imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Automotive-grade N-channel 400 V, 0.063 Ω typ., 38 A MDmesh[™] DM2 Power MOSFET in a D²PAK package

Datasheet - production data

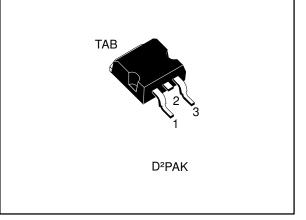
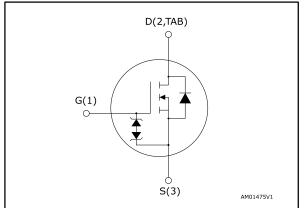



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	ID	Ртот
STB45N40DM2AG	400 V	0.072 Ω	38 A	250 W

- Designed for automotive applications and AEC-Q101 qualified
- Fast-recovery body diode
- Extremely low gate charge and input capacitance
- Low on-resistance
- 100% avalanche tested
- Extremely high dv/dt ruggedness
- Zener-protected

Applications

Switching applications

Description

This high voltage N-channel Power MOSFET is part of the MDmesh[™] DM2 fast recovery diode series. It offers very low recovery charge (Qrr) and time (tr) combined with low R_{DS(on)}, rendering it suitable for the most demanding high efficiency converters and ideal for bridge topologies and ZVS phase-shift converters.

Table	1:	Device	summary
Iubic		001100	Sammary

Order code	Marking	Package	Packing
STB45N40DM2AG	45N40DM2	D ² PAK	Tape and reel

This is information on a product in full production.

Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	D ² PAK (TO-263) type A package information	9
	4.2	D ² PAK packing information	12
5	Revisio	n history	14

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate-source voltage	±25	V
1-	Drain current (continuous) at T _{case} = 25 °C		А
١D	Drain current (continuous) at T _{case} = 100 °C	24	A
IDM ⁽¹⁾	Drain current (pulsed)	152	А
P _{TOT}	Total dissipation at T _{case} = 25 °C	250	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	50	V/ns
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	50	v/ns
T _{stg}	Storage temperature range	55 to 150	°C
Tj	Operating junction temperature range	-55 to 150	C

Notes:

 $^{\left(1\right) }$ Pulse width is limited by safe operating area.

 $^{(2)}$ I_{SD} \leq 38 A, di/dt=800 A/µs; V_{DS} peak < V_(BR)DSS,V_{DD} = 80% V(BR)DSS.

 $^{(3)}$ V_{DS} \leq 320 V.

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	0.5	°C/W
Rthj-pcb ⁽¹⁾	Thermal resistance junction-pcb	30	-0/W

Notes:

 $^{(1)}$ When mounted on a 1-inch² FR-4, 2 Oz copper board.

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
lar ⁽¹⁾	Avalanche current, repetitive or not repetitive	7	А
E _{AS} ⁽²⁾	Single pulse avalanche energy	1100	mJ

Notes:

⁽¹⁾pulse width limited by T_{jmax}.

 $^{(2)}$ starting T_{j} = 25 °C, I_{D} = $I_{AR},\,V_{DD}$ = 50 V.

2 Electrical characteristics

(T_{case} = 25 °C unless otherwise specified)

Table 5: Static							
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
$V_{(BR)DSS}$	Drain-source breakdown voltage	V_{GS} = 0 V, I_D = 1 mA	400			v	
		$V_{GS} = 0 V, V_{DS} = 400 V$			10		
I _{DSS} Zero ga	Zero gate voltage drain current				100	μA	
I _{GSS}	Gate-body leakage current	V_{DS} = 0 V, V_{GS} = ±25 V			±5	μA	
$V_{\text{GS(th)}}$	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	3	4	5	V	
$R_{\text{DS(on)}}$	Static drain-source on- resistance	$V_{GS} = 10 \ V, \ I_D = 19 \ A$		0.063	0.072	Ω	

Notes:

⁽¹⁾Defined by design, not subject to production test.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	2600	-	
Coss	Output capacitance	$V_{DS} = 100 V, f = 1 MHz,$	-	180	-	рF
Crss	Reverse transfer capacitance	V _{GS} = 0 V	-	3.5	-	P
Coss eq. ⁽¹⁾	Equivalent output capacitance	$V_{\text{DS}} = 0$ to 320 V, $V_{\text{GS}} = 0$ V	-	300	-	pF
Rg	Intrinsic gate resistance	$f = 1 \text{ MHz}, I_D = 0 \text{ A}$	-	4	-	Ω
Qg	Total gate charge	$V_{DD} = 320 V, I_D = 38 A,$	-	56	-	
Q _{gs}	Gate-source charge	V _{GS} = 10 V (see Figure 15: "Test circuit for gate charge	-	13	-	nC
Q _{gd}	Gate-drain charge	behavior")	-	28	-	

Table 6: Dynamic

Notes:

 $^{(1)}$ Coss $_{eq.}$ is defined as a constant equivalent capacitance giving the same charging time as Coss when VDs increases from 0 to 80% VDss.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit		
t _{d(on)}	Turn-on delay time	$V_{DD} = 200 V, I_D = 19 A$	-	20	-			
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 14: "Test circuit for	-	6.7	-			
$t_{d(off)}$	Turn-off delay time	resistive load switching times"	-	68	-	ns		
t _f	Fall time	and Figure 19: "Switching time waveform")	-	9.8	-			

Table 7: Switching times

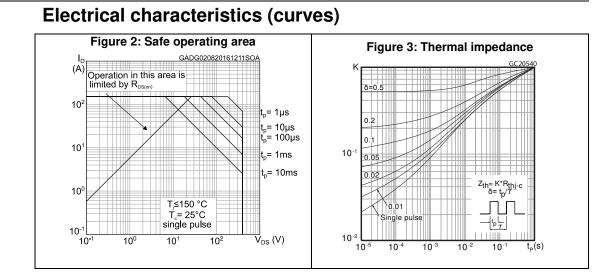
Electrical characteristics

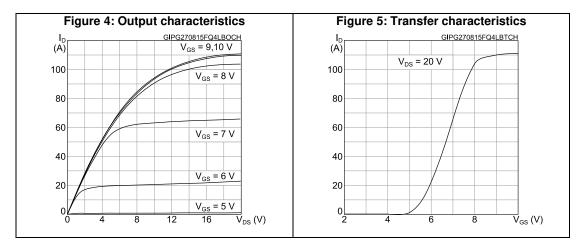
	Tal	ole 8: Source-drain diode				
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Isd	Source-drain current		-		38	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		152	А
Vsd ⁽²⁾	Forward on voltage	$V_{GS} = 0 V$, $I_{SD} = 38 A$	-		1.6	V
trr	Reverse recovery time	I _{SD} = 38 A, di/dt = 100 A/µs, V _{DD} = 60 V (see <i>Figure 16:</i> <i>"Test circuit for inductive load switching and diode recovery times"</i>)	-	95		ns
Qrr	Reverse recovery charge		-	0.4		μC
I _{RRM}	Reverse recovery current		-	8.5		А
trr	Reverse recovery time	I _{SD} = 38 A, di/dt = 100 A/μs,	-	185		ns
Qrr	Reverse recovery charge	$V_{DD} = 60 \text{ V}, \text{ T}_{j} = 150 \text{ °C}$ (see Figure 16: "Test circuit for	-	1.62		μC
IRRM	Reverse recovery current	inductive load switching and diode recovery times")	-	17.5		A

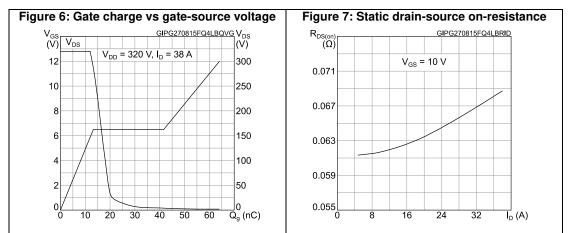
Notes:

 $^{\left(1\right) }$ Pulse width is limited by safe operating area.

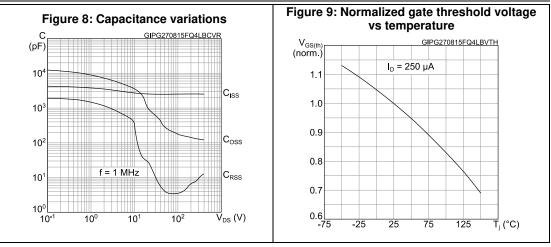
 $^{(2)}$ Pulse test: pulse duration = 300 $\mu s,$ duty cycle 1.5%.

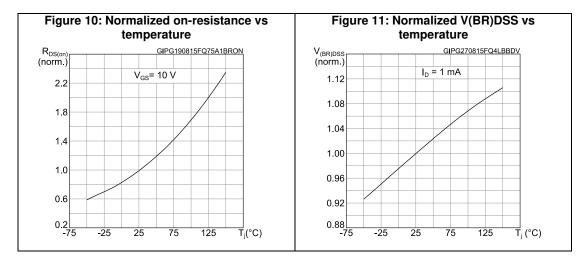

Table 9: Gate-source Zener diode

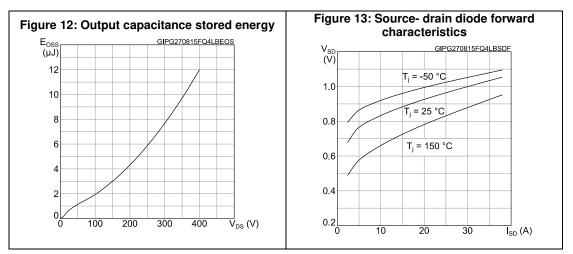

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _(BR) GSO	Gate-source breakdown voltage	$I_{GS} = \pm 250 \ \mu A, I_D = 0 \ A$	±30	-	-	V


The built-in back-to-back Zener diodes are specifically designed to enhance the ESD performance of the device. The Zener voltage facilitates efficient and cost-effective device integrity protection, thus eliminating the need for additional external componentry.

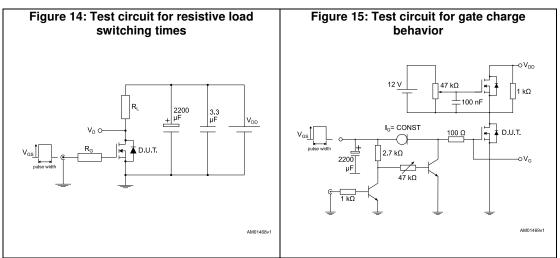
2.1

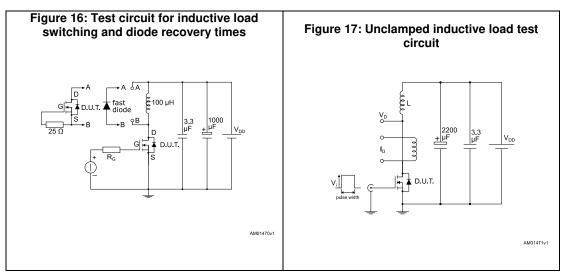


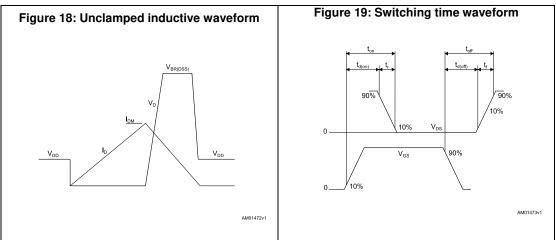




Electrical characteristics



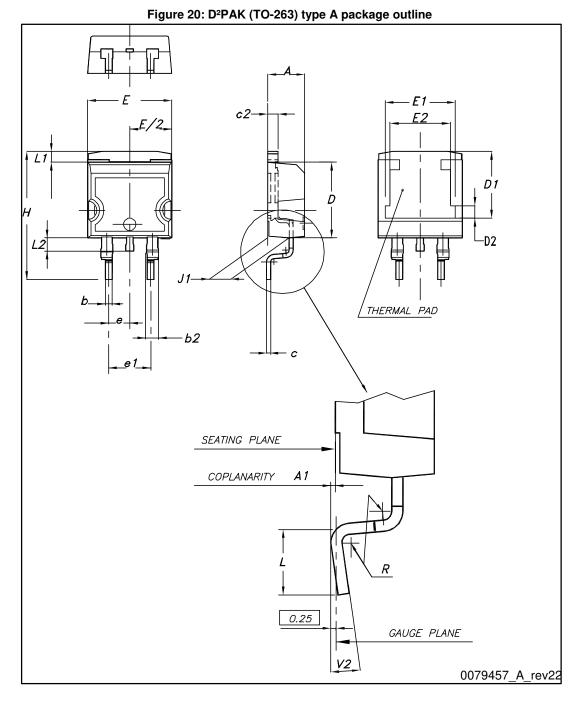



57

DocID028285 Rev 2

3 Test circuits

DocID028285 Rev 2

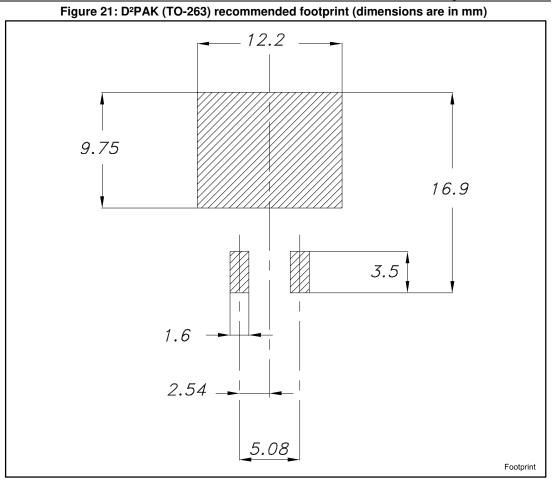


57

4 Package information

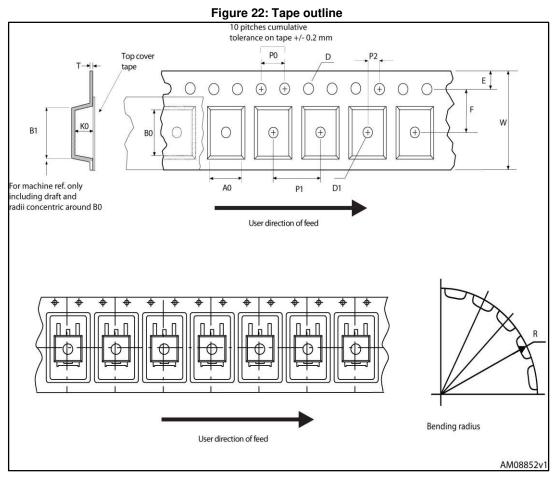
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

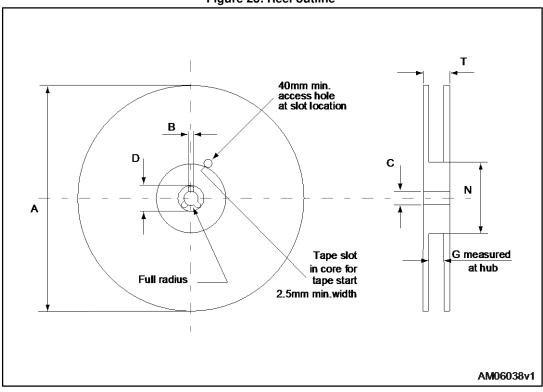
4.1 D²PAK (TO-263) type A package information


DocID028285 Rev 2

Package information

nation Table	e 10: D²PAK (TO-263) ty	pe A package mechanic	al data
Dim.	mm		
Dim.	Min.	Тур.	Max.
А	4.40		4.60
A1	0.03		0.23
b	0.70		0.93
b2	1.14		1.70
С	0.45		0.60
c2	1.23		1.36
D	8.95		9.35
D1	7.50	7.75	8.00
D2	1.10	1.30	1.50
E	10		10.40
E1	8.50	8.70	8.90
E2	6.85	7.05	7.25
е		2.54	
e1			5.28
Н	15 11		15.85
J1	2.49		2.69
L	2.29		2.79
L1	1.27		1.40
L2	1.30		1.75
R		0.4	
V2	0°		8°




Package information

4.2 D²PAK packing information

Таре			Reel		
mm		Dim	mm		
	Min.	Max.	Dim.	Min.	
	10.5	10.7	А		
	15.7	15.9	В	1.5	

Table 11: D²PAK tape and reel mechanical data

Dim.	mm		Dim.	mm	
	Min.	Max.	Dim.	Min.	Max.
A0	10.5	10.7	А		330
B0	15.7	15.9	В	1.5	
D	1.5	1.6	С	12.8	13.2
D1	1.59	1.61	D	20.2	
E	1.65	1.85	G	24.4	26.4
F	11.4	11.6	N	100	
K0	4.8	5.0	Т		30.4
P0	3.9	4.1			
P1	11.9	12.1	Base quantity		1000
P2	1.9	2.1	Bulk quantity 1		1000
R	50				
Т	0.25	0.35			
W	23.7	24.3			

Revision history 5

Table 12: Document revision histo

Date	Revision	Changes	
27-Aug-2015	1	Initial version	
04-Aug-2016	Aug 2016 2	Updated Figure 2: "Safe operating area".	
	2	Minor text changes.	

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

