

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

RF power transistor: HF/VHF/UHF RF power N-channel MOSFETs

Datasheet - production data

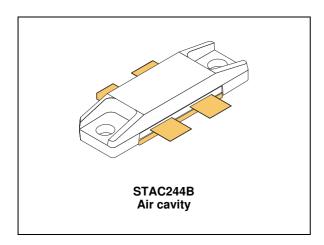
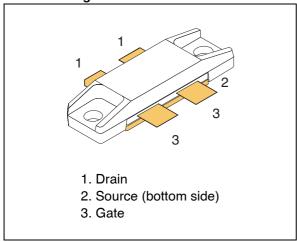



Figure 1. Pin connection

Features

- Gold metallization
- Excellent thermal stability
- Common source push-pull configuration
- $P_{OUT} = 350 \text{ W min. with } 21 \text{ dB gain } @ 175 \text{ MHz}$
- In compliance with the 2002/95/EC European directive

Description

The STAC2942B is a gold metallized N-channel MOS field-effect RF power transistor, intended for use in 50 V DC large signal applications up to 250 MHz.

Table 1. Device summary

Order code	Marking	Package	Packaging
STAC2942BW	STAC2942 ⁽¹⁾	STAC244B	Plastic tray

1. For more details please refer to Chapter 7: Marking, packing and shipping specifications.

Contents STAC2942B

Contents

1	Electr	rical data	3
	1.1	Maximum ratings	3
	1.2	Thermal data	3
2	Electr	rical characteristics	4
	2.1	Static	4
	2.2	Dynamic	4
3	Imped	dance	5
4	Туріс	al performance	6
5	Test o	circuit	. 10
6	Packa	age mechanical data	. 12
7	Marki	ing, packing and shipping specifications	. 14
8	Revis	sion history	. 15

STAC2942B Electrical data

1 Electrical data

1.1 Maximum ratings

Table 2. Absolute maximum ratings ($T_{CASE} = 25$ °C)

Symbol	Parameter	Value	Unit
V _{(BR)DSS} ⁽¹⁾	Drain source voltage	130	V
V _{DGR} ⁽¹⁾	Drain-gate voltage ($R_{GS} = 1 M\Omega$)	130	V
V _{GS}	Gate-source voltage	±20	V
I _D	Drain current	40	Α
P _{DISS}	Power dissipation	625	W
TJ	Max. operating junction temperature	200	°C
T _{STG}	Storage temperature	-65 to +150	°C

^{1.} T_J = 150 °C

1.2 Thermal data

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R_{thJC}	Junction - case thermal resistance	0.28	°C/W

Electrical characteristics STAC2942B

2 Electrical characteristics

 $T_{CASE} = +25 \, ^{\circ}C$

2.1 Static

Table 4. Static (per side)

Symbol		Test conditions			Тур.	Max.	Unit
V _{(BR)DSS} ⁽¹⁾	$V_{GS} = 0 V$	$I_{DS} = 100 \text{ mA}$		130			V
I _{DSS}	V _{GS} = 0 V	$V_{DS} = 50 \text{ V}$				100	μΑ
IGSS	V _{GS} = 20 V	$V_{DS} = 0 V$				250	nA
V _{GS(Q)}	V _{DS} = 10 V	$I_D = 250 \text{ mA}$		1.5	2.5	4.0	٧
V _{DS(ON)}	V _{GS} = 10 V	I _D = 10 A				3.0	٧
G _{FS}	V _{DS} = 10 V	I _D = 5 A		5			S
C _{ISS}					425		pF
C _{OSS}	$V_{GS} = 0 V$	$V_{DS} = 50 \text{ V}$	f = 1 MHz		202		pF
CRSS					12		pF

^{1.} $T_J = 150 \, ^{\circ}C$

2.2 Dynamic

Table 5. Dynamic

Symbol	Test conditions	Min.	Тур.	Max.	Unit
P _{OUT}	V _{DD} = 50 V, I _{DQ} = 2 x 250 mA, P _{IN} = 4 W, f = 175 MHz	350	450		W
h _D	$V_{DD} = 50 \text{ V}, I_{DQ} = 2 \text{ x } 250 \text{ mA}, P_{IN} = 4 \text{ W}, f = 175 \text{ MHz}$	60	75		%
	V_{DD} = 50 V; I_{DQ} = 2 x 250 mA, P_{OUT} = 350 W; f =175 MHz, all phase angles	5:1			VSWR

STAC2942B Impedance

3 Impedance

Figure 2. Current conventions

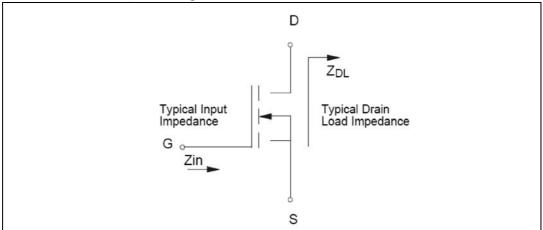


Table 6. Impedance data

Freq. (MHz)	Z _{IN} (Ω)	$Z_DL(\Omega)$
175 MHz	2.0 - j2.0	3.5 + j5.2

Note: Measured gate to gate and drain to drain, respectively.

Typical performance STAC2942B

4 Typical performance

Figure 3. Capacitances vs drain supply voltage Figure 4. Output power vs drain supply voltage

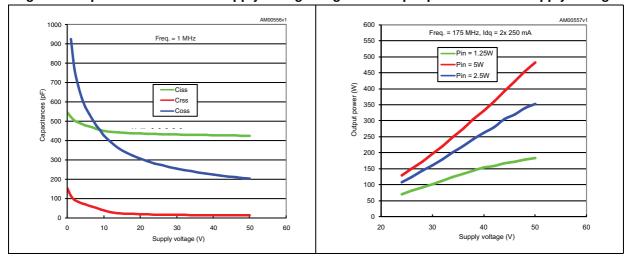
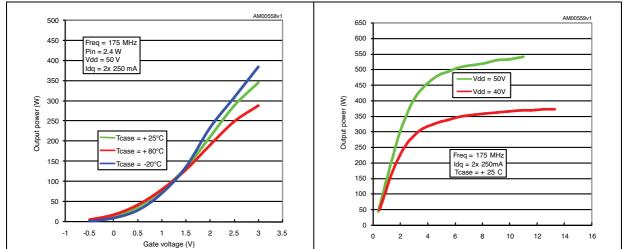



Figure 5. Output power vs gate voltage

Figure 6. Output power vs input power

6/16 DocID15501 Rev 7

Figure 7. Output power vs input power and case temperature Figure 8. Efficiency vs output power and case temperature

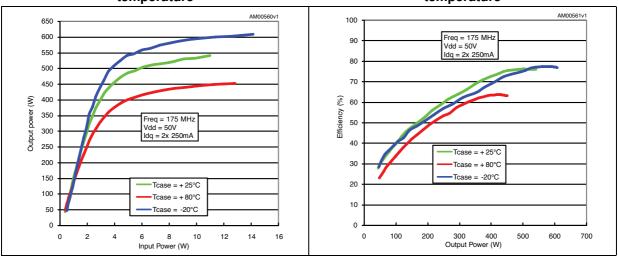
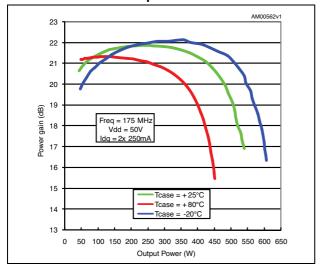



Figure 9. Power gain vs output power and case temperature

Typical performance STAC2942B

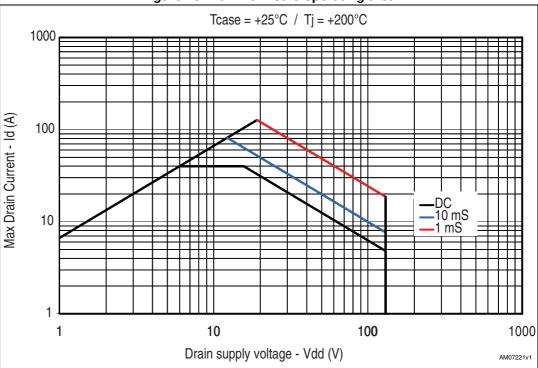
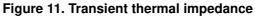
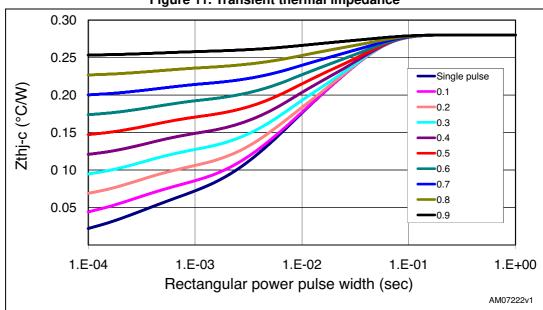




Figure 10. Maximum safe operating area

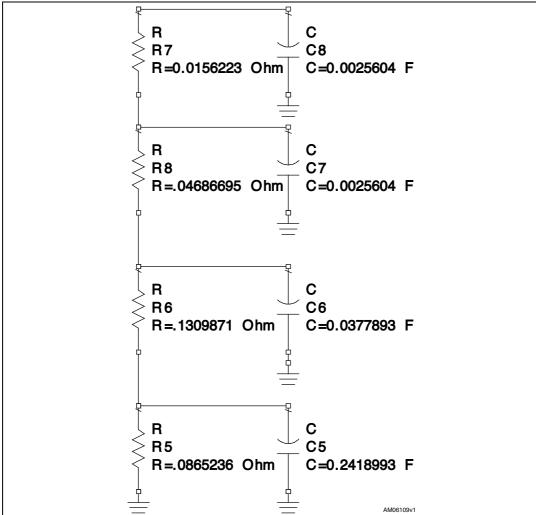


Figure 12. Transient thermal model

Test circuit STAC2942B

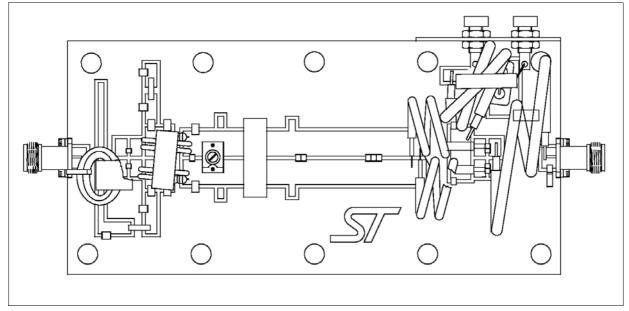
5 Test circuit

-0.056" SPACE DIMENSION TABLE DIM 0.430 0.950 TRANSMISSION LINE DIMENSIONS FB6 50V C25 C28 FB3 C15 R6 C21 FB2 C18 C17 SORE C16 FB2 R5 ___C14 FB4 R1 R3 C22 C20 C24 NOTES:
1. DIMENSIONS AT COMPONENT SYMBOLS ARE REFERENCE FOR COMPONENT PLACEMENT. SEE SHEET 1. 2. GAP BETWEEN GROUND & TRANSMISSION LINES IS 0.056[1.42] AM00528v1

Figure 13. 175 MHz test circuit schematic (production test circuit)

Table 7. 175 MHz test circuit component list

Component	Description
C1, C2, C14, C15, C24, C25	1200 pF ATC 700B chip capacitor
C5	75 pF ATC 100B chip capacitor
C6	ST406 variable capacitor
C9, C10	47 pF ATC 100B chip capacitor
C11, C12, C13	43 pF ATC 100B chip capacitor
C16, C18	470 pF ATC 100B chip capacitor
C17, C19, C20, C21	10,000 pF ATC 200B chip capacitor
C22, C23	.1 μF 200 V chip capacitor
C28	10 μF 100 V electrolytic capacitor
C29	.8 - 8 pF variable capacitor
R1, R2, R5, R6	430 Ω, 1/2 W chip resistor


577

STAC2942B Test circuit

Table 7. 175 MHz test circuit component list (continued)

Component	Description	
R3, R4	270 Ω 1/2 W axial lead resistor	
B1	RG-316 50 Ω 11.8" through ferrite toroid	
B2	RG-142 50 Ω 11.8"	
T1	4:1, RG-316 25 Ω, 5.9", 2 turns thru ferrite core	
T2	1:4, 25 Ω semi-rigid cable, OD .141", 5.9"	
L1	λ /4 inductor, RG-142 50 Ω , 11.8", 3 turns thru ferrite toroid	
FB1,FB5	Ferrite toroid	
FB2, FB6	Multi-aperture core	
FB3, FB4	Surface mount ferrite bead	
PCB	Rogers ultralam 2000, Er 2.55, .060"	

Figure 14. Circuit layout

6 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

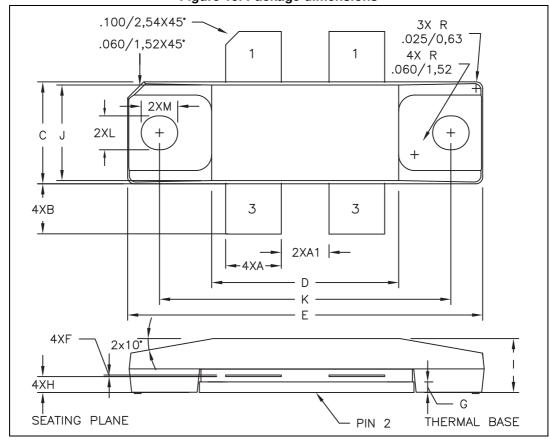


Figure 15. Package dimensions

Table 8. STAC244B mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
A	5.08		5.59
A1	4.32		4.83
В	4.32		5.33
С	9.65		9.91
D	17.78		18.08
E	33.88		34.19
F	0.10		0.15
G		1.02	
Н	1.45		1.70
I	4.83		5.33
J	9.27		9.52
К	27.69		28.19
L	3.12	3.23	3.33
M	3.35	3.45	3.56

7 Marking, packing and shipping specifications

Table 9. Packing and shipping specifications

Order code	Packaging	Pcs per tray	Dry pack humidity	Lot code
STAC2942BW	Tray	20	< 10 %	Not mixed

Figure 16. Marking layout

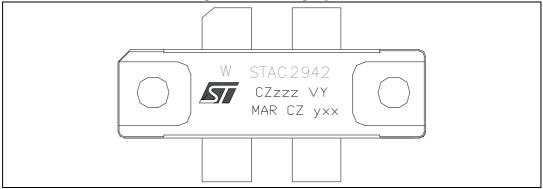


Table 10. Marking specifications

Symbol	Description	
W	Wafer process code	
CZ	Assembly plant	
xxx	Last 3 digits of diffusion lot	
VY	Diffusion plant	
MAR	Country of origin	
CZ	Test and finishing plant	
у	Assembly year	
уу	Assembly week	

14/16 DocID15501 Rev 7

STAC2942B Revision history

8 Revision history

Table 11. Document revision history

Date	Revision	Changes
20-Mar-2009	1	First release.
16-Apr-2010	2	Added Figure 10, Figure 11 and Figure 12.
12-Aug-2011	3	Update figures on coverpage and Section 6: Package mechanical data. Inserted Section 7: Marking, packing and shipping specifications.
05-Sep-2011	4	Update L and M dimensions Table 8 on page 13.
11-Oct-2011	5	Updated order code in <i>Table 1: Device summary</i> and <i>Table 9: Packing and shipping specifications</i> . Updated <i>Table 10: Marking specifications</i> and <i>Figure 16: Marking layout</i> . Modified document title.
17-Jan-2012	6	Updated Table 5: Dynamic new "load mismatch" has been inserted.
27-Jan-2014	7	Modified pin labeling in Figure 1: Pin connection.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

16/16 DocID15501 Rev 7

