

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ST7LITE3xF2

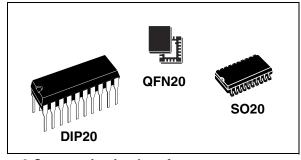
8-bit MCU with single voltage Flash, data EEPROM, ADC, timers, SPI, LINSCI™

Features

Memories

- 8 Kbytes program memory: single voltage extended Flash (XFlash) Program memory with read-out protection, In-Circuit Programming and In-Application programming (ICP and IAP), data retention: 20 years at 55°C.
- 384 bytes RAM
- 256 bytes data EEPROM with read-out protection. 300K write/erase cycles guaranteed, data retention: 20 years at 55°C.

■ Clock, Reset and Supply Management


- Enhanced reset system
- Enhanced low voltage supervisor (LVD) for main supply and an auxiliary voltage detector (AVD) with interrupt capability for implementing safe power-down procedures
- Clock sources: Internal RC 1% oscillator, crystal/ceramic resonator or external clock
- Optional x4 or x8 PLL for 4 or 8 MHz internal clock
- Five Power Saving Modes: Halt, Active-Halt, Wait and Slow, Auto Wake Up From Halt

■ I/O Ports

- Up to 15 multifunctional bidirectional I/O lines
- 7 high sink outputs

■ 5 Timers

- Configurable Watchdog Timer
- Two 8-bit Lite Timers with prescaler,
 1 realtime base and 1 input capture
- Two 12-bit Auto-reload Timers with 4 PWM outputs, input capture and output compare functions

■ 2 Communication Interfaces

- Master/slave LINSCI™ asynchronous serial interface
- SPI synchronous serial interface

■ Interrupt Management

- 10 interrupt vectors plus TRAP and RESET
- 12 external interrupt lines (on 4 vectors)

■ A/D Converter

- 7 input channels
- 10-bit resolution

■ Instruction Set

8-bit data manipulation

- 63 basic instructions with illegal opcode detection
- 17 main addressing modes
- 8 x 8 unsigned multiply instructions

Development Tools

- Full hardware/software development package
- DM (Debug module)

Table 1. Device summary

Features	ST7LITE30F2	ST7LITE35F2	ST7LITE39F2							
Program memory - bytes		8K								
RAM (stack) - bytes		384 (128)								
Data EEPROM - bytes	-	-	256							
Peripherals	Lite Time	Lite Timer, Autoreload Timer, SPI, LINSCI, 10-bit ADC								
Operating Supply		2.7V to 5.5V								
CPU Frequency	Up to 8Mhz (w/ ext OSC up to 16MHz)									
Operating Temperature		-40°C to +125°C								
Packages		SO20 300", DIP20, QFN20								

Rev. 9

November 2007 1/173

Table of Contents

ST7L	ITE3xF2	1
1 INTRO	DUCTION	5
	ESCRIPTION	
	TER & MEMORY MAP	
_	I PROGRAM MEMORY	
4.1	INTRODUCTION	
4.2	MAIN FEATURES	
4.3	PROGRAMMING MODES	12
4.4	ICC INTERFACE	
4.5	MEMORY PROTECTION	14
4.6	RELATED DOCUMENTATION	14
4.7	REGISTER DESCRIPTION	14
5 DATA	EEPROM	15
5.1	INTRODUCTION	15
5.2	MAIN FEATURES	15
5.3	MEMORY ACCESS	16
5.4	POWER SAVING MODES	18
5.5	ACCESS ERROR HANDLING	18
5.6	DATA EEPROM READ-OUT PROTECTION	18
5.7	REGISTER DESCRIPTION	19
6 CENT	RAL PROCESSING UNIT	20
6.1	INTRODUCTION	20
6.2	MAIN FEATURES	20
6.3	CPU REGISTERS	20
7 SUPPL	LY, RESET AND CLOCK MANAGEMENT	23
7.1	INTERNAL RC OSCILLATOR ADJUSTMENT	23
7.2	PHASE LOCKED LOOP	23
7.3	REGISTER DESCRIPTION	24
7.4	MULTI-OSCILLATOR (MO)	26
7.5	RESET SEQUENCE MANAGER (RSM)	27
7.6	SYSTEM INTEGRITY MANAGEMENT (SI)	30
8 INTER	RUPTS	35
8.1	NON MASKABLE SOFTWARE INTERRUPT	35
8.2	EXTERNAL INTERRUPTS	35
8.3	PERIPHERAL INTERRUPTS	35
9 POWE	R SAVING MODES	39
9.1	INTRODUCTION	39
9.2	SLOW MODE	39
9.3	WAIT MODE	40
9.4	HALT MODE	41

Table of Contents

9.5	ACTIVE-HALT MODE	42
9.6	AUTO WAKE UP FROM HALT MODE	43
10 I/O	PORTS	47
10.	1 INTRODUCTION	47
10.2	2 FUNCTIONAL DESCRIPTION	47
10.3	3 I/O PORT IMPLEMENTATION	50
	4 UNUSED I/O PINS	
	5 LOW POWER MODES	
	6 INTERRUPTS	
	-CHIP PERIPHERALS	
	1 WATCHDOG TIMER (WDG)	
	2 DUAL 12-BIT AUTORELOAD TIMER 3 (AT3)	
	3 LITE TIMER 2 (LT2)	
	4 SERIAL PERIPHERAL INTERFACE (SPI)	
	5 LINSCI SERIAL COMMUNICATION INTERFACE (LIN MASTER/SLAVE)	
	6 10-BIT A/D CONVERTER (ADC)	
	TRUCTION SET	
	1 ST7 ADDRESSING MODES	
	2 INSTRUCTION GROUPS	
-	ECTRICAL CHARACTERISTICS	_
	1 PARAMETER CONDITIONS	
	2 ABSOLUTE MAXIMUM RATINGS	
	3 OPERATING CONDITIONS	
	4 SUPPLY CURRENT CHARACTERISTICS	
13.5		
13.6		
	7 EMC (ELECTROMAGNETIC COMPATIBILITY) CHARACTERISTICS	
	8 I/O PORT PIN CHARACTERISTICS	
	9 CONTROL PIN CHARACTERISTICS	
	10 COMMUNICATION INTERFACE CHARACTERISTICS	
	11 10-BIT ADC CHARACTERISTICS	
	CKAGE CHARACTERISTICS	
	1 PACKAGE MECHANICAL DATA	. 159
14.2	2 THERMAL CHARACTERISTICS 160	
-	VICE CONFIGURATION	_
_	1 FLASH OPTION BYTES	_
	2 DEVICE ORDERING INFORMATION AND TRANSFER OF CUSTOMER CODE	
	3 DEVELOPMENT TOOLS	
_	4 ST7 APPLICATION NOTES	
	OWN LIMITATIONS	
16.1	1 CLEARING ACTIVE INTERRUPTS OUTSIDE INTERRUPT ROUTINE	. 169

Table of Contents

16.2	LINSCI LIMITA	TION	 	 	 	 	 	 		 	 		 	 	 . 1	69
17 REVIS	SION HISTORY		 		 	 	 . 1	71								

To obtain the most recent version of this datasheet, please check at www.st.com

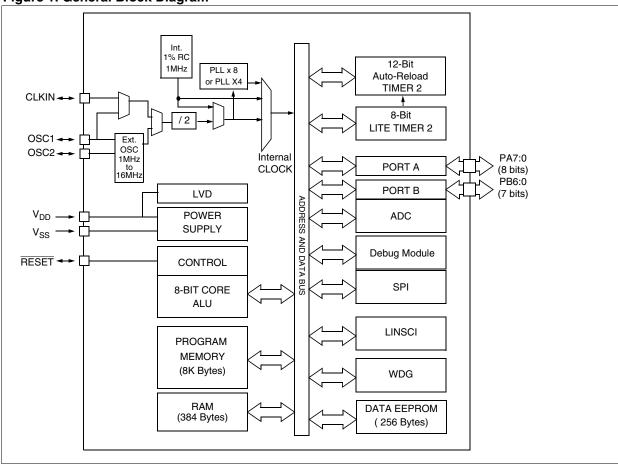
Please also pay special attention to the Section "KNOWN LIMITATIONS" on page 169.

1 INTRODUCTION

The ST7LITE3 is a member of the ST7 microcontroller family. All ST7 devices are based on a common industry-standard 8-bit core, featuring an enhanced instruction set.

The ST7LITE3 features FLASH memory with byte-by-byte In-Circuit Programming (ICP) and In-Application Programming (IAP) capability.

Under software control, the ST7LITE3 device can be placed in WAIT, SLOW, or HALT mode, reducing power consumption when the application is in idle or standby state.


The enhanced instruction set and addressing modes of the ST7 offer both power and flexibility to software developers, enabling the design of highly

efficient and compact application code. In addition to standard 8-bit data management, all ST7 microcontrollers feature true bit manipulation, 8x8 unsigned multiplication and indirect addressing modes.

For easy reference, all parametric data are located in section 13 on page 131.

The devices feature an on-chip Debug Module (DM) to support in-circuit debugging (ICD). For a description of the DM registers, refer to the ST7 ICC Protocol Reference Manual.

Figure 1. General Block Diagram

2 PIN DESCRIPTION

Figure 2. 20-Pin QFN Package Pinout

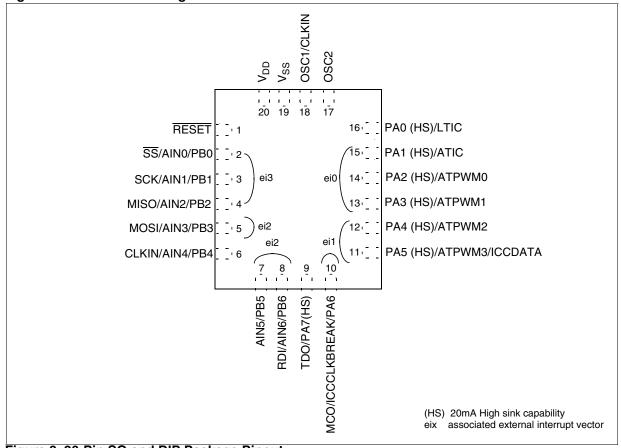
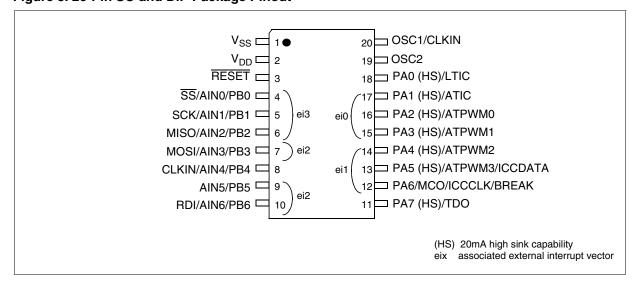



Figure 3. 20-Pin SO and DIP Package Pinout

PIN DESCRIPTION (Cont'd)

Legend / Abbreviations for Table 2:

Type: I = input, O = output, S = supply

In/Output level: $C_T = CMOS \ 0.3V_{DD}/0.7V_{DD}$ with input trigger Output level: $HS = 20mA \ high \ sink \ (on \ N-buffer \ only)$

Port and control configuration:

Input: float = floating, wpu = weak pull-up, int = interrupt, ana = analog

Output: OD = open drain, PP = push-pull

The RESET configuration of each pin is shown in bold which is valid as long as the device is in reset state.

Table 2. Device Pin Description

				Le	evel	Port / Contr		rol						
0	P20	Pin Name	Type	_	¥		Input			Out	put	Main Function	Alternate Function	
QFN20	SO20/DIP20	i iii Name	Τ	Input	Output	float	ndw	int	ana	ОО	РР	(after reset)	Alternate Function	
19	1	V _{SS} 1)	S									Ground		
20	2	V _{DD} 1)	S									Main pow	er supply	
1	3	RESET	I/O	C_T			Х			Х		Top priori	ty non maskable interrupt (active low)	
2	4	PB0/AIN0/SS	I/O	C	Ст	x	x ei3		х	x	x	Port B0	ADC Analog Input 0 or SPI Slave Select (active low) Caution: No negative current injection allowed on this pin. For details, refer to section 13.2.2 on page 132	
3	5	PB1/AIN1/SCK	I/O	C	C _T	x	е	iS	Х	х	х	Port B1	ADC Analog Input 1 or SPI Serial Clock Caution: No negative current injection allowed on this pin. For details, refer to section 13.2.2 on page 132	
4	6	PB2/AIN2/ MISO	I/O	C	C _T	X			Х	Х	Х	Port B2	ADC Analog Input 2 or SPI Master In/ Slave Out Data	
5	7	PB3/AIN3/ MOSI	I/O	C	C _T	х	е	i2	х	Х	Х	Port B3	ADC Analog Input 3 or SPI Master Out / Slave In Data	
6	8	PB4/AIN4/ CLKIN**	I/O	C	C _T	X	Х		х	х	Х	Port B4	ADC Analog Input 4 or External clock input	
7	9	PB5/AIN5	I/O	C	C _T	X	0	i2	Х	Х	Χ	Port B5 ADC Analog Input 5		
8	10	PB6/AIN6/RDI	I/O	(C _T	X	е	14	Х	Х	Χ	X Port B6 ADC Analog Input 6 or LINSCI Inp		
9	11	PA7/TDO	I/O	C_{T}	HS	X	Χ			Χ	Х	Port A7 LINSCI Output		

				Le	evel	Port / Contro		rol						
0	P20	Pin Name	Type		Ħ		Inp	out		Out	put	Main Function	Alternate Function	
QFN20	SO20/DIP20	i iii ivaille	Ty	Input	Output	float	ndw	int	ana	ОО	ЬР	(after reset)	Alternate Function	
													Main Clock Output or In Circuit Communication Clock or External BREAK	
10	12	PA6 /MCO/ ICCCLK/ BREAK	I/O	(े _⊺	х	X ei1			x	x	Port A6	Caution: During normal operation this pin must be pulled- up, internally or externally (external pull-up of 10k mandatory in noisy environment). This is to avoid entering ICC mode unexpectedly during a reset. In the application, even if the pin is configured as output, any reset will put it back in input pull-up.	
11	13	PA5 /ATPWM3/ ICCDATA	I/O	C _T	HS	X				х	Х	Port A5	Auto-Reload Timer PWM3 or In Circuit Communication Data	
12	14	PA4/ATPWM2	I/O	C_{T}	HS	X				Х	Χ	Port A4	Auto-Reload Timer PWM2	
13	15	PA3/ATPWM1	I/O	C_{T}	HS	X				Х	Χ	Port A3	Auto-Reload Timer PWM1	
14	16	PA2/ATPWM0	I/O	C_{T}	HS	X	е	i0		Х	Χ	Port A2 Auto-Reload Timer PWM0		
15	17	PA1/ATIC	I/O	C_{T}	HS	X		X X Port A1		Port A1	Auto-Reload Timer Input Capture			
16	18	PA0/LTIC	I/O	C_{T}	HS	X	Х			Х	Χ	Port A0	Lite Timer Input Capture	
17	19	OSC2	0									Resonato	r oscillator inverter output	
18	20	OSC1/CLKIN	I									Resonator oscillator inverter input or External clock input		

Notes:

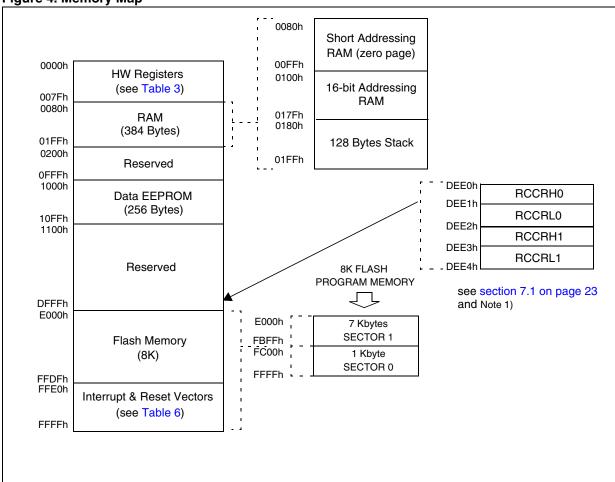
- 1. It is mandatory to connect all available V_{DD} and V_{DDA} pins to the supply voltage and all V_{SS} and V_{SSA} pins to ground.
- 2. For input with interrupt possibility " ei_x " defines the associated external interrupt vector which can be assigned to one of the I/O pins using the EISR register. Each interrupt can be either weak pull-up or floating defined through option register OR.

57

3 REGISTER & MEMORY MAP

As shown in Figure 4, the MCU is capable of addressing 64K bytes of memories and I/O registers.

The available memory locations consist of 128 bytes of register locations, 384 bytes of RAM, 256 bytes of data EEPROM and 8 Kbytes of user program memory. The RAM space includes up to 128 bytes for the stack from 180h to 1FFh.


The highest address bytes contain the user reset and interrupt vectors.

The Flash memory contains two sectors (see Figure 4) mapped in the upper part of the ST7 addressing space so the reset and interrupt vectors are located in Sector 0 (F000h-FFFFh).

The size of Flash Sector 0 and other device options are configurable by Option byte.

IMPORTANT: Memory locations marked as "Reserved" must never be accessed. Accessing a reseved area can have unpredictable effects on the device.

Figure 4. Memory Map

1. DEE0h, DEE1h, DEE2h and DEE3h addresses are located in a reserved area but are special bytes containing also the RC calibration values which are read-accessible only in user mode. If all the EEPROM data or Flash space (including the RC calibration values locations) has been erased (after the read out protection removal), then the RC calibration values can still be obtained through these addresses.

Table 3. Hardware Register Map

Address	Block	Register Label	Register Name	Reset Status	Remarks
0000h		PADR	Port A Data Register	FFh ¹⁾	R/W
0001h	Port A	PADDR	Port A Data Direction Register	00h	R/W
0002h		PAOR	Port A Option Register	40h	R/W
0003h		PBDR	Port B Data Register	FFh 1)	R/W
0004h	Port B	PBDDR	Port B Data Direction Register	00h	R/W
0005h		PBOR	Port B Option Register	00h	R/W ²⁾
0006h 0007h			Reserved area (2 bytes)		
0008h		LTCSR2	Lite Timer Control/Status Register 2	0Fh	R/W
0009h	LITE	LTARR	Lite Timer Auto-reload Register	00h	R/W
000Ah	TIMER 2	LTCNTR	Lite Timer Counter Register	00h	Read Only
000Bh	I IIVIEN 2	LTCSR1	Lite Timer Control/Status Register 1	0x00 00x0b	R/W
000Ch		LTICR	Lite Timer Input Capture Register	xxh	Read Only
000Dh		ATCSR	Timer Control/Status Register	0x00 0000b	R/W
000Eh		CNTR1H	Counter Register 1 High	00h	Read Only
000Fh		CNTR1L	Counter Register 1 Low	00h	Read Only
0010h		ATR1H	Auto-Reload Register 1 High	00h	R/W
0011h		ATR1L	Auto-Reload Register 1 Low	00h	R/W
0012h		PWMCR	PWM Output Control Register	00h	R/W
0013h		PWM0CSR	PWM 0 Control/Status Register	00h	R/W
0014h		PWM1CSR	PWM 1 Control/Status Register	00h	R/W
0015h		PWM2CSR	PWM 2 Control/Status Register	00h	R/W
0016h		PWM3CSR	PWM 3 Control/Status Register	00h	R/W
0017h	AUTO-	DCR0H	PWM 0 Duty Cycle Register High	00h	R/W
0018h	RELOAD	DCR0L	PWM 0 Duty Cycle Register Low	00h	R/W
0019h	TIMER 3	DCR1H	PWM 1 Duty Cycle Register High	00h	R/W
001Ah		DCR1L	PWM 1 Duty Cycle Register Low	00h	R/W
001Bh 001Ch		DCR2H DCR2L	PWM 2 Duty Cycle Register High	00h 00h	R/W R/W
001Ch		DCR2L DCR3H	PWM 2 Duty Cycle Register Low PWM 3 Duty Cycle Register High	00h	R/W
001Eh		DCR3L	PWM 3 Duty Cycle Register Flow	00h	R/W
001En		ATICRH	Input Capture Register High	00h	Read Only
001111 0020h		ATICRL	Input Capture Register Fight	00h	Read Only
002011 0021h		ATCSR2	Timer Control/Status Register 2	03h	R/W
002111 0022h		BREAKCR	Break Control Register	00h	R/W
0023h		ATR2H	Auto-Reload Register 2 High	00h	R/W
0024h		ATR2L	Auto-Reload Register 2 Low	00h	R/W
0025h		DTGR	Dead Time Generator Register	00h	R/W
0026h to 002Dh		l	Reserved area (8 bytes)	•	l
002Eh	WDG	WDGCR	Watchdog Control Register	7Fh	R/W
0002Fh	FLASH	FCSR	Flash Control/Status Register	00h	R/W
00030h	EEPROM	EECSR	Data EEPROM Control/Status Register	00h	R/W
		ı		1	1

Address	Block	Register Label	Register Name	Reset Status	Remarks						
0031h 0032h 0033h	SPI	SPIDR SPICR SPICSR	SPI Data I/O Register SPI Control Register SPI Control Status Register	xxh 0xh 00h	R/W R/W R/W						
0034h 0035h 0036h	ADC	ADCCSR ADCDRH ADCDRL	A/D Control Status Register A/D Data Register High A/D control and Data Register Low	00h xxh x0h	R/W Read Only R/W						
0037h	ITC	EICR	External Interrupt Control Register 00h R/W								
0038h	MCC	MCCSR	Main Clock Control/Status Register	00h	R/W						
0039h 003Ah	Clock and Reset	RCCR SICSR	RC oscillator Control Register System Integrity Control/Status Register	FFh 0110 0xx0b	R/W R/W						
003Bh		Reserved area (1 byte)									
003Ch	ITC	EISR	External Interrupt Selection Register	00h	R/W						
003Dh to 003Fh	Reserved area (3 bytes)										
0040h 0041h 0042h 0043h 0044h 0045h 0046h 0047h	LINSCI (LIN Mas- ter/Slave)	SCICR1 SCI Control Register 1 xxh SCICR2 SCI Control Register 2 00h									
0048h			Reserved area (1 byte)	•							
0049h 004Ah	AWU	AWUPR AWUCSR	AWU Prescaler Register AWU Control/Status Register	FFh 00h	R/W R/W						
004Bh 004Ch 004Dh 004Eh 004Fh 0050h	DM ³⁾	DMCR DMSR DMBK1H DMBK1L DMBK2H DMBK2L	00h 00h 00h 00h 00h 00h	R/W R/W R/W R/W R/W							
0051h to 007Fh	Reserved area (4 / hytes)										

Legend: x=undefined, R/W=read/write

Notes:

- 1. The contents of the I/O port DR registers are readable only in output configuration. In input configuration, the values of the I/O pins are returned instead of the DR register contents.
- 2. The bits associated with unavailable pins must always keep their reset value.
- 3. For a description of the DM registers, see the ST7 ICC Reference Manual.

4 FLASH PROGRAM MEMORY

4.1 Introduction

The ST7 single voltage extended Flash (XFlash) is a non-volatile memory that can be electrically erased and programmed either on a byte-by-byte basis or up to 32 bytes in parallel.

The XFlash devices can be programmed off-board (plugged in a programming tool) or on-board using In-Circuit Programming or In-Application Programming.

The array matrix organisation allows each sector to be erased and reprogrammed without affecting other sectors.

4.2 Main Features

- ICP (In-Circuit Programming)
- IAP (In-Application Programming)
- ICT (In-Circuit Testing) for downloading and executing user application test patterns in RAM
- Sector 0 size configurable by option byte
- Read-out and write protection

4.3 PROGRAMMING MODES

The ST7 can be programmed in three different ways:

- Insertion in a programming tool. In this mode, FLASH sectors 0 and 1, option byte row and data EEPROM (if present) can be programmed or erased.
- In-Circuit Programming. In this mode, FLASH sectors 0 and 1, option byte row and data EEPROM (if present) can be programmed or erased without removing the device from the application board.
- In-Application Programming. In this mode, sector 1 and data EEPROM (if present) can be programmed or erased without removing

the device from the application board and while the application is running.

4.3.1 In-Circuit Programming (ICP)

ICP uses a protocol called ICC (In-Circuit Communication) which allows an ST7 plugged on a printed circuit board (PCB) to communicate with an external programming device connected via cable. ICP is performed in three steps:

Switch the ST7 to ICC mode (In-Circuit Communications). This is done by driving a specific signal sequence on the ICCCLK/DATA pins while the RESET pin is pulled low. When the ST7 enters ICC mode, it fetches a specific RESET vector which points to the ST7 System Memory containing the ICC protocol routine. This routine enables the ST7 to receive bytes from the ICC interface.

- Download ICP Driver code in RAM from the ICCDATA pin
- Execute ICP Driver code in RAM to program the FLASH memory

Depending on the ICP Driver code downloaded in RAM, FLASH memory programming can be fully customized (number of bytes to program, program locations, or selection of the serial communication interface for downloading).

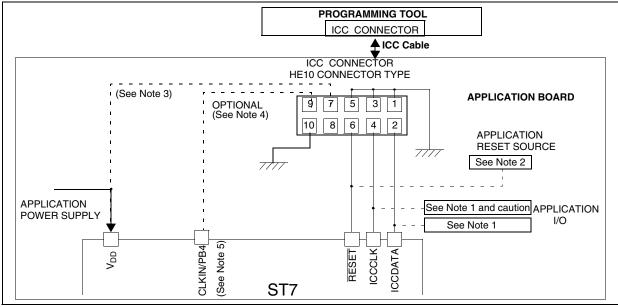
4.3.2 In Application Programming (IAP)

This mode uses an IAP Driver program previously programmed in Sector 0 by the user (in ICP mode).

This mode is fully controlled by user software. This allows it to be adapted to the user application, (user-defined strategy for entering programming mode, choice of communications protocol used to fetch the data to be stored etc.)

IAP mode can be used to program any memory areas except Sector 0, which is write/erase protected to allow recovery in case errors occur during the programming operation.

FLASH PROGRAM MEMORY (Cont'd)


4.4 ICC INTERFACE

ICP needs a minimum of 4 and up to 6 pins to be connected to the programming tool. These pins are:

- RESET: device reset
- V_{SS}: device power supply ground

- ICCCLK: ICC output serial clock pin
- ICCDATA: ICC input serial data pin
- CLKIN/PB4: main clock input for external source
- V_{DD}: application board power supply (optional, see Note 3)

Figure 5. Typical ICC Interface

Notes:

- 1. If the ICCCLK or ICCDATA pins are only used as outputs in the application, no signal isolation is necessary. As soon as the Programming Tool is plugged to the board, even if an ICC session is not in progress, the ICCCLK and ICCDATA pins are not available for the application. If they are used as inputs by the application, isolation such as a serial resistor has to be implemented if another device forces the signal. Refer to the Programming Tool documentation for recommended resistor values.
- 2. During the ICP session, the programming tool must control the RESET pin. This can lead to conflicts between the programming tool and the application reset circuit if it drives more than 5mA at high level (push pull output or pull-up resistor<1K). A schottky diode can be used to isolate the application RESET circuit in this case. When using a classical RC network with R>1K or a reset management IC with open drain output and pull-up resistor>1K, no additional components are needed. In all cases the user must ensure that no external reset is generated by the application during the ICC session.
- 3. The use of Pin 7 of the ICC connector depends on the Programming Tool architecture. This pin

- must be connected when using most ST Programming Tools (it is used to monitor the application power supply). Please refer to the Programming Tool manual.
- 4. Pin 9 must be connected to the PB4 pin of the ST7 when the clock is not available in the application or if the selected clock option is not programmed in the option byte. ST7 devices with multi-oscillator capability must have OSC2 grounded in this case.
- 5. With any programming tool, while the ICP option is disabled, the external clock must be provided on PB4.
- 6. In 38-pulse ICC mode, the internal RC oscillator is forced as a clock source, regardless of the selection in the option byte. For ST7LITE30 devices which do not support the internal RC oscillator, the "option byte disabled" mode must be used (35-pulse ICC mode entry, clock provided by the tool). Caution: During normal operation ICCCLK pin must be pulled-up, internally or externally (external pull-up of 10k mandatory in noisy environentering ment). This avoids ICC unexpectedly during a reset. In the application, even if the pin is configured as output, any reset puts it back in input pull-up.

FLASH PROGRAM MEMORY (Cont'd)

4.5 Memory Protection

There are two different types of memory protection: Read Out Protection and Write/Erase Protection which can be applied individually.

4.5.1 Read out Protection

Readout protection, when selected provides a protection against program memory content extraction and against write access to Flash memory. Even if no protection can be considered as totally unbreakable, the feature provides a very high level of protection for a general purpose microcontroller. Both program and data E² memory are protected.

In flash devices, this protection is removed by reprogramming the option. In this case, both program and data E² memory are automatically erased and the device can be reprogrammed.

Read-out protection selection is enabled and removed through the FMP_R bit in the option byte.

4.5.2 Flash Write/Erase Protection

Write/erase protection, when set, makes it impossible to both overwrite and erase program memory. It does not apply to E² data. Its purpose is to provide advanced security to applications and prevent any change being made to the memory content.

Warning: Once set, Write/erase protection can never be removed. A write-protected flash device is no longer reprogrammable.

Write/erase protection is enabled through the FMP_W bit in the option byte.

4.6 Related Documentation

For details on Flash programming and ICC protocol, refer to the ST7 Flash Programming Reference Manual and to the ST7 ICC Protocol Reference Manual.

4.7 Register Description

FLASH CONTROL/STATUS REGISTER (FCSR)

Read/Write

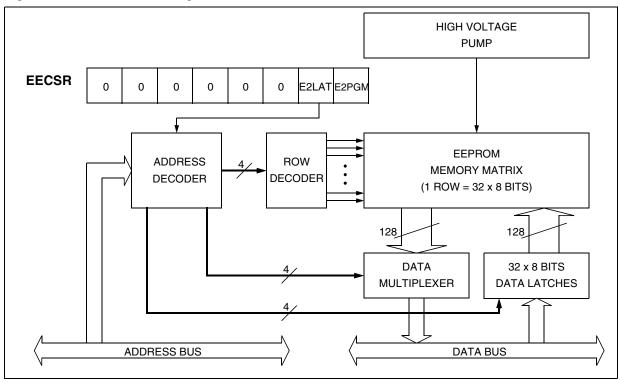
Reset Value: 000 0000 (00h) 1st RASS Key: 0101 0110 (56h) 2nd RASS Key: 1010 1110 (AEh)

7							0
0	0	0	0	0	ОРТ	LAT	PGM

Note: This register is reserved for programming using ICP, IAP or other programming methods. It controls the XFlash programming and erasing operations.

When an EPB or another programming tool is used (in socket or ICP mode), the RASS keys are sent automatically.

5 DATA EEPROM


5.1 INTRODUCTION

The Electrically Erasable Programmable Read Only Memory can be used as a non volatile back-up for storing data. Using the EEPROM requires a basic access protocol described in this chapter.

5.2 MAIN FEATURES

- Up to 32 Bytes programmed in the same cycle
- EEPROM mono-voltage (charge pump)
- Chained erase and programming cycles
- Internal control of the global programming cycle duration
- WAIT mode management
- Readout protection

Figure 6. EEPROM Block Diagram

5.3 MEMORY ACCESS

The Data EEPROM memory read/write access modes are controlled by the E2LAT bit of the EEP-ROM Control/Status register (EECSR). The flow-chart in Figure 7 describes these different memory access modes.

Read Operation (E2LAT=0)

The EEPROM can be read as a normal ROM location when the E2LAT bit of the EECSR register is cleared.

On this device, Data EEPROM can also be used to execute machine code. Take care not to write to the Data EEPROM while executing from it. This would result in an unexpected code being executed.

Write Operation (E2LAT=1)

To access the write mode, the E2LAT bit has to be set by software (the E2PGM bit remains cleared). When a write access to the EEPROM area occurs.

the value is latched inside the 32 data latches according to its address.

When PGM bit is set by the software, all the previous bytes written in the data latches (up to 32) are programmed in the EEPROM cells. The effective high address (row) is determined by the last EEPROM write sequence. To avoid wrong programming, the user must take care that all the bytes written between two programming sequences have the same high address: only the five Least Significant Bits of the address can change.

At the end of the programming cycle, the PGM and LAT bits are cleared simultaneously.

Note: Care should be taken during the programming cycle. Writing to the same memory location will over-program the memory (logical AND between the two write access data result) because the data latches are only cleared at the end of the programming cycle and by the falling edge of the E2LAT bit.

It is not possible to read the latched data. This note is ilustrated by the Figure 9.

Figure 7. Data EEPROM Programming Flowchart

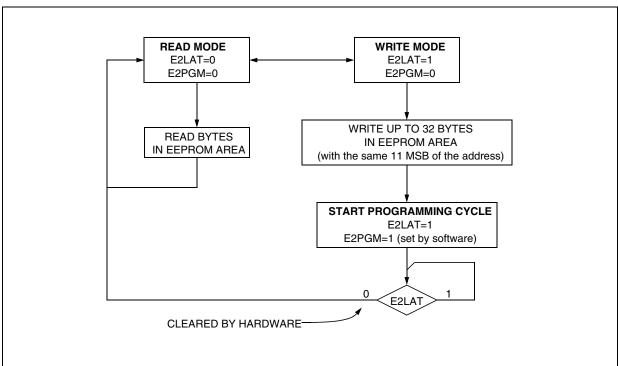
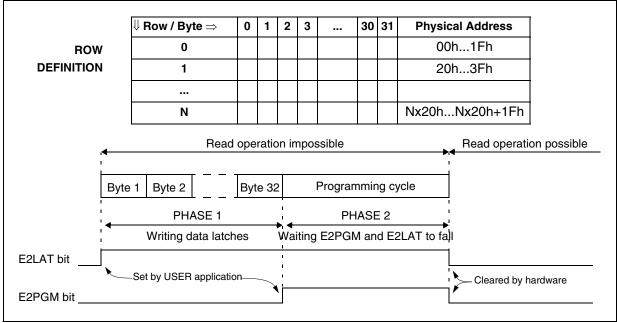



Figure 8. Data E²PROM Write Operation

Note: If a programming cycle is interrupted (by a reset action), the integrity of the data in memory is not guaranteed.

5.4 POWER SAVING MODES

Wait mode

The DATA EEPROM can enter WAIT mode on execution of the WFI instruction of the microcontroller or when the microcontroller enters Active-HALT mode. The DATA EEPROM will immediately enter this mode if there is no programming in progress, otherwise the DATA EEPROM will finish the cycle and then enter WAIT mode.

Active-Halt mode

Refer to Wait mode.

Halt mode

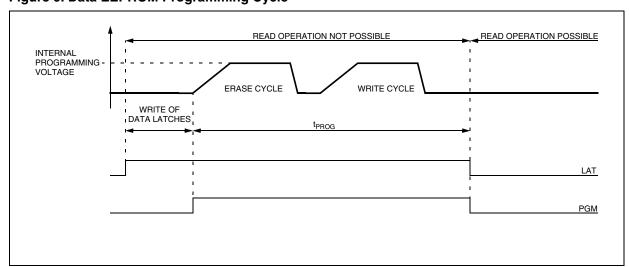
The DATA EEPROM immediately enters HALT mode if the microcontroller executes the HALT instruction. Therefore the EEPROM will stop the function in progress, and data may be corrupted.

5.5 ACCESS ERROR HANDLING

If a read access occurs while E2LAT=1, then the data bus will not be driven.

If a write access occurs while E2LAT=0, then the data on the bus will not be latched.

If a programming cycle is interrupted (by RESET action), the integrity of the data in memory is not guaranteed.


5.6 Data EEPROM Read-out Protection

The read-out protection is enabled through an option bit (see section 15.1 on page 161).

When this option is selected, the programs and data stored in the EEPROM memory are protected against read-out (including a re-write protection). In Flash devices, when this protection is removed by reprogramming the Option Byte, the entire Program memory and EEPROM is first automatically erased.

Note: Both Program Memory and data EEPROM are protected using the same option bit.

Figure 9. Data EEPROM Programming Cycle

5.7 REGISTER DESCRIPTION

EEPROM CONTROL/STATUS REGISTER (EECSR)

Read/Write

Reset Value: 0000 0000 (00h)

7							0
0	0	0	0	0	0	E2LAT	E2PGM

Bits 7:2 = Reserved, forced by hardware to 0.

Bit 1 = **E2LAT** *Latch Access Transfer*

This bit is set by software. It is cleared by hardware at the end of the programming cycle. It can only be cleared by software if the E2PGM bit is cleared.

0: Read mode 1: Write mode

Bit 0 = **E2PGM** Programming control and status This bit is set by software to begin the programming cycle. At the end of the programming cycle, this bit is cleared by hardware.

0: Programming finished or not yet started

1: Programming cycle is in progress

Note: if the E2PGM bit is cleared during the programming cycle, the memory data is not guaranteed

Table 4. DATA EEPROM Register Map and Reset Values

Address (Hex.)	Register Label	7	6	5	4	3	2	1	0
0030h	EECSR Reset Value	0	0	0	0	0	0	E2LAT 0	E2PGM 0

6 CENTRAL PROCESSING UNIT

6.1 INTRODUCTION

This CPU has a full 8-bit architecture and contains six internal registers allowing efficient 8-bit data manipulation.

6.2 MAIN FEATURES

- 63 basic instructions
- Fast 8-bit by 8-bit multiply
- 17 main addressing modes
- Two 8-bit index registers
- 16-bit stack pointer
- Low power modes
- Maskable hardware interrupts
- Non-maskable software interrupt

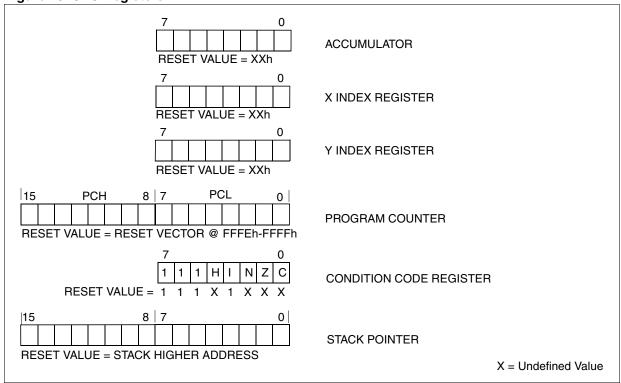
6.3 CPU REGISTERS

The six CPU registers shown in Figure 10 are not present in the memory mapping and are accessed by specific instructions.

Accumulator (A)

The Accumulator is an 8-bit general purpose register used to hold operands and the results of the arithmetic and logic calculations and to manipulate data.

Index Registers (X and Y)


In indexed addressing modes, these 8-bit registers are used to create either effective addresses or temporary storage areas for data manipulation. (The Cross-Assembler generates a precede instruction (PRE) to indicate that the following instruction refers to the Y register.)

The Y register is not affected by the interrupt automatic procedures (not pushed to and popped from the stack).

Program Counter (PC)

The program counter is a 16-bit register containing the address of the next instruction to be executed by the CPU. It is made of two 8-bit registers PCL (Program Counter Low which is the LSB) and PCH (Program Counter High which is the MSB).

Figure 10. CPU Registers

CPU REGISTERS (cont'd)

CONDITION CODE REGISTER (CC)

Read/Write

Reset Value: 111x1xxx

The 8-bit Condition Code register contains the interrupt mask and four flags representative of the result of the instruction just executed. This register can also be handled by the PUSH and POP instructions.

These bits can be individually tested and/or controlled by specific instructions.

Bit 4 = **H** Half carry

This bit is set by hardware when a carry occurs between bits 3 and 4 of the ALU during an ADD or ADC instruction. It is reset by hardware during the same instructions.

0: No half carry has occurred.

1: A half carry has occurred.

This bit is tested using the JRH or JRNH instruction. The H bit is useful in BCD arithmetic subroutines.

Bit 3 = I Interrupt mask

This bit is set by hardware when entering in interrupt or by software to disable all interrupts except the TRAP software interrupt. This bit is cleared by software.

0: Interrupts are enabled.

1: Interrupts are disabled.

This bit is controlled by the RIM, SIM and IRET instructions and is tested by the JRM and JRNM instructions.

Note: Interrupts requested while I is set are latched and can be processed when I is cleared. By default an interrupt routine is not interruptible because the I bit is set by hardware at the start of the routine and reset by the IRET instruction at the end of the routine. If the I bit is cleared by software in the interrupt routine, pending interrupts are serviced regardless of the priority level of the current interrupt routine.

Bit 2 = **N** Negative

This bit is set and cleared by hardware. It is representative of the result sign of the last arithmetic,

logical or data manipulation. It is a copy of the 7th bit of the result.

0: The result of the last operation is positive or null.

1: The result of the last operation is negative (that is, the most significant bit is a logic 1).

This bit is accessed by the JRMI and JRPL instructions.

Bit 1 = **Z** Zero

This bit is set and cleared by hardware. This bit indicates that the result of the last arithmetic, logical or data manipulation is zero.

0: The result of the last operation is different from zero.

1: The result of the last operation is zero.

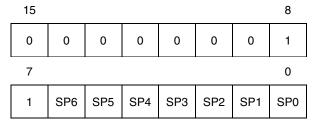
This bit is accessed by the JREQ and JRNE test instructions.

Bit 0 = **C** Carry/borrow

This bit is set and cleared by hardware and software. It indicates an overflow or an underflow has occurred during the last arithmetic operation.

0: No overflow or underflow has occurred.

An overflow or underflow has occurred.


This bit is driven by the SCF and RCF instructions and tested by the JRC and JRNC instructions. It is also affected by the "bit test and branch", shift and rotate instructions.

CPU REGISTERS (Cont'd)

STACK POINTER (SP)

Read/Write

Reset Value: 01FFh

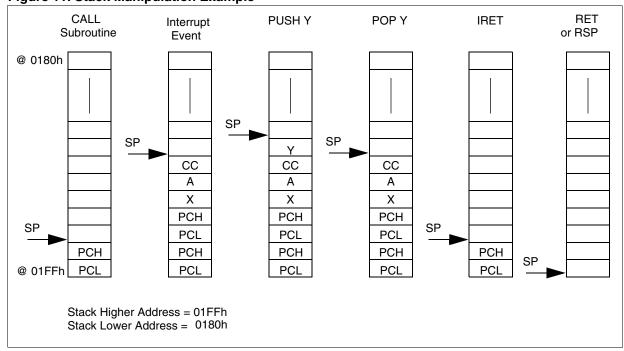
The Stack Pointer is a 16-bit register which is always pointing to the next free location in the stack. It is then decremented after data has been pushed onto the stack and incremented before data is popped from the stack (see Figure 11).

Since the stack is 128 bytes deep, the 9 most significant bits are forced by hardware. Following an

MCU Reset, or after a Reset Stack Pointer instruction (RSP), the Stack Pointer contains its reset value (the SP6 to SP0 bits are set) which is the stack higher address.

The least significant byte of the Stack Pointer (called S) can be directly accessed by a LD instruction.

Note: When the lower limit is exceeded, the Stack Pointer wraps around to the stack upper limit, without indicating the stack overflow. The previously stored information is then overwritten and therefore lost. The stack also wraps in case of an underflow.


The stack is used to save the return address during a subroutine call and the CPU context during an interrupt. The user may also directly manipulate the stack by means of the PUSH and POP instruc-

tions. In the case of an interrupt, the PCL is stored at the first location pointed to by the SP. Then the other registers are stored in the next locations as shown in Figure 11.

- When an interrupt is received, the SP is decremented and the context is pushed on the stack.
- On return from interrupt, the SP is incremented and the context is popped from the stack.

A subroutine call occupies two locations and an interrupt five locations in the stack area.

Figure 11. Stack Manipulation Example

7 SUPPLY, RESET AND CLOCK MANAGEMENT

The device includes a range of utility features for securing the application in critical situations (for example in case of a power brown-out), and reducing the number of external components.

Main features

- Clock Management
 - 1 MHz internal RC oscillator (enabled by option byte, available on ST7LITE35 and ST7LITE39 devices only)
 - 1 to 16 MHz or 32kHz External crystal/ceramic resonator (selected by option byte)
 - External Clock Input (enabled by option byte)
 - PLL for multiplying the frequency by 8 or 4 (enabled by option byte)
- Reset Sequence Manager (RSM)
- System Integrity Management (SI)
 - Main supply Low voltage detection (LVD) with reset generation (enabled by option byte)
 - Auxiliary Voltage detector (AVD) with interrupt capability for monitoring the main supply (enabled by option byte)

7.1 INTERNAL RC OSCILLATOR ADJUSTMENT

The device contains an internal RC oscillator with an accuracy of 1% for a given device, temperature and voltage range (4.5V-5.5V). It must be calibrated to obtain the frequency required in the application. This is done by software writing a 8-bit calibration value in the RCCR (RC Control Register) and in the bits [6:5] in the SICSR (SI Control Status Register).

Whenever the microcontroller is reset, the RCCR returns to its default value (FFh), i.e. each time the device is reset, the calibration value must be loaded in the RCCR. Predefined calibration values are stored in EEPROM for 3V and 5V V_{DD} supply voltages at 25°C, as shown in the following table.

RCCR	Conditions	ST7LITE3					
noon	Conditions	Addresses					
RCCRH0	V _{DD} =5V	DEE0h 1) (CR[9:2] bits)					
RCCRL0	T _A =25°C f _{RC} =1MHz	DEE1h 1) (CR[1:0] bits)					
RCCRH1	V _{DD} =3.3V	DEE2h 1) (CR[9:2] bits)					
RCCRL1	T _A =25°C f _{RC} =1MHz	DEE3h 1) (CR[1:0] bits)					

1. DEE0h, DEE1h, DEE2h and DEE3h addresses are located in a reserved area of non-volatile memory. They are read-only bytes for the applica-

tion code. This area cannot be erased or programmed by any ICC operation.

For compatibility reasons with the SICSR register, CR[1:0] bits are stored in the 5th and 6th position of DEE1 and DEE3 addresses.

Note:

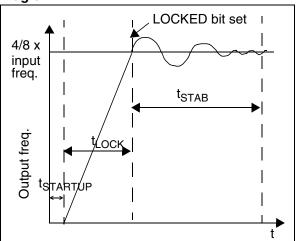
- In 38-pulse ICC mode, the internal RC oscillator is forced as a clock source, regardless of the selection in the option byte. For ST7LITE30 devices which do not support the internal RC oscillator, the "option byte disabled" mode must be used (35-pulse ICC mode entry, clock provided by the tool).
- See "ELECTRICAL CHARACTERISTICS" on page 131. for more information on the frequency and accuracy of the RC oscillator.
- To improve clock stability and frequency accuracy, it is recommended to place a decoupling capacitor, typically 100nF, between the V_{DD} and V_{SS} pins as close as possible to the ST7 device
- These bytes are systematically programmed by ST, including on FASTROM devices. Consequently, customers intending to use FASTROM service must not use these bytes.
- RCCR0 and RCCR1 calibration values will not be erased if the read-out protection bit is reset after it has been set. See "Read out Protection" on page 14.

Caution: If the voltage or temperature conditions change in the application, the frequency may need to be recalibrated.

Refer to application note AN1324 for information on how to calibrate the RC frequency using an external reference signal.

7.2 PHASE LOCKED LOOP

The PLL can be used to multiply a 1MHz frequency from the RC oscillator or the external clock by 4 or 8 to obtain f_{OSC} of 4 or 8 MHz. The PLL is enabled and the multiplication factor of 4 or 8 is selected by 2 option bits.


- The x4 PLL is intended for operation with $\mbox{V}_{\mbox{\scriptsize DD}}$ in the 2.7V to 3.3V range
- The x8 PLL is intended for operation with V_{DD} in the 3.3V to 5.5V range

Refer to Section 15.1 for the option byte description.

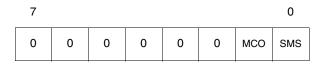
If the PLL is disabled and the RC oscillator is enabled, then $f_{OSC} = 1 MHz$.

If both the RC oscillator and the PLL are disabled, f_{OSC} is driven by the external clock.

Figure 12. PLL Output Frequency Timing Diagram

When the PLL is started, after reset or wakeup from Halt mode or AWUFH mode, it outputs the clock after a delay of t_{STARTUP}.

When the PLL output signal reaches the operating frequency, the LOCKED bit in the SICSCR register is set. Full PLL accuracy (ACC $_{PLL}$) is reached after a stabilization time of t_{STAB} (see Figure 12 and 13.3.4Internal RC Oscillator and PLL)


Refer to section 7.6.4 on page 34 for a description of the LOCKED bit in the SICSR register.

7.3 REGISTER DESCRIPTION

MAIN CLOCK CONTROL/STATUS REGISTER (MCCSR)

Read / Write

Reset Value: 0000 0000 (00h)

Bits 7:2 = Reserved, must be kept cleared.

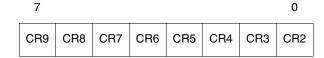
Bit 1 = MCO Main Clock Out enable

This bit is read/write by software and cleared by hardware after a reset. This bit allows to enable the MCO output clock.

- 0: MCO clock disabled, I/O port free for general purpose I/O.
- 1: MCO clock enabled.

Bit 0 = SMS Slow Mode select

This bit is read/write by software and cleared by hardware after a reset. This bit selects the input clock f_{OSC} or $f_{OSC}/32$.


0: Normal mode (f_{CPU} = f_{OSC}

1: Slow mode ($f_{CPU} = f_{OSC}/32$)

RC CONTROL REGISTER (RCCR)

Read / Write

Reset Value: 1111 1111 (FFh)

Bits 7:0 = **CR[9:2]** RC Oscillator Frequency Adjustment Bits

These bits must be written immediately after reset to adjust the RC oscillator frequency and to obtain an accuracy of 1%. The application can store the correct value for each voltage range in EEPROM and write it to this register at start-up.

00h = maximum available frequency

FFh = lowest available frequency

These bits are used with the CR[1:0] bits in the SICSR register. Refer to section 7.6.4 on page 34 **Note:** To tune the oscillator, write a series of different values in the register until the correct frequency is reached. The fastest method is to use a dichotomy starting with 80h.

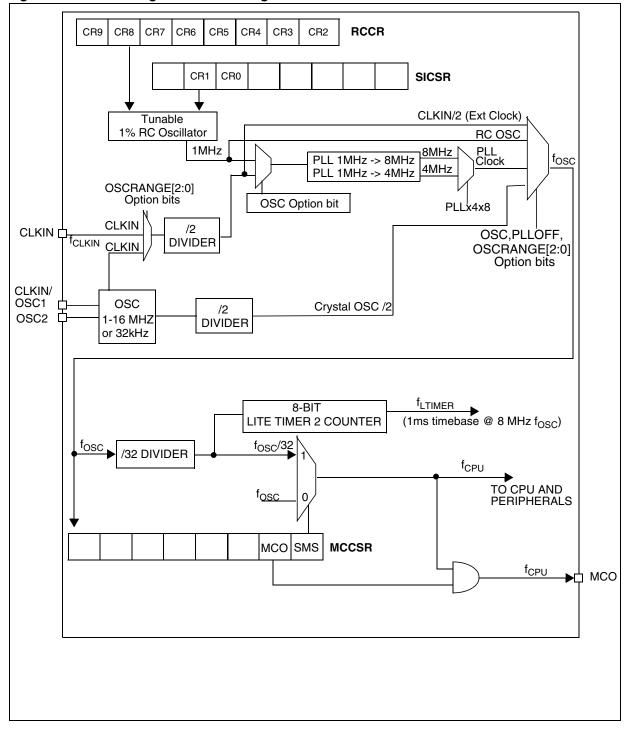


Figure 13. Clock Management Block Diagram