imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

HYBRID EMITTER SWITCHED BIPOLAR TRANSISTOR ESBT 1500 V - 3 A - 0.55 Ω

Table 1: General Features

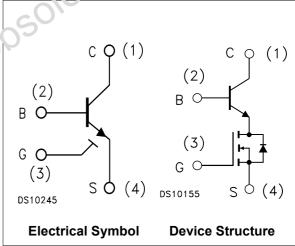
V _{CS(ON)}	Ι _C	R _{CS(ON)}		
1 V	1.8 A	0.55 Ω		

- n LOW EQUIVALENT ON RESISTANCE
- N VERY FAST-SWITCH, UP TO 150 kHz
- SQUARED RBSOA, UP TO 1500 V
- $_{\rm n}$ $\,$ VERY LOW C_{\rm ISS} DRIVEN BY RG = 4.7 Ω

APPLICATION

n AUX SMPS FOR THREE PHASE MAINS

DESCRIPTION


The STC03DE150 is manufactured in a hybrid structure, using dedicated high voltage Bipolar and low voltage MOSFET technologies, aimed to providing the best performance in ESBT topology. The STC03DE150 is designed for use in aux flyback smps for any three phase application.

ete Productle

Figure 1: Package

Figure ?: Internal Schematic Diagram

Table 2: Order Code

Part Number	Marking	Package	Packaging
STC03DE150	STC03DE150	TO247-4L	TUBE

Symbol	Parameter	Value	Unit
V _{CS(SS)}	Collector-Source Voltage ($V_{BS} = V_{GS} = 0 V$)	1500	V
V _{BS(OS)}	Base-Source Voltage (I _C = 0, V _{GS} = 0 V)	30	V
V _{SB(OS)}	Source-Base Voltage (I _C = 0, V _{GS} = 0 V)	9	V
V _{GS}	Gate-Source Voltage	± 20	V
Ι _C	Collector Current	3	А
I _{CM}	Collector Peak Current (t _p < 5ms)	6	A
Ι _Β	Base Current	2	Α
I _{BM} Base Peak Current (t _p < 1ms)		4	А
P_{tot} Total Dissipation at T _C = 25 °C		100	W
T _{stg}	Storage Temperature	-65 to 125	°C
TJ	Max. Operating Junction Temperature	125	°C

Table 3: Absolute Maximum Ratings

Table 4: Thermal Data

Symbol	Parameter	C.L.	Unit
R _{thj-case}	Thermal Resistance Junction-Case Max	1	°C/W

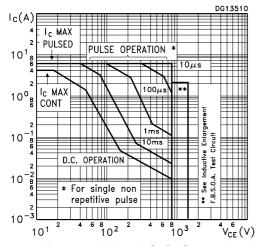
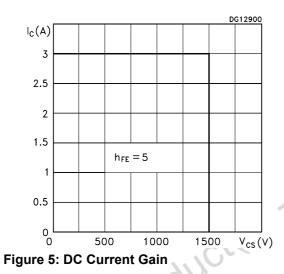
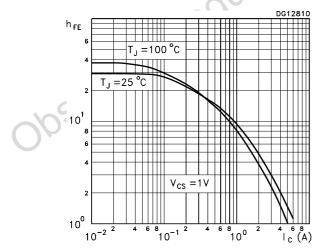
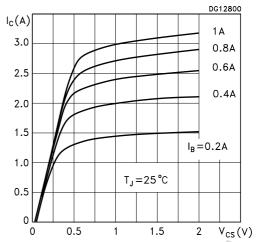
Table 5: Electrical Characteristics ($T_{case} = 25 \, {}^{o}C$ unless otherwise specified)

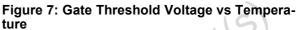
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{CS(SS)}	Collector-Source Current $(V_{BS} = V_{GS} = 0 V)$	V _{CS(SS)} = 1500 V			100	$\mu \mathbf{A}$
I _{BS(OS)}	Base-Source Current	V _{BS(OS)} = 30 V			10	$\mu \mathbf{A}$
	$(I_{C} = 0, V_{GS} = 0 V)$	005				
I _{SB(OS)}	Source-Base Current	V _{SB(OS)} = 9 V			100	$\mu \mathbf{A}$
	$(I_{C} = 0, V_{GS} = 0 V)$					
I _{GS(OS)}	Gate-Source Leakage	V _{GS} = ± 20 V			500	nA
V _{CS(ON)}	Collector-Source ON	$V_{GS} = 10 \text{ V} \text{ I}_{C} = 1.8 \text{ A} \text{ I}_{B} = 0.36 \text{ A}$		1	1.5	V
	Voltage	$V_{GS} = 10 V I_{C} = 0.7 A I_{B} = 70 mA$		1	1.3	V
h _{FE}	DC Current Gain	$I_{C} = 1.8 \text{ A}$ $V_{CS} = 1 \text{ V}$ $V_{GS} = 10 \text{ V}$	3.5	5		
	200	$I_{C} = 0.7 \text{ A}$ $V_{CS} = 1 \text{ V}$ $V_{GS} = 10 \text{ V}$	6	10		
V _{BS(ON)}	Base-Source ON Voltage	$V_{GS} = 10 V I_C = 1.8 A I_B = 0.36 A$		1	1.2	V
	XC	$V_{GS} = 10 V I_{C} = 0.7 A I_{B} = 70 mA$		0.8	1	V
V _{GS(th)}	Gate Threshold Voltage	$V_{BS} = V_{GS}$ $I_B = 250 \ \mu A$	1.5	2.2	3	V
C _{iss}	Input Capacitance	V _{CS} = 25 V f = 1MHZ		750		pF
07		$V_{GS} = V_{CB} = 0$				
Q _{GS(tot)}	Gate-Source Charge	V _{CS} = 15 V V _{GS} = 10 V		12.5		nC
		V _{CB} = 0 I _C = 1.8 A				
	INDUCTIVE LOAD	V _{GS} = 10 V				
t _s	Storage Time	R _G = 47 Ω V _{Clamp} = 1200 V		760		ns
t _f	Fall Time	$t_p = 4 \ \mu s$ $I_C = 1.8 \ A \ I_B = 0.36 \ A$		14		ns

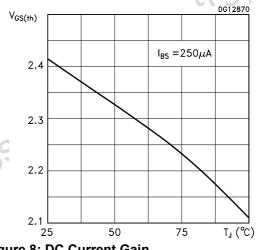
2/9

Symbol	Parameter	Test Co	nditions	Min.	Тур.	Max.	Un
	INDUCTIVE LOAD	V _{GS} = 10 V					
t _s	Storage Time	R _G = 47 Ω V _C	_{amp} = 1200 V		690		ns
t _f	Fall Time		0.7 A I _B = 70 mA		32		ns
V _{CSW}	Maximum Collector-Source Voltage without Snubber	R _G = 47 Ω h _{FE}	= 5 A I _C = 3 A	1500			٧
V _{CS(dyn)}	Collector-Source Dynamic	$V_{CC} = V_{Clamp} = 400$	V V _{GS} = 10 V		3.9		V
	Voltage	R _G = 47 Ω	I _C = 0.5 A				
	(500 ns)	I _B = 0.1 A	I _{Bpeak} = 1 A				
		t _{peak} = 500 ns	1				
V _{CS(dyn)}	Collector-Source Dynamic		V V _{GS} = 10 V		2.2		V
(-),	Voltage	R _G = 47 Ω	I _C = 0.5 A				
	(1µs)	$I_{\rm P} = 0.1 {\rm A}$	I _{Ppook} = 1 A				
		$t_{\rm eff} = 500 \rm ns$	вреак				
			bsolete	Pr	2910	N	
			psolete	Pr	2910)	
	codu	ct(S)	psolete	Pr	290)	
	Produ	cilsi	psolete	Pr	2910		
	ete Produ	ctls)	bsolete	Pr	290		
	lete Produ	cilsi	psolete	Pr	2910		
50	lete Produ	cils	bsolete	Pr	290		
50	ete Produ	cils	bsolete	Pr	2910		
50	lete Produ	ctls) C	psolete	Pr	290		
50	Collector-Source Dynamic Voltage (1µs)	cils	bsolete	Pr	290		

Figure 3: Safe Operating Area


Figure 4: Reverse Biased Safe Operating Area



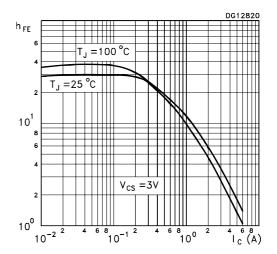


Figure 9: Collector-Source On Voltage

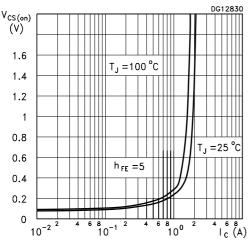


Figure 10: Base-Source On Voltage

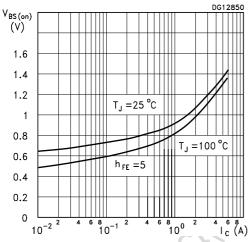


Figure 11: Inductive Load Switching Time

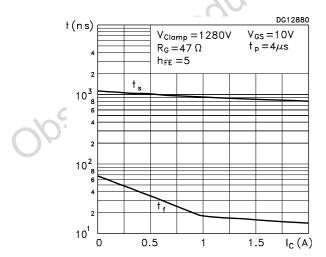
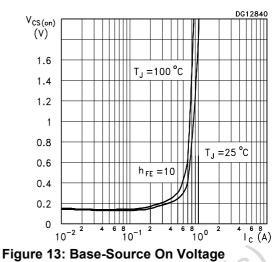



Figure 12: Collector-Source On Voltage

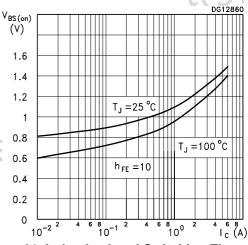
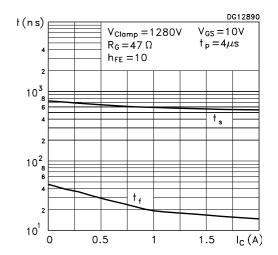




Figure 14: Inductive Load Switching Time

Figure 15: Dynamic Collector-Emitter Saturation Voltage

Figure 16: Inductive Load Enlargement FBSOA Circuit

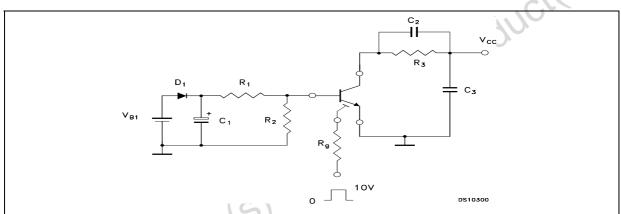
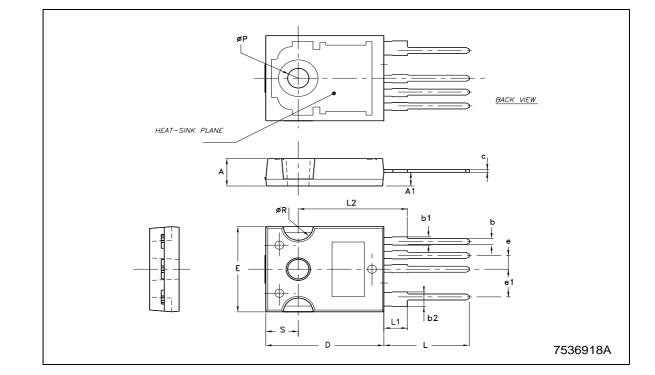



Table 6: Components, Values

TO247-4L MECHANICAL DATA				
DIM.	mm			
Diwi.	MIN.	TYP.	MAX.	
А	4.85		5.15	
A1	2.20		2.60	
b	0.95	1.10	1.30	
b1	1.30		1.70	
b2	2.50		2.90	
С	0.40		0.80	
D	19.85		20.15	
E	15.45		15.75	
е		2.54		
e1		5.08		
L	14.20		14.80	
L1	3.70		4.30	
L2		18.50		
ØP	3.55		3.65	
ØR	4.50		5.50	
S		5.50		

TO247-AL MECHANICAL DATA

(

Table 7: Revision History

Date	Release	Change Designator
13-Sep-2004	1	First Release.
04-Oct-2004	2	Figure 15 has been updated on page 6.

obsolete Product(s). Obsolete Product(s)

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com
