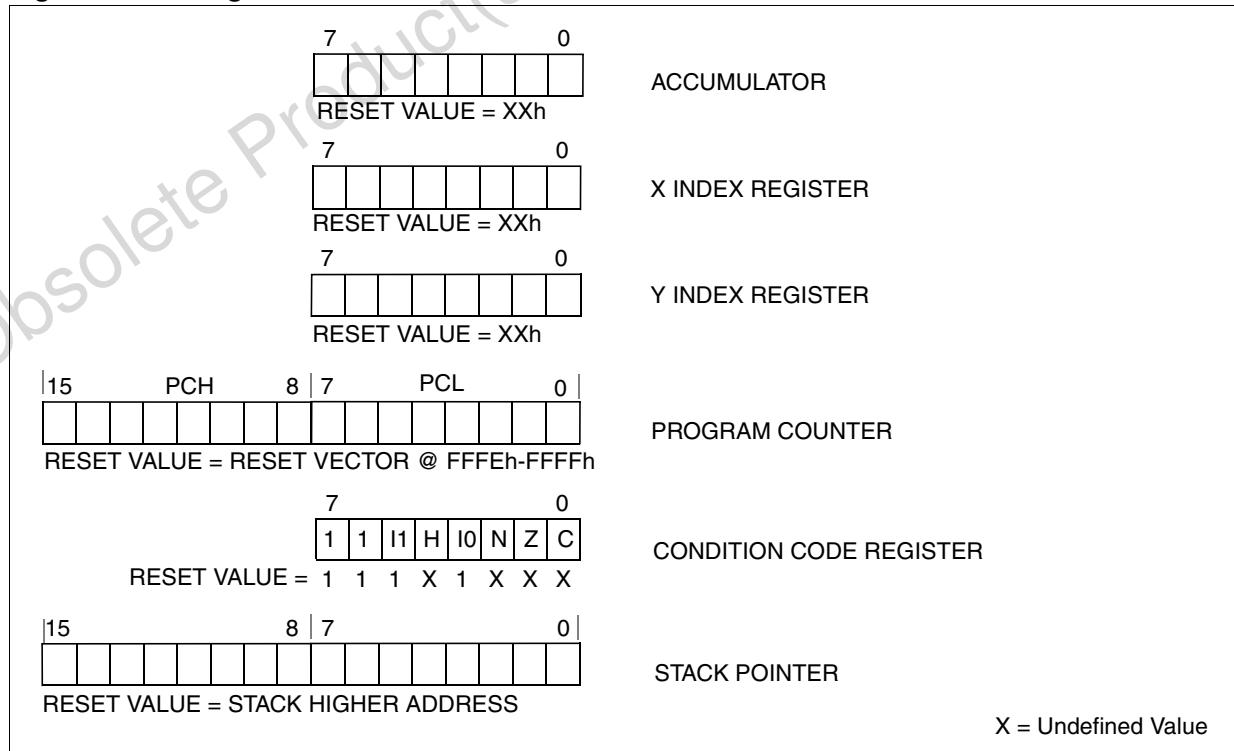
### 5.3 CPU REGISTERS

The six CPU registers shown in [Figure 8](#) are not present in the memory mapping and are accessed by specific instructions.

#### Accumulator (A)

The Accumulator is an 8-bit general purpose register used to hold operands and the results of the arithmetic and logic calculations and to manipulate data.

#### Index Registers (X and Y)


These 8-bit registers are used to create effective addresses or as temporary storage areas for data manipulation. (The Cross-Assembler generates a precede instruction (PRE) to indicate that the following instruction refers to the Y register.)

The Y register is not affected by the interrupt automatic procedures.

#### Program Counter (PC)

The program counter is a 16-bit register containing the address of the next instruction to be executed by the CPU. It is made of two 8-bit registers PCL (Program Counter Low which is the LSB) and PCH (Program Counter High which is the MSB).

**Figure 8. CPU Registers**



**CENTRAL PROCESSING UNIT (Cont'd)****Condition Code Register (CC)**

Read/Write

Reset Value: 111x1xxx

| 7 | 6 | 5  | 4 | 3  | 2 | 1 | 0 |
|---|---|----|---|----|---|---|---|
| 1 | 1 | I1 | H | I0 | N | Z | C |

The 8-bit Condition Code register contains the interrupt masks and four flags representative of the result of the instruction just executed. This register can also be handled by the PUSH and POP instructions.

These bits can be individually tested and/or controlled by specific instructions.

**Arithmetic Management Bits****Bit 4 = H Half carry.**

This bit is set by hardware when a carry occurs between bits 3 and 4 of the ALU during an ADD or ADC instructions. It is reset by hardware during the same instructions.

0: No half carry has occurred.

1: A half carry has occurred.

This bit is tested using the JRH or JRNH instruction. The H bit is useful in BCD arithmetic subroutines.

**Bit 2 = N Negative.**

This bit is set and cleared by hardware. It is representative of the result sign of the last arithmetic, logical or data manipulation. It's a copy of the result 7<sup>th</sup> bit.

0: The result of the last operation is positive or null.

1: The result of the last operation is negative  
(that is, the most significant bit is a logic 1).

This bit is accessed by the JRMI and JRPL instructions.

**Bit 1 = Z Zero.**

This bit is set and cleared by hardware. This bit indicates that the result of the last arithmetic, logical or data manipulation is zero.

0: The result of the last operation is different from zero.

1: The result of the last operation is zero.

This bit is accessed by the JREQ and JRNE test instructions.

**Bit 0 = C Carry/borrow.**

This bit is set and cleared by hardware and software. It indicates an overflow or an underflow has occurred during the last arithmetic operation.

0: No overflow or underflow has occurred.

1: An overflow or underflow has occurred.

This bit is driven by the SCF and RCF instructions and tested by the JRC and JRNC instructions. It is also affected by the "bit test and branch", shift and rotate instructions.

**Interrupt Management Bits****Bit 5,3 = I1, I0 Interrupt**

The combination of the I1 and I0 bits gives the current interrupt software priority.

| Interrupt Software Priority   | I1 | I0 |
|-------------------------------|----|----|
| Level 0 (main)                | 1  | 0  |
| Level 1                       | 0  | 1  |
| Level 2                       | 0  | 0  |
| Level 3 (= interrupt disable) | 1  | 1  |

These two bits are set/cleared by hardware when entering in interrupt. The loaded value is given by the corresponding bits in the interrupt software priority registers (IxSPR). They can be also set/cleared by software with the RIM, SIM, IRET, HALT, WFI and PUSH/POP instructions.

See the interrupt management chapter for more details.

## CENTRAL PROCESSING UNIT (Cont'd)

## Stack Pointer (SP)

Read/Write

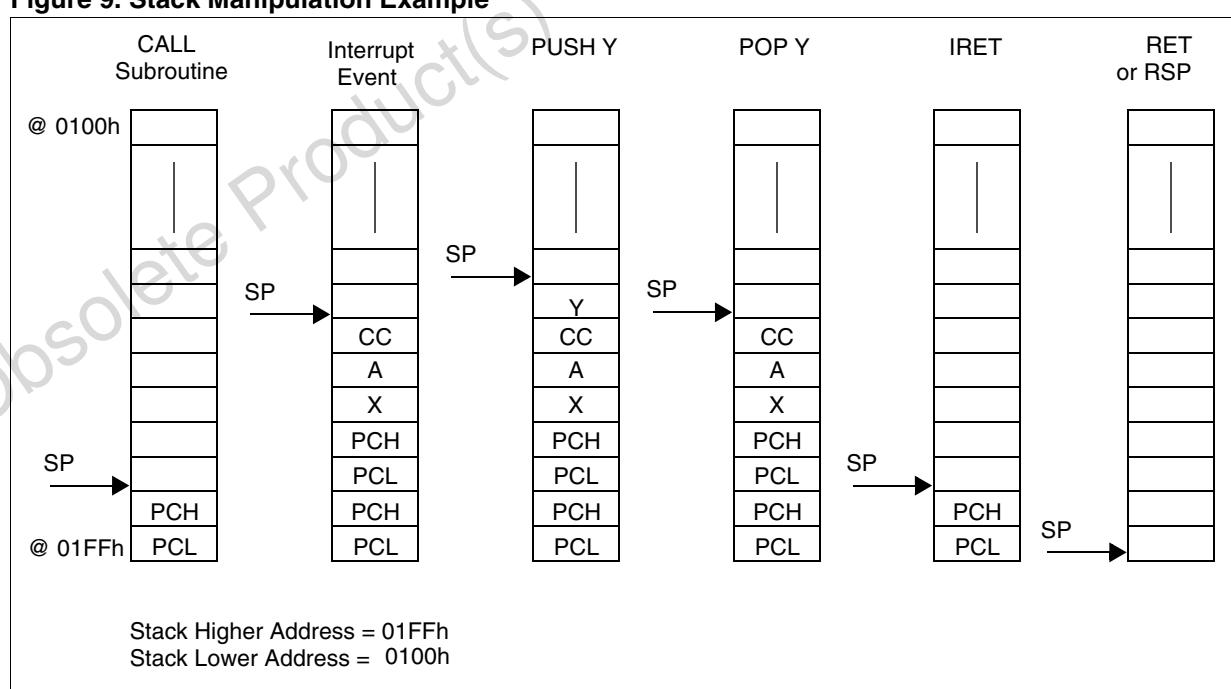
Reset Value: 01 FFh

|    |     |     |     |     |     |     |   |
|----|-----|-----|-----|-----|-----|-----|---|
| 15 | 0   | 0   | 0   | 0   | 0   | 0   | 1 |
| 7  | SP7 | SP6 | SP5 | SP4 | SP3 | SP2 | 0 |
| 0  | SP1 | SP0 |     |     |     |     |   |

The Stack Pointer is a 16-bit register which is always pointing to the next free location in the stack. It is then decremented after data has been pushed onto the stack and incremented before data is popped from the stack (see [Figure 9](#)).

Since the stack is 256 bytes deep, the 8 most significant bits are forced by hardware. Following an MCU Reset, or after a Reset Stack Pointer instruction (RSP), the Stack Pointer contains its reset value (the SP7 to SP0 bits are set) which is the stack higher address.

The least significant byte of the Stack Pointer (called S) can be directly accessed by a LD instruction.


**Note:** When the lower limit is exceeded, the Stack Pointer wraps around to the stack upper limit, without indicating the stack overflow. The previously stored information is then overwritten and therefore lost. The stack also wraps in case of an underflow.

The stack is used to save the return address during a subroutine call and the CPU context during an interrupt. The user may also directly manipulate the stack by means of the PUSH and POP instructions. In the case of an interrupt, the PCL is stored at the first location pointed to by the SP. Then the other registers are stored in the next locations as shown in [Figure 9](#).

- When an interrupt is received, the SP is decremented and the context is pushed on the stack.
- On return from interrupt, the SP is incremented and the context is popped from the stack.

A subroutine call occupies two locations and an interrupt five locations in the stack area.

**Figure 9. Stack Manipulation Example**

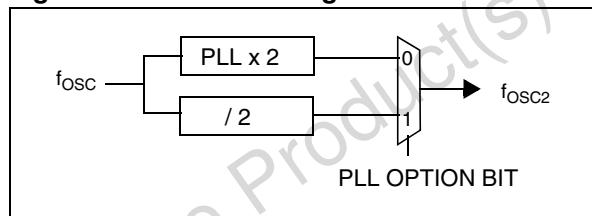


## 6 SUPPLY, RESET AND CLOCK MANAGEMENT

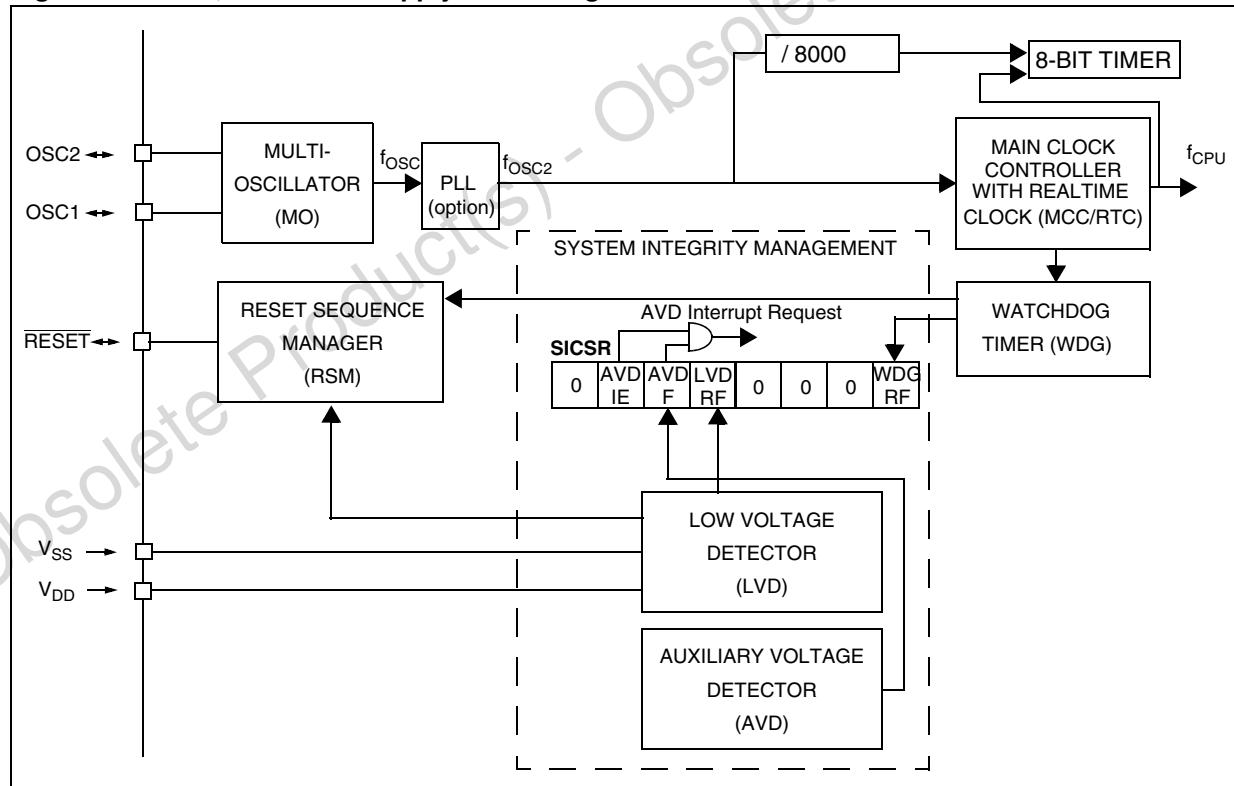
The device includes a range of utility features for securing the application in critical situations (for example, in case of a power brown-out), and reducing the number of external components. An overview is shown in [Figure 11](#).

For more details, refer to dedicated parametric section.

### Main features


- Optional PLL for multiplying the frequency by 2
- Reset Sequence Manager (RSM)
- Multi-Oscillator Clock Management (MO)
  - 4 Crystal/Ceramic resonator oscillators
- System Integrity Management (SI)
  - Main supply Low voltage detection (LVD)
  - Auxiliary Voltage detector (AVD) with interrupt capability for monitoring the main supply

### 6.1 PHASE LOCKED LOOP


If the clock frequency input to the PLL is in the range 2 to 4 MHz, the PLL can be used to multiply the frequency by two to obtain an  $f_{OSC2}$  of 4 to 8 MHz. The PLL is enabled by option byte. If the PLL is disabled, then  $f_{OSC2} = f_{OSC}/2$ .

**Caution:** The PLL is not recommended for applications where timing accuracy is required. See ["PLL Characteristics" on page 187](#).

**Figure 10. PLL Block Diagram**



**Figure 11. Clock, Reset and Supply Block Diagram**



## 6.2 MULTI-OSCILLATOR (MO)

The main clock of the ST7 can be generated by two different source types coming from the multi-oscillator block:

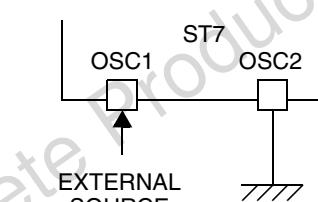
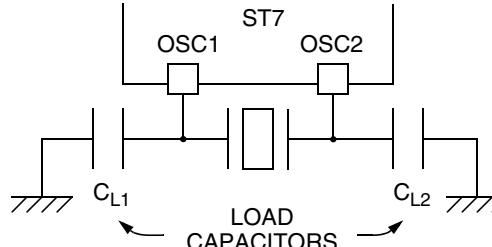
- an external source
- a crystal or ceramic resonator oscillator

Each oscillator is optimized for a given frequency range in terms of consumption and is selectable through the option byte. The associated hardware configuration are shown in [Table 6](#). Refer to the electrical characteristics section for more details.

**Caution:** The OSC1 and/or OSC2 pins must not be left unconnected. For the purposes of Failure Mode and Effect Analysis, it should be noted that if the OSC1 and/or OSC2 pins are left unconnected, the ST7 main oscillator may start and, in this configuration, could generate an  $f_{OSC}$  clock frequency in excess of the allowed maximum ( $> 16$  MHz), putting the ST7 in an unsafe/undefined state. The product behavior must therefore be considered undefined when the OSC pins are left unconnected.

### External Clock Source

In external clock mode, a clock signal (square, sinus or triangle) with ~50% duty cycle has to drive the OSC1 pin while the OSC2 pin is tied to ground.



### Crystal/Ceramic Oscillators

This family of oscillators has the advantage of producing a very accurate rate on the main clock of the ST7. The selection within a list of five oscillators with different frequency ranges must be done by option byte in order to reduce consumption (refer to [Section 14.1 on page 210](#) for more details on

the frequency ranges). The resonator and the load capacitors must be placed as close as possible to the oscillator pins in order to minimize output distortion and start-up stabilization time. The loading capacitance values must be adjusted according to the selected oscillator.

These oscillators are not stopped during the RESET phase to avoid losing time in the oscillator start-up phase.

**Table 6. ST7 Clock Sources**

| Hardware Configuration     |                                                                                      |
|----------------------------|--------------------------------------------------------------------------------------|
| External Clock             |    |
| Crystal/Ceramic Resonators |  |

### 6.3 RESET SEQUENCE MANAGER (RSM)

#### 6.3.1 Introduction

The reset sequence manager includes three RESET sources as shown in [Figure 2](#):

- External **RESET** source pulse
- Internal LVD RESET (Low Voltage Detection)
- Internal WATCHDOG RESET

These sources act on the **RESET** pin and it is always kept low during the delay phase.

The RESET service routine vector is fixed at addresses FFFEh-FFFFh in the ST7 memory map.

The basic RESET sequence consists of three phases as shown in [Figure 1](#):

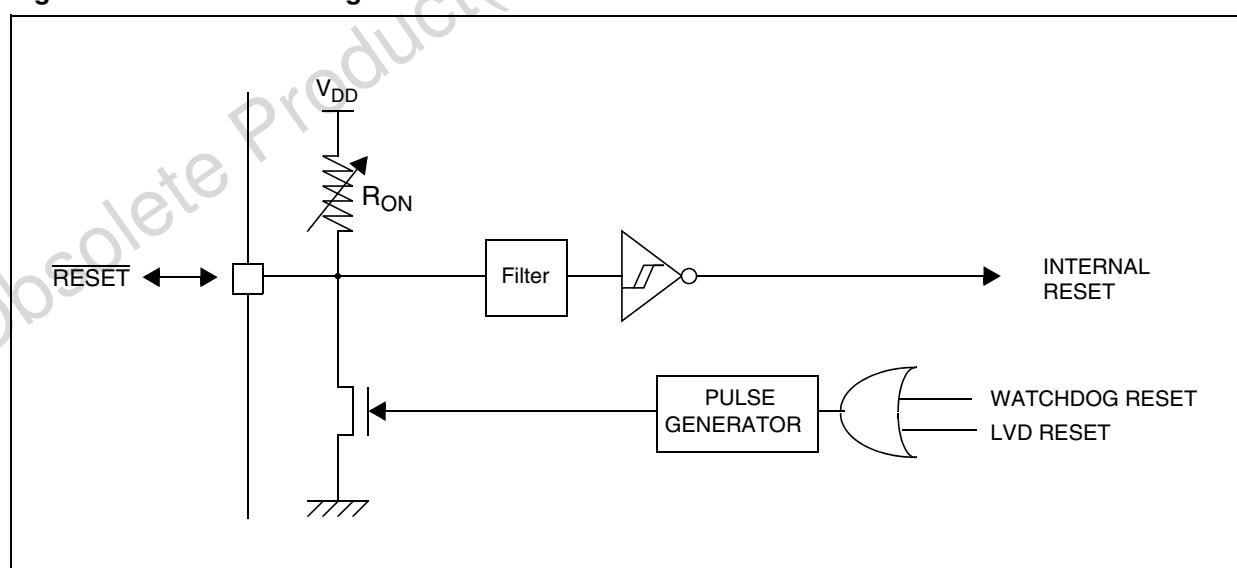
- Active Phase depending on the RESET source
- 256 or 4096 CPU clock cycle delay (selected by option byte)
- RESET vector fetch

The 256 or 4096 CPU clock cycle delay allows the oscillator to stabilize and ensures that recovery has taken place from the Reset state. The shorter or longer clock cycle delay should be selected by option byte to correspond to the stabilization time of the external oscillator used in the application.

The RESET vector fetch phase duration is two clock cycles.

**Figure 12. RESET Sequence Phases**

| RESET        |                                            |                 |
|--------------|--------------------------------------------|-----------------|
| Active Phase | INTERNAL RESET<br>256 or 4096 CLOCK CYCLES | FETCH<br>VECTOR |


**Caution:** When the ST7 is unprogrammed or fully erased, the Flash is blank and the RESET vector is not programmed. For this reason, it is recommended to keep the RESET pin in low state until programming mode is entered, in order to avoid unwanted behavior.

#### 6.3.2 Asynchronous External **RESET** pin

The **RESET** pin is both an input and an open-drain output with integrated  $R_{ON}$  weak pull-up resistor. This pull-up has no fixed value but varies in accordance with the input voltage. It can be pulled low by external circuitry to reset the device. See Electrical Characteristic section for more details.

A RESET signal originating from an external source must have a duration of at least  $t_{h(RSTL)in}$  in order to be recognized (see [Figure 3](#)). This detection is asynchronous and therefore the MCU can enter reset state even in HALT mode.

**Figure 13. Reset Block Diagram**



## RESET SEQUENCE MANAGER (Cont'd)

The **RESET** pin is an asynchronous signal which plays a major role in EMS performance. In a noisy environment, it is recommended to follow the guidelines mentioned in the electrical characteristics section.

### 6.3.3 External Power-On RESET

If the LVD is disabled by option byte, to start up the microcontroller correctly, the user must ensure by means of an external reset circuit that the reset signal is held low until  $V_{DD}$  is over the minimum level specified for the selected  $f_{OSC}$  frequency.

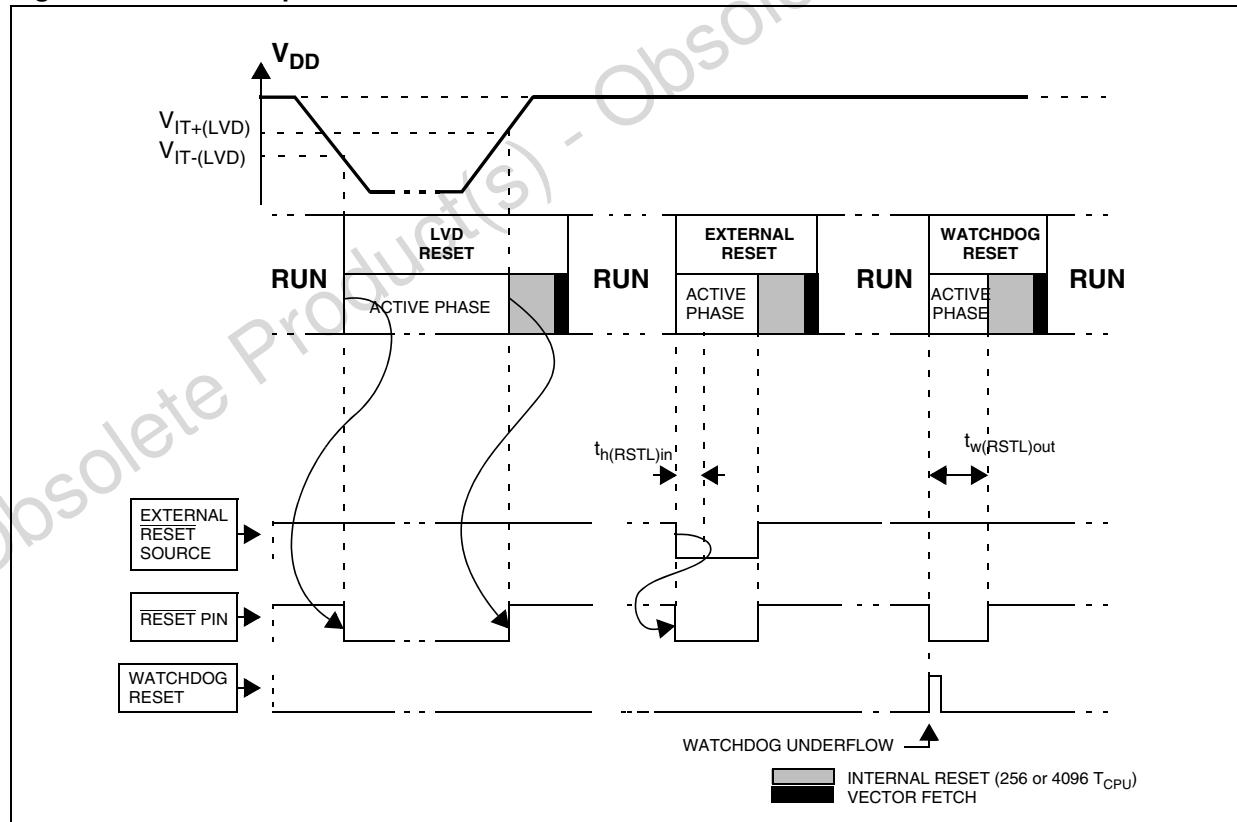
A proper reset signal for a slow rising  $V_{DD}$  supply can generally be provided by an external RC network connected to the **RESET** pin.

### 6.3.4 Internal Low Voltage Detector (LVD) RESET

Two different RESET sequences caused by the internal LVD circuitry can be distinguished:

- Power-On RESET
- Voltage Drop RESET

The device **RESET** pin acts as an output that is pulled low when  $V_{DD} < V_{IT+}$  (rising edge) or  $V_{DD} < V_{IT-}$  (falling edge) as shown in [Figure 3](#).


The LVD filters spikes on  $V_{DD}$  larger than  $t_{g(VDD)}$  to avoid parasitic resets.

### 6.3.5 Internal Watchdog RESET

The RESET sequence generated by a internal Watchdog counter overflow is shown in [Figure 3](#).

Starting from the Watchdog counter underflow, the device **RESET** pin acts as an output that is pulled low during at least  $t_{w(RSTL)out}$ .

**Figure 14. RESET Sequences**



## 6.4 SYSTEM INTEGRITY MANAGEMENT (SI)

The System Integrity Management block contains the Low Voltage Detector (LVD) and Auxiliary Voltage Detector (AVD) functions. It is managed by the SICSR register.

### 6.4.1 Low Voltage Detector (LVD)

The Low Voltage Detector function (LVD) generates a static reset when the  $V_{DD}$  supply voltage is below a  $V_{IT-(LVD)}$  reference value. This means that it secures the power-up as well as the power-down keeping the ST7 in reset.

The  $V_{IT-(LVD)}$  reference value for a voltage drop is lower than the  $V_{IT+(LVD)}$  reference value for power-on in order to avoid a parasitic reset when the MCU starts running and sinks current on the supply (hysteresis).

The LVD Reset circuitry generates a reset when  $V_{DD}$  is below:

- $V_{IT+(LVD)}$  when  $V_{DD}$  is rising
- $V_{IT-(LVD)}$  when  $V_{DD}$  is falling

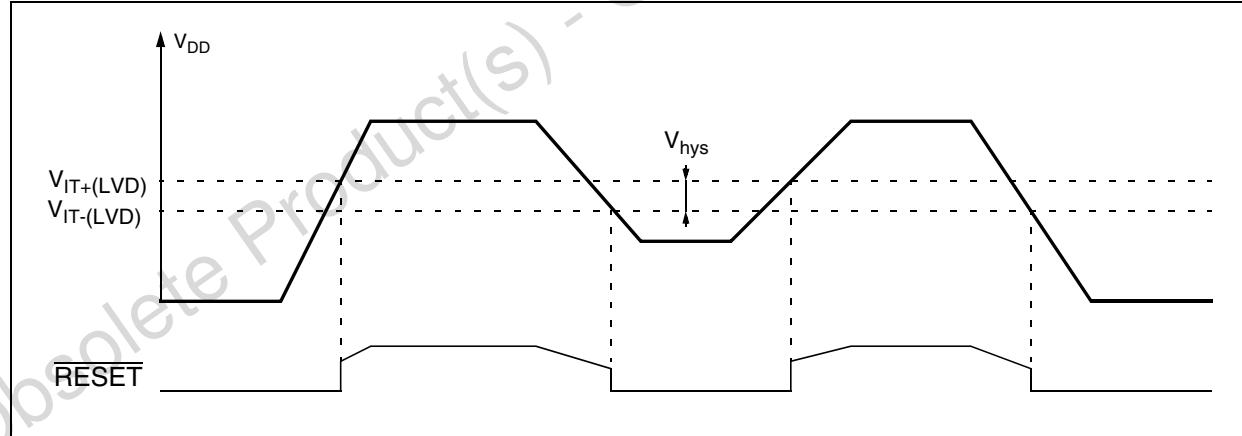
The LVD function is illustrated in [Figure 15](#).

Provided the minimum  $V_{DD}$  value (guaranteed for the oscillator frequency) is above  $V_{IT-(LVD)}$ , the MCU can only be in two modes:

- under full software control
- in static safe reset

In these conditions, secure operation is always ensured for the application without the need for external reset hardware.

During a Low Voltage Detector Reset, the  $\overline{RESET}$  pin is held low, thus permitting the MCU to reset other devices.


#### Notes:

The LVD allows the device to be used without any external RESET circuitry.

The LVD is an optional function which can be selected by option byte.

It is recommended to make sure that the  $V_{DD}$  supply voltage rises monotonously when the device is exiting from Reset, to ensure the application functions properly.

**Figure 15. Low Voltage Detector vs Reset**



## SYSTEM INTEGRITY MANAGEMENT (Cont'd)

### 6.4.2 Auxiliary Voltage Detector (AVD)

The Voltage Detector function (AVD) is based on an analog comparison between a  $V_{IT-(AVD)}$  and  $V_{IT+(AVD)}$  reference value and the  $V_{DD}$  main supply. The  $V_{IT-(AVD)}$  reference value for falling voltage is lower than the  $V_{IT+(AVD)}$  reference value for rising voltage in order to avoid parasitic detection (hysteresis).

The output of the AVD comparator is directly readable by the application software through a real time status bit (AVDF) in the SICSR register. This bit is read only.

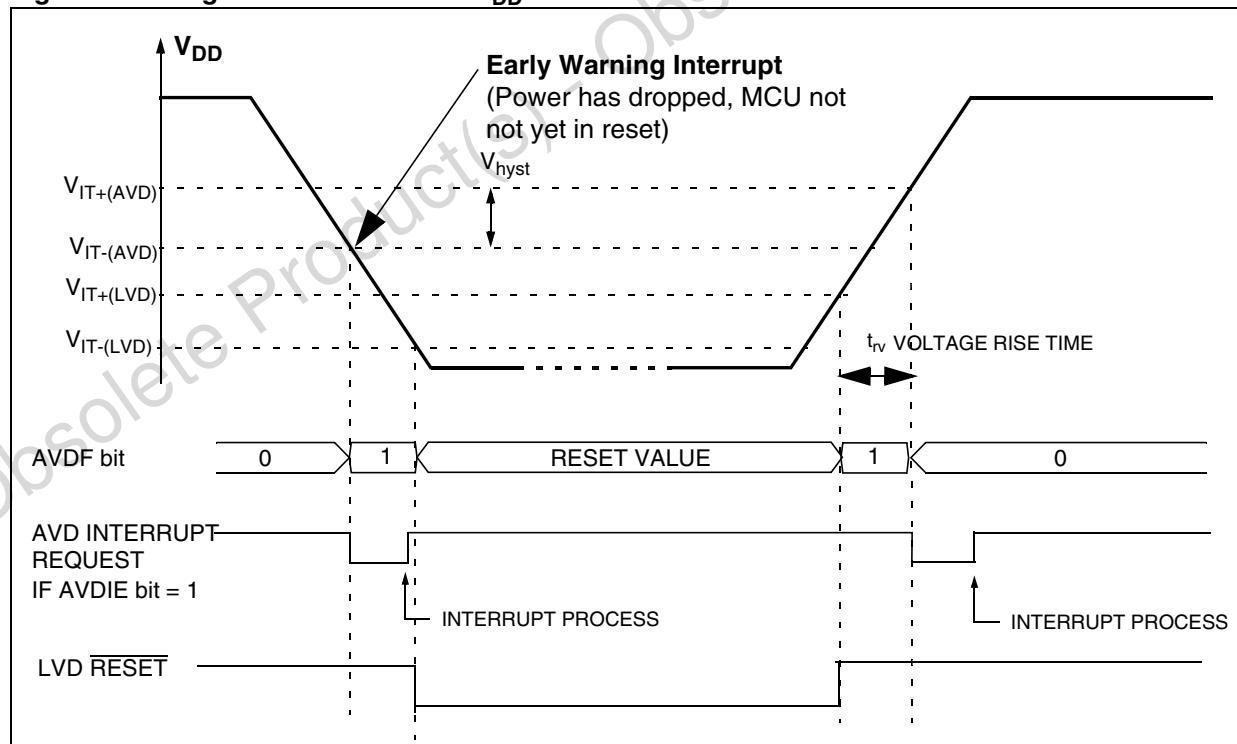
**Caution:** The AVD function is active only if the LVD is enabled through the option byte.

#### 6.4.2.1 Monitoring the $V_{DD}$ Main Supply

If the AVD interrupt is enabled, an interrupt is generated when the voltage crosses the  $V_{IT+(AVD)}$  or  $V_{IT-(AVD)}$  threshold (AVDF bit toggles).

In the case of a drop in voltage, the AVD interrupt acts as an early warning, allowing software to shut

down safely before the LVD resets the microcontroller. See [Figure 16](#).


The interrupt on the rising edge is used to inform the application that the  $V_{DD}$  warning state is over.

If the voltage rise time  $t_{rv}$  is less than 256 or 4096 CPU cycles (depending on the reset delay selected by option byte), no AVD interrupt will be generated when  $V_{IT+(AVD)}$  is reached.

If  $t_{rv}$  is greater than 256 or 4096 cycles then:

- If the AVD interrupt is enabled before the  $V_{IT+(AVD)}$  threshold is reached, then two AVD interrupts will be received: The first when the AVDIE bit is set and the second when the threshold is reached.
- If the AVD interrupt is enabled after the  $V_{IT+(AVD)}$  threshold is reached, then only one AVD interrupt occurs.

**Figure 16. Using the AVD to Monitor  $V_{DD}$**

