imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

40V 4.5A QUAD POWER HALF BRIDGE

1 FEATURES

- MULTIPOWER BCD TECHNOLOGY
- MINIMUM INPUT OUTPUT PULSE WIDTH DISTORTION
- 200mΩ R_{dsON} COMPLEMENTARY DMOS OUTPUT STAGE
- CMOS COMPATIBLE LOGIC INPUTS
- THERMAL PROTECTION
- THERMAL WARNING OUTPUT
- UNDER VOLTAGE PROTECTION

2 **DESCRIPTION**

STA508 is a monolithic quad half bridge stage in Multipower BCD Technology. The device can be used as dual bridge or reconfigured, by connecting CONFIG pin to Vdd pin, as single bridge with double current capability, and as half bridge (Binary mode) with half current capability.

Figure 1. Package

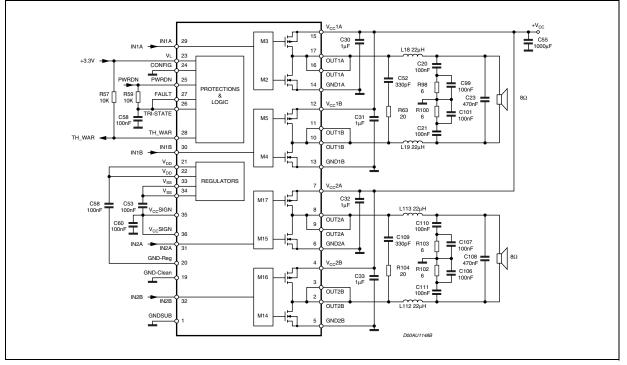


Table 1. Order Codes

Part Number	Package
STA508	PowerSO36

The device is particularly designed to make the output stage of a stereo All-Digital High Efficiency (DDXTM) amplifier capable to deliver 80 + 80W @ THD = 10% at V_{cc} 35V output power on 8 Ω load.

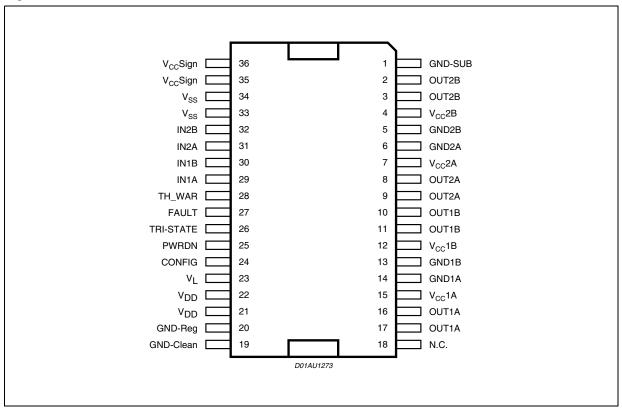
In single BTL configuration is also capable to deliver a peak of 160W @THD = 10% at V_{CC} = 35V on 4 Ω load. The input pins have threshold proportional to V_L pin voltage.

Figure 2. Block Diagram

Table 2. Pin Description

N°	Pin	Description		
1	GND-SUB	Substrate Ground		
2;3	OUT2B	Output Half Bridge 2B		
4	V _{CC} 2B	Positive Supply		
5	GND2B	Negative Supply		
6	GND2A	Negative Supply		
7	V _{CC} 2A	Positive Supply		
8;9	OUT2A	Output Half Bridge 2A		
10 ; 11	OUT1B	Output Half Bridge 1B		
12	V _{CC} 1B	Positive Supply		
13	GND1B	Negative Supply		
14	GND1A	Negative Supply		
15	V _{CC} 1A	Positive Supply		
16 ; 17	OUT1A	Output Half Bridge 1A		
18	NC	Not Connected		
19	GND-clean	Logical Ground		
20	GND-Reg	Ground for Regulator V _{dd}		
21 ; 22	V _{dd}	5V Regulator Referred to Ground		
23	VL	High Logical State Setting Voltage		
24	CONFIG	Configuration pin		
25	PWRDN	Stand-by pin		
26	TRI-STATE	Hi-Z pin		
27	FAULT	Fault pin Advisor		
28	TH-WAR	Thermal Warning Advisor		
29	IN1A	Input of Half Bridge 1A		
30	IN1B	Input of Half Bridge 1B		
31	IN2A	Input of Half Bridge 2A		
32	IN2B	Input of Half Bridge 2B		
33 ; 34	V _{SS}	5V Regulator Referred to +V _{CC}		
35 ; 36	V_{CC} Sign	Signal Positive Supply		

57


Table 3. FUNCTIONAL PIN STATUS

PIN NAME	Logical value	IC -STATUS	
FAULT	0	Fault detected (Short circuit, or Thermal)	
FAULT ^(*)	1	Normal Operation	
TRI-STATE	0	All powers in Hi-Z state	
TRI-STATE	1	Normal operation	
PWRDN	0	Low absorpion	
PWRDN	1	Normal operation	
THWAR	0	Temperature of the IC =130°C	
THWAR ^(*)	1	Normal operation	
CONFIG	0	Normal Operation	
CONFIG ^(**)	1	OUT1A = OUT1B ; OUT2A=OUT2B (IF IN1A = IN1B; IN2A = IN2B)	

(*) : The pin is open collector. To have the high logic value, it needs to be pulled up by a resistor.

(**): To put CONFIG = 1 means connect Pin 24 (CONFIG) to Pins 21, 22 (Vdd)

Figure 3. PIN CONNECTION

Table 4. THERMAL DATA

Symbol	Description	Value	Unit
R _{th j-case}	Thermal Resistance Junction-case	max 1.5	°C/W

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Pin 4,7,12,15)	40	V
V _{max}	Maximum Voltage on pins 23 to 32	5.5	V
P _{tot}	Power Dissipation ($T_{case} = 70^{\circ}C$)	50	W
T _{op}	Operating Temperature Range	-40 to 90	°C
T _{stg} , T _j	Storage and Junction Temperature	-40 to 150	°C

Table 5. ABSOLUTE MAXIMUM RATINGS

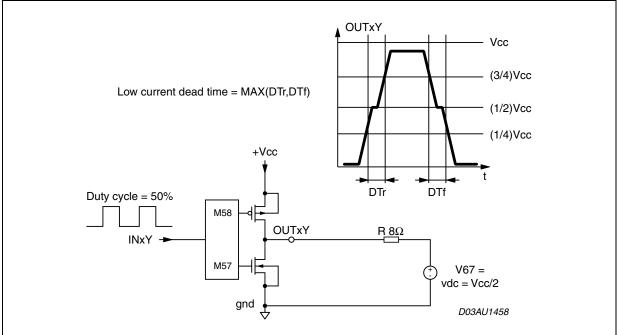
Table 6. ELECTRICAL CHARACTERISTCS (V_L = 3.3V; V_{CC} = 30V; T_{amb} = 25°C ; f_{sw} =384 unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
R _{dsON}	Power Pchannel/Nchannel MOSFET RdsON	Id=1A		200	270	mΩ
I _{dss}	Power Pchannel/Nchannel leakage Idss	V _{CC} =35V			50	μA
ЯN	Power Pchannel RdsON Matching	ld=1A	95			%
ЯР	Power Nchannel RdsON Matching	Id=1A	95			%
Dt_s	Low current Dead Time (static)	see test circuit no.1; see fig. 4		10	20	ns
Dt_d	High current Dead Time (dinamic)	L=22 μ H; C = 470nF; R _L = 8 Ω Id=3.5A; see fig. 3			50	ns
t _{d ON}	Turn-on delay time	Resistive load			100	ns
t _{d OFF}	Turn-off delay time	Resistive load			100	ns
tr	Rise time	Resistive load; as fig.4			25	ns
t _f	Fall time	Resistive load; as fig. 4			25	ns
V _{CC}	Supply voltage operating voltage		10		36	V
V _{IN-High}	High level input voltage				V _L /2 +300mV	V
V _{IN-Low}	Low level input voltage		V _L /2 - 300mV			V
I _{IN-High}	High level Input current	Pin Voltage = V _L		1		μA
I _{IN-Low}	Low level input current	Pin Voltage = 0.3V		1		μA
I _{PWRDN-H}	High level PWRDN pin input current	V _L = 3.3V		35		μA
VL	Low logical state voltage VL (pin PWRDN, TRISTATE) (note 1)	V _L = 3.3V	0.8			V

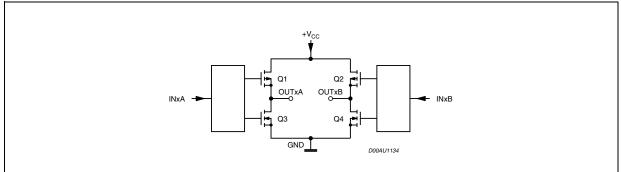
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _H	High logical state voltage VH (pin PWRDN, TRISTATE) (note 1)	V _L = 3.3V			1.7	V
I _{VCC-} PWRDN	Supply CURRENT from Vcc in Power Down	PWRDN = 0			3	mA
I _{FAULT}	Output Current pins FAULT -TH-WARN when FAULT CONDITIONS	Vpin = 3.3V		1		mA
I _{VCC-hiz}	Supply Current from Vcc in Tri- state	$V_{CC} = 30V$; Tri-state = 0		22		mA
Ivcc	Supply Current from Vcc in operation both channel switching)	V _{CC} =30V; Input Pulse width = 50% Duty; Switching Frequency = 384KHz; No LC filters;		50		mA
I _{VCC-q}	Isc (short circuit current limit) (note 2)		4.5	6	9	А
V _{UV}	Undervoltage protection threshold			7		V
t _{pw-min}	Output minimum pulse width	No Load	70		150	ns

Table 7.

Notes: 1. The following table explains the VLow, VHigh variation with V_L


VL	VLow min VHigh max		Unit
2.7	0.7	1.5	V
3.3	0.8	1.7	V
5	5 0.85 1.85		V

Note 2: See relevant Application Note AN1994


Table 8. Logic Truth Table (see fig. 5)

TRI-STATE	INxA	INxB	Q1	Q2	Q3	Q4	OUTPUT MODE
0	х	х	OFF	OFF	OFF	OFF	Hi-Z
1	0	0	OFF	OFF	ON	ON	DUMP
1	0	1	OFF	ON	ON	OFF	NEGATIVE
1	1	0	ON	OFF	OFF	ON	POSITIVE
1	1	1	ON	ON	OFF	OFF	Not used

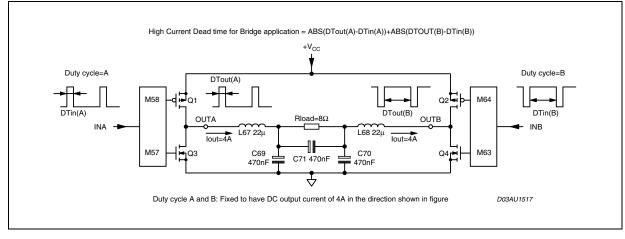
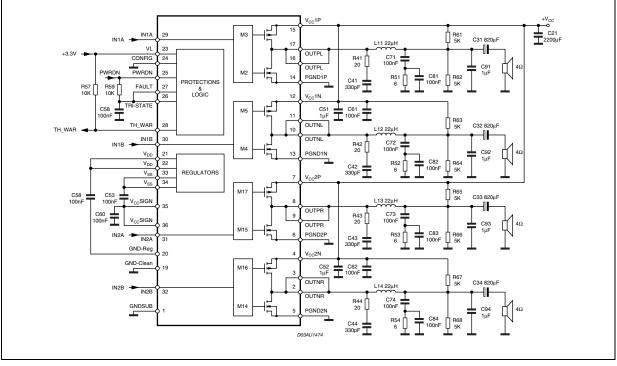

Figure 4. Test Circuit.

Figure 5.

Figure 6.

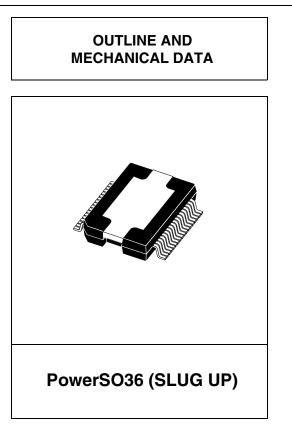


άγ/

VL 23 N.C. +3.3V O 18 10µH 100nF GND-Clean 17 OUT1A 10 100nF FILM 16 OUT1A GND-Reg 20 10K 100nF 11 100nF OUT1B 22Ω 1/2W 6.2 X7R V_{DD} X7R 10 1/2W OUT1B 21 470nF V_{DD} 4Ω _ 22 OUT2A FILM 6.2 CONFIG 9 100nF 24 OUT2A 330pF 1/2W T X7R 8 TH_WAR TH_WAR 28 OUT2B 100nF 3 OUT2B FILM PWRDN nPWRDN 25 2 10µH FAULT 10K 27 V_{CC}1A 15 **-o** 32V 26 TRI-STATE ī 1μF X7R 100nF 2200µF 63V IN1A V_{CC}1B 29 12 ╢ IN1B IN1A 30 IN2A $V_{CC}2A$ 31 7 • 32V IN2B 1μF IN1B 32 X7R V_{SS} V_{CC}2B ╢ 33 4 V_{SS} 34 GND1A 14 100nF V_{CC}SIGN GND1B X7R 35 13 - - - -100nF V_{CC}SIGN GND2A Ī X7R 36 6 GND2B Add. GNDSUB 5 D03AU1514

Figure 7. Typical Single BTL Configuration

Figure 8. Typical Quad Half Bridge Configuration



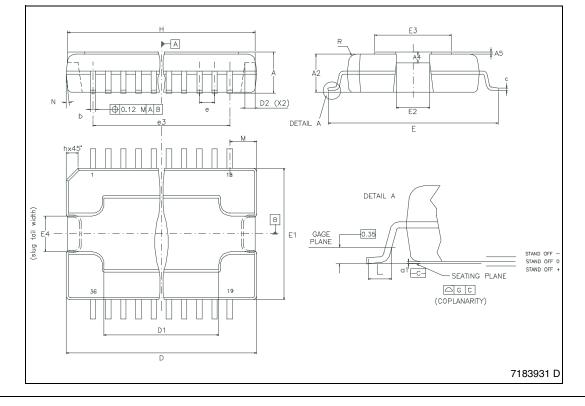

For more information refer to the application notes AN1456 and AN1661

Figure 9. Power SO36 (SLUG UP) Mechanical Data & Package Dimensions

		mm			inch	
DIM.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	3.25		3.43	0.128		0.135
A2	3.1		3.2	0.122		0.126
A4	0.8		1	0.031		0.039
A5		0.2			0.008	
a1	0.030		-0.040	0.0011		-0.0015
b	0.22		0.38	0.008		0.015
с	0.23		0.32	0.009		0.012
D	15.8		16	0.622		0.630
D1	9.4		9.8	0.37		0.38
D2		1			0.039	
E	13.9		14.5	0.547		0.57
E1	10.9		11.1	0.429		0.437
E2			2.9			0.114
E3	5.8		6.2	0.228		0.244
E4	2.9		3.2	0.114		1.259
е		0.65			0.026	
e3		11.05			0.435	
G	0		0.075	0		0.003
Н	15.5		15.9	0.61		0.625
h			1.1			0.043
L	0.8		1.1	0.031		0.043
Ν			10°			10°
s			8 °			8°

 "D and E1" do not include mold flash or protusions. Mold flash or protusions shall not exceed 0.15mm (0.006")
No intrusion allowed inwards the leads.

Table 9. Revision History

Date	Revision	Description of Changes
September 1994	1	First Issue
June 2004	2	Note 2: See relevant Application Note AN1994
November 2004	3	Changed Vcc from 9 min to 10 min
February 2006	4	Changed T _{op} value on Table 5.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

