

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

40V 3.5A QUAD POWER HALF BRIDGE

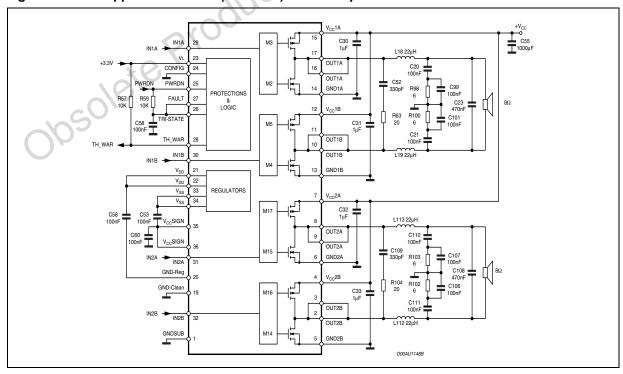
1 FEATURES

- MULTIPOWER BCD TECHNOLOGY
- MINIMUM INPUT OUTPUT PULSE WIDTH DISTORTION
- 200mΩ R_{dsON} COMPLEMENTARY DMOS OUTPUT STAGE
- CMOS COMPATIBLE LOGIC INPUTS
- THERMAL PROTECTION
- THERMAL WARNING OUTPUT
- UNDER VOLTAGE PROTECTION

2 DESCRIPTION

STA505 is a monolithic quad half bridge stage in Multipower BCD Technology. The device can be used as dual bridge or reconfigured, by connecting CONFIG pin to Vdd pin, as single bridge with double current capability, and as half bridge (Binary mode) with half

Figure 1. Package


Table 1. Order Codes

Part Number	Package
STA505	PowerSO36
STA50513TR	in Tape & Reel

current capability.

The device is particularly designed to make the output stage of a stereo All-Digital High Efficiency (DDXTM) amplifier capable to deliver 50+50W @ THD = 10% at V_{cc} 30V output power on 8Ω load and 80W @ THD = 10% at V_{cc} 36V on 8Ω load in single BTL configuration. The input pins have threshold proportional to V_L pin voltage.

Figure 2. Audio Application Circuit (Dual BTL)Pin Description

Rev. 11

1/10

February 2006

Table 2. Pin Function

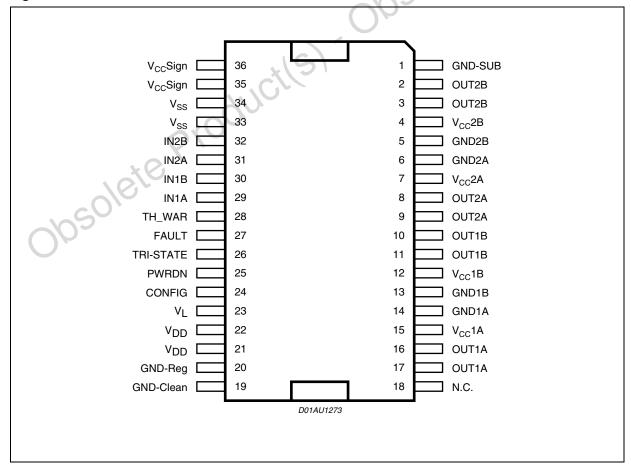

1 GND-SUB Substrate ground 2;3 OUT2B Output half bridge 2B 4 Vcc2B Positive Supply 5 GND2B Negative Supply 6 GND2A Negative Supply 7 Vcc2A Positive Supply 8;9 OUT2A Output half bridge 2A 10;11 OUT1B Output half bridge 1B 12 Vcc1B Positive Supply	Sil
4 Vcc2B Positive Supply 5 GND2B Negative Supply 6 GND2A Negative Supply 7 Vcc2A Positive Supply 8;9 OUT2A Output half bridge 2A 10;11 OUT1B Output half bridge 1B 12 Vcc1B Positive Supply	
5 GND2B Negative Supply 6 GND2A Negative Supply 7 Vcc2A Positive Supply 8;9 OUT2A Output half bridge 2A 10;11 OUT1B Output half bridge 1B 12 Vcc1B Positive Supply	
6 GND2A Negative Supply 7 Vcc2A Positive Supply 8;9 OUT2A Output half bridge 2A 10;11 OUT1B Output half bridge 1B 12 Vcc1B Positive Supply	
7 Vcc2A Positive Supply 8;9 OUT2A Output half bridge 2A 10;11 OUT1B Output half bridge 1B 12 Vcc1B Positive Supply	316
8;9 OUT2A Output half bridge 2A 10;11 OUT1B Output half bridge 1B 12 Vcc1B Positive Supply	310
10; 11 OUT1B Output half bridge 1B 12 Vcc1B Positive Supply	
12 Vcc1B Positive Supply	
13 GND1B Negative Supply	
14 GND1A Negative Supply	
15 Vcc1A Positive Supply	
16; 17 OUT1A Output half bridge 1A	
18 NC Not connected	
19 GND-clean Logical ground	
20 GND-Reg Ground for regulator Vdd	
21; 22 Vdd 5V Regulator referred to ground	
23 VL High logical state setting voltage	
24 CONFIG Configuration pin	
29 IN1A Input of half bridge 1A	
25 PWRDN Stand-by pin	
26 TRI-STATE Hi-Z pin	
27 FAULT Fault pin advisor	
28 TH-WAR Thermal warning advisor	
29 IN1A Input of half bridge 1A	
30 IN1B Input of half bridge 1B	
31 IN2A Input of half bridge 2A	
32 IN2B Input of half bridge 2B	
33 ; 34 Vss 5V Regulator referred to +Vcc	
35 ; 36 Vcc Sign Signal Positive Supply	

Table 3. Functional Pin Status

PIN NAME	Logical value	IC -STATUS	
FAULT	0	Fault detected (Short circuit, or Thermal)	
FAULT (*)	1	Normal Operation	
TRI-STATE	0	All powers in Hi-Z state	
TRI-STATE	1	Normal operation	
PWRDN	0	Low absorpion	
PWRDN	1	Normal operation	
THWAR	0	Temperature of the IC =130C	
THWAR ^(*)	1	Normal operation	
CONFIG	0	Normal Operation	
CONFIG ^(**)	1	OUT1A=OUT1B ; OUT2A=OUT2B (IF IN1A = IN1B; IN2A = IN2B)	

^{(*):} The pin is open collector. To have the high logic value, it needs to be pulled up by a resistor.

Figure 3. Pin Connection

^{(**):} To put CONFIG = 1 means connect Pin 24 (CONFIG) to Pins 21, 22 (Vdd)

Table 4. Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Pin 4,7,12,15)	40	V
V _{max}	Maximum Voltage on pins 23 to 32	5.5	V
T _{op}	Operating Temperature Range	-40 to 90	°C
T _{stg} , T _j	Storage and Junction Temperature	-40 to 150	°C

Table 5. Thermal Data

Symbol	Parameter	Min.	Тур.	Max.	Unit
T _{j-case}	Thermal Resistance Junction to Case (thermal pad)			2.5	°C/W
T _{jSD}	Thermal shut-down junction temperature		150	11	°C
T _{warn}	Thermal warning temperature		130	∇O	°C
t _{hSD}	Thermal shut-down hysteresis		25	0	°C

Table 6. Electrical Characteristcs ($V_L = 3.3V$; $V_{cc} = 30V$; $T_{amb} = 25$ °C; $f_{sw} = 384$ Khz; unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
R _{dsON}	Power Pchannel/Nchannel MOSFET RdsON	Id=1A;		200	270	mΩ
I _{dss}	Power Pchannel/Nchannel leakage Idss	Vcc=35V			50	μА
gи	Power Pchannel RdsON Matching	Id=1A	95			%
ЯР	Power Nchannel RdsON Matching	Id=1A	95			%
Dt_s	Low current Dead Time (static)	see test circuit no.1; see fig. 1		10	20	ns
Dt_d	High current Dead Time (dinamic)	L=22 μ H; C = 470nF; RI = 8 Ω Id=3.5A; see fig. 3			50	ns
t _{d ON}	Turn-on delay time	Resistive load			100	ns
t _{d OFF}	Turn-off delay time	Resistive load			100	ns
t _r	Rise time	Resistive load; as fig.1;			25	ns
t _f	Fall time	Resistive load; as fig. 1;			25	ns
V _{CC}	Supply voltage operating voltage		10		36	V
V _{IN-High}	High level input voltage				V _L /2 +300mV	V
V _{IN-Low}	Low level input voltage		V _L /2 - 300mV			V
I _{IN-H}	High level Input current	Pin voltage = V _L		1		μΑ
I _{IN-L}	Low level input current	Pin voltage = 0.3V		1		μΑ

A77

Symbol	Parameter Test conditions		Min.	Тур.	Max.	Unit
I _{PWRDN-H}	High level PWRDN pin input current			35		μА
V _{Low}	Low logical state voltage VLow (pin PWRDN, TRISTATE) (note 1)	V _L = 3.3V	0.8			V
V _{High}	High logical state voltage VHigh (pin PWRDN, TRISTATE) (note 1)	V _L = 3.3V			1.7	V
I _{VCC} - PWRDN	Supply current from Vcc in Power Down	PWRDN = 0			3	mA
I _{FAULT}	Output Current pins FAULT -TH-WARN when FAULT CONDITIONS	Vpin = 3.3V		1		mA
I _{VCC-hiz}	Supply current from Vcc in Tristate	Tri-state=0		22	9/1	mA
I _{VCC}	Supply current from Vcc in operation both channel switching) Input pulse width = 50% Du Switching Frequency = 384l No LC filters;		×0	50	5	mA
I _{VCC-q}	Isc (short circuit current limit) (note 2)		3.5	6	8	А
V _{UV}	Undervoltage protection threshold	0/02		7		V
t _{pw-min}	Output minimum pulse width	No Load	70		150	ns

Table 7.

Notes: 1. The following table explains the VLow, VHigh variation with $\ensuremath{V_L}$

VL	VLow min	VHigh max	Unit
2.7	2.7 0.7 1.5		V
3.3	0.8	1.7	V
5	0.85	1.85	V

Note 2: See relevant Application Note AN1994

Table 8. Logic Truth Table (see fig. 5)

TRI-STATE	INxA	INxB	Q1	Q2	Q3	Q4	OUTPUT MODE
0	х	х	OFF	OFF	OFF	OFF	Hi-Z
1	0	0	OFF	OFF	ON	ON	DUMP
1	0	1	OFF	ON	ON	OFF	NEGATIVE
1	1	0	ON	OFF	OFF	ON	POSITIVE
1	1	1	ON	ON	OFF	OFF	Not used

Figure 4. Test Circuit.

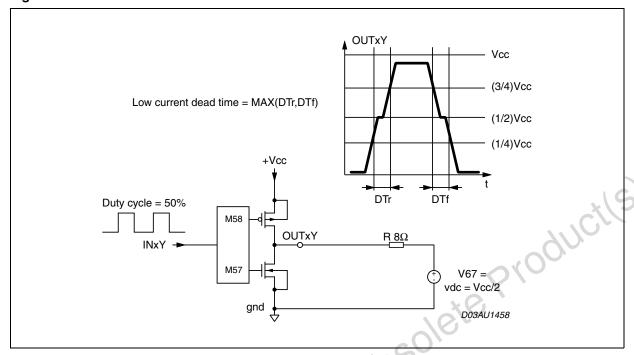


Figure 5.

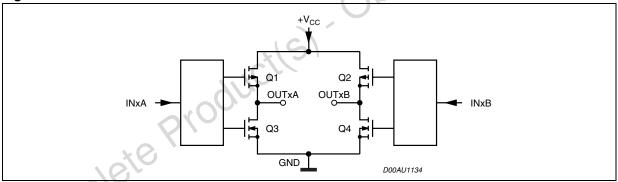
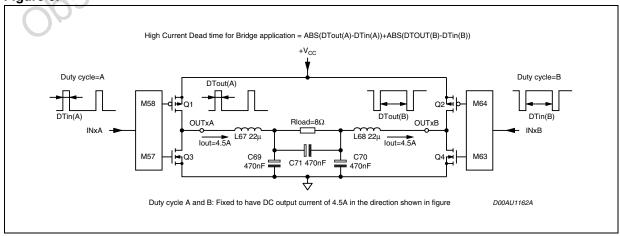



Figure 6.

4

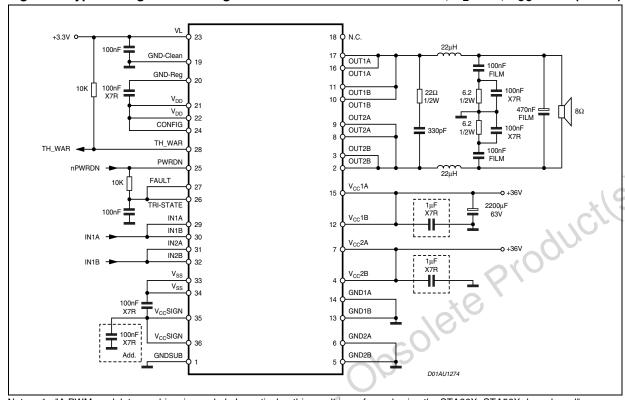


Figure 7. Typical Single BTL Configuration to Obtain 80W @ THD 10%, $R_L = 8\Omega$, $V_{CC} = 36V$ (note 1)

Note: 1. "A PWM modulator as driver is needed . In particular, this result is performed using the STA30X+STA50X demo board".

МЗ C31 820µF 23 +3.3V 16 OUTPL M2 PGND1P FAULT 27 & LOGIC 12 V_{CC}1N M5 OUTNL C32 820µF 10 TH_WAR IN1B 30 OUTNI M4 21 13 PGND1N V_{DD} 22 33 REGULATORS M17 C33 820uF OUTPR V_{CC}SIGN M15 PGND2F C43 330pF IN/2A C62 100nF M16 C34 820ul IN2E OUTNR GNDSUB M14 PGND2N D03AU1474

Figure 8. Typical Quad Half Bridge Configuration

For more information refer to the application notes AN1456 and AN1661

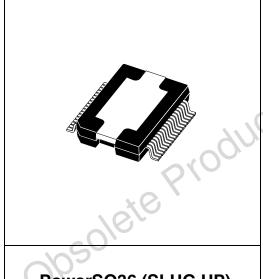
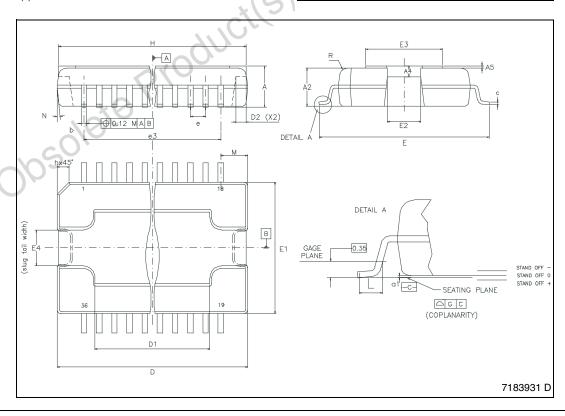


Figure 9. Power SO36 (Slug up) Mechanical Data & Package Dimensions


		mm			inch	
DIM.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	3.25		3.43	0.128		0.135
A2	3.1		3.2	0.122		0.126
A4	0.8		1	0.031		0.039
A5		0.2			0.008	
a1	0.030		-0.040	0.0011		-0.0015
b	0.22		0.38	0.008		0.015
С	0.23		0.32	0.009		0.012
D	15.8		16	0.622		0.630
D1	9.4		9.8	0.37		0.38
D2		1			0.039	
Е	13.9		14.5	0.547		0.57
E1	10.9		11.1	0.429		0.437
E2			2.9			0.114
E3	5.8		6.2	0.228		0.244
E4	2.9		3.2	0.114		1.259
е		0.65			0.026	
e3		11.05			0.435	
G	0		0.075	0		0.003
Η	15.5		15.9	0.61		0.625
h			1.1			0.043
L	0.8		1.1	0.031		0.043
Ν			10°			10°
S			8 °			8°

 [&]quot;D and E1" do not include mold flash or protusions.
 Mold flash or protusions shall not exceed 0.15mm (0.006")
 No intrusion allowed inwards the leads.

OUTLINE AND MECHANICAL DATA

PowerSO36 (SLUG UP)

Table 9. Revision History

Date	Revision	Description of Changes
December 2003	8	First Issue in EDOCS DMS
June 2004	9	Note 2: See relevant Application Note AN1994
November 2004	10	Changed Vcc in Electrical Characteristics from 9 min to 10 min
February 2006	11	Changed T _{op} value on Table 4.
Obsole	ie Prod	Jucits) Obsolete Producits

Please Read Carefully:

ite Producile Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

