

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

STD13N60DM2

N-channel 600 V, 0.310 Ω typ., 11 A MDmesh™ DM2 Power MOSFET in a DPAK package

Datasheet - production data

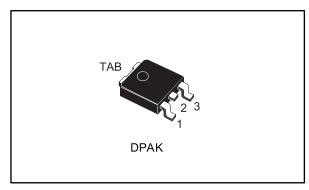
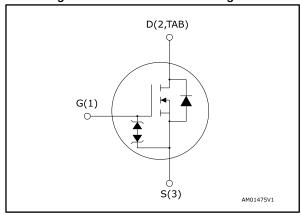



Figure 1: Internal schematic diagram

Features

Order code	V _{DS} R _{DS(on)} max.		ID	
STD13N60DM2	600 V	0.365 Ω	11 A	

- Fast-recovery body diode
- Extremely low gate charge and input capacitance
- Low on-resistance
- 100% avalanche tested
- Extremely high dv/dt ruggedness
- Zener-protected

Applications

Switching applications

Description

This high voltage N-channel Power MOSFET is part of the MDmesh $^{\text{TM}}$ DM2 fast recovery diode series. It offers very low recovery charge (Q_{rr}) and time (t_{rr}) combined with low $R_{DS(on)}$, rendering it suitable for the most demanding high efficiency converters and ideal for bridge topologies and ZVS phase-shift converters.

Table 1: Device summary

Order code		Marking	Package	Packing	Ì
	STD13N60DM2	13N60DM2	DPAK	Tape and reel	1

STD13N60DM2 Contents

Contents

1	Electric	eal ratings	3
2	Electric	eal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	DPAK (TO-252) type A2 package information	10
	4.2	DPAK (TO-252) packing information	13
5	Revisio	n history	15

STD13N60DM2 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate-source voltage	±25	V
1_	Drain current (continuous) at T _{case} = 25 °C	11	Α
ID	Drain current (continuous) at T _{case} = 100 °C	7	A
I _{DM} ⁽¹⁾	I _{DM} ⁽¹⁾ Drain current (pulsed)		Α
P _{TOT}	Total dissipation at T _{case} = 25 °C	110	W
dv/dt (2)	Peak diode recovery voltage slope	40	V/ns
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	50	V/IIS
T _{stg}	Storage temperature range	FF to 1F0	°C
Tj	Operating junction temperature range	-55 to 150	Ü

Notes:

Table 3: Thermal data

Symbol Parameter		Value	Unit
R _{thj-case}	Thermal resistance junction-case	1.14	0000
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	50	°C/W

Notes:

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit	
I _{AR}	Avalanche current, repetitive or not repetitive (Pulse width limited by T _{jmax})			
Eas	E _{AS} Single pulse avalanche energy (starting T _j = 25 °C, I _D = I _{AR} , V _{DD} = 50 V)		mJ	

 $[\]ensuremath{^{(1)}}\mbox{Pulse}$ width limited by safe operating area.

 $^{^{(2)}}I_{SD} \leq$ 11 A, di/dt \leq 900 A/µs; V $_{DS\,peak} < V_{(BR)DSS},~V_{DD} = 400~V.$

 $^{^{(3)}}$ V_{DS} ≤ 480 V.

⁽¹⁾When mounted on FR-4 board of inch2, 2oz Cu.

2 Electrical characteristics

(T_{case} = 25 °C unless otherwise specified)

Table 5: Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS} Drain-source breakdown voltage		$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	600			V
Zovo voto voltovo dvois	V _{GS} = 0 V, V _{DS} = 600 V			1.5		
I _{DSS}	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V},$ $T_{case} = 125 \text{ °C} (1)$			100	μΑ
I _{GSS} Gate-body leakage current		$V_{DS} = 0 \text{ V}, V_{GS} = \pm 25 \text{ V}$			±10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	3	4	5	V
R _{DS(on)} Static drain-source on- resistance		V _{GS} = 10 V, I _D = 5.5 A		0.310	0.365	Ω

Notes:

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		ı	730	1	
Coss	Output capacitance	V _{DS} = 100 V, f = 1 MHz,	1	38	1	рF
Crss	Reverse transfer capacitance	$V_{GS} = 0 V$	-	0.9	-	ρ.
Coss eq. (1)	Equivalent output capacitance	V _{DS} = 0 to 480 V, V _{GS} = 0 V	1	70	1	pF
Rg	Intrinsic gate resistance	f = 1 MHz, I _D = 0 A	1	5.1	1	Ω
Qg	Total gate charge	$V_{DD} = 480 \text{ V}, I_D = 11 \text{ A},$	-	19	-	
Qgs	Gate-source charge	V _{GS} = 10 V (see <i>Figure 15: "Test</i>	-	4.4	-	nC
Q_{gd}	Gate-drain charge	circuit for gate charge behavior")	-	9.9	-	

Notes:

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 300 \text{ V}, I_D = 5.5 \text{ A}$ $R_G = 4.7 \Omega, V_{GS} = 10 \text{ V} \text{ (see}$ Figure 14: "Test circuit for resistive load switching times"	-	12.3	-	
tr	Rise time		-	4.8	-	
t _{d(off)}	Turn-off delay time		-	42.5	-	ns
tf	Fall time	and Figure 19: "Switching time waveform")	-	10.6	-	

 $[\]ensuremath{^{(1)}}\mbox{Defined}$ by design, not subject to production test.

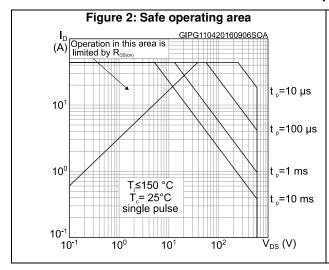
 $^{^{(1)}}$ C_{oss eq.} is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}.

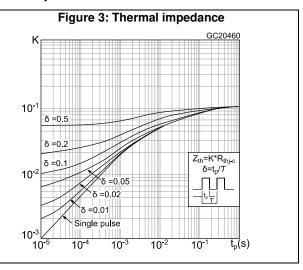
Table 8: Source-drain diode

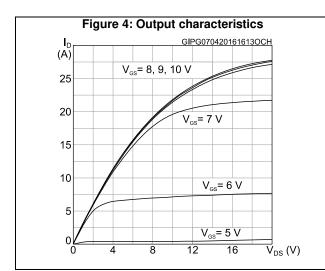
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		1		11	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		44	Α
V _{SD} ⁽²⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 11 A	1		1.6	V
t _{rr}	Reverse recovery time	I _{SD} = 11 A, di/dt = 100 A/μs,	1	90		ns
Qrr	Reverse recovery charge	V _{DD} = 60 V (see Figure 16: "Test circuit for inductive load	-	252		nC
I _{RRM}	Reverse recovery current	switching and diode recovery times")		5.6		Α
t _{rr}	Reverse recovery time	I _{SD} = 11 A, di/dt = 100 A/μs,	1	170		ns
Qrr	Reverse recovery charge	V_{DD} = 60 V, T_j = 150 °C (see Figure 16: "Test circuit for	-	667		nC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	8.6		Α

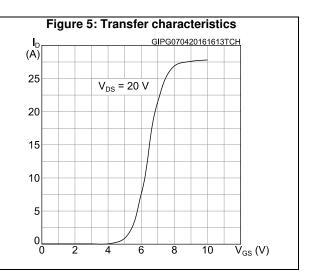
Notes:

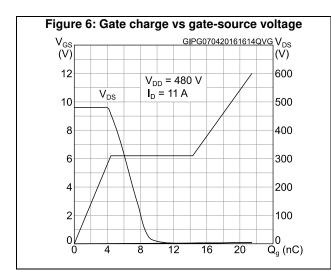
Table 9: Gate-source Zener diode


Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(\text{BR})\text{GSO}}$	Gate-source breakdown voltage	$I_{GS} = \pm 250 \ \mu A, \ I_{D} = 0 \ A$	±30	-		٧


The built-in back-to-back Zener diodes are specifically designed to enhance the ESD performance of the device. The Zener voltage facilitates efficient and cost-effective device integrity protection, thus eliminating the need for additional external componentry.


 $^{^{\}left(1\right) }$ Pulse width is limited by safe operating area.


 $^{^{(2)}}$ Pulse test: pulse duration = 300 μ s, duty cycle 1.5%.


2.1 Electrical characteristics (curves)

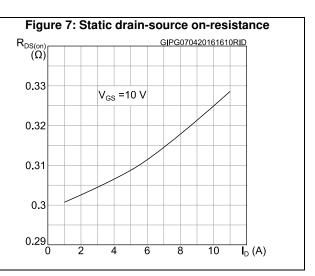


Figure 8: Capacitance variations GIPG070420161612CVR (pF) 10^{3} C_{ISS} 10² Coss 10¹ f = 1 MHz C_{RSS} 10⁰ 10-1 $\vec{V}_{DS}(V)$ 10-1 10⁰ 10¹ 10²

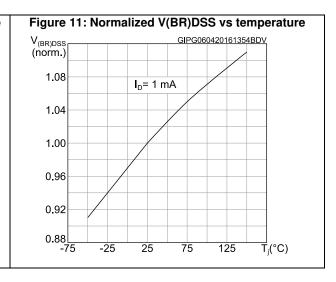
Figure 9: Normalized gate threshold voltage vs temperature V _{GS(th)} (norm.) GIPG060420161230VTH 1.1 I_D= 250 μA 1.0 0.9 8.0 0.7 0.6 -75 -25 25 75 125 T_i(°C)

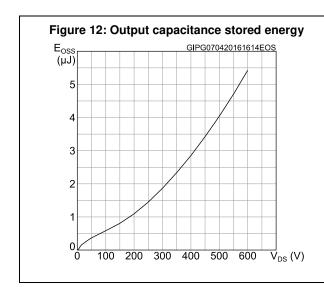
Figure 10: Normalized on-resistance vs temperature

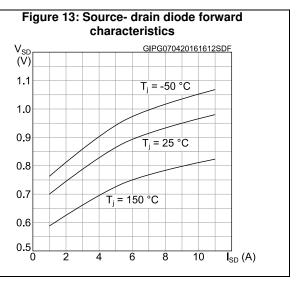
R_{DS(on)} GIPG070420161233RON
(norm.)

2.2 V GS= 10 V

1.8


1.4


1.0


0.6

0.2

-75 -25 25 75 125 T_j(°C)

Test circuits STD13N60DM2

3 Test circuits

Figure 14: Test circuit for resistive load

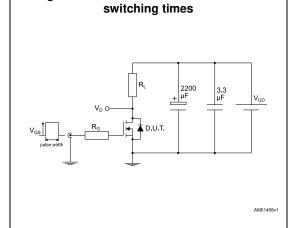


Figure 15: Test circuit for gate charge behavior

12 V 47 KΩ 11 KΩ

Vos 1 1 KΩ

Vos 1 1 KΩ

Vos 1 1 KΩ

AM01469v1

Figure 16: Test circuit for inductive load switching and diode recovery times

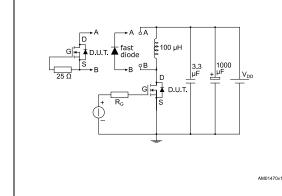


Figure 17: Unclamped inductive load test circuit

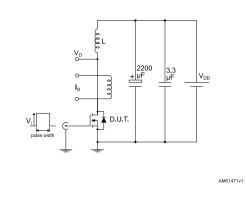


Figure 18: Unclamped inductive waveform

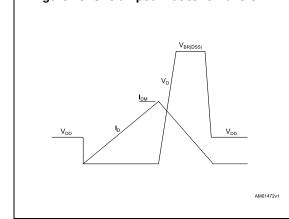
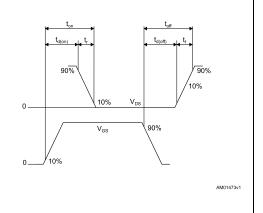



Figure 19: Switching time waveform

STD13N60DM2 Package information

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 DPAK (TO-252) type A2 package information

Figure 20: DPAK (TO-252) type A2 package outline

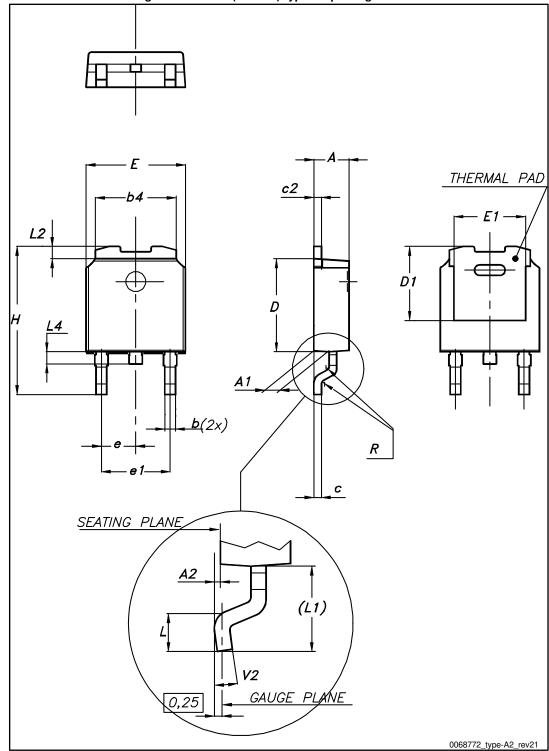


Table 10: DPAK (TO-252) type A2 mechanical data

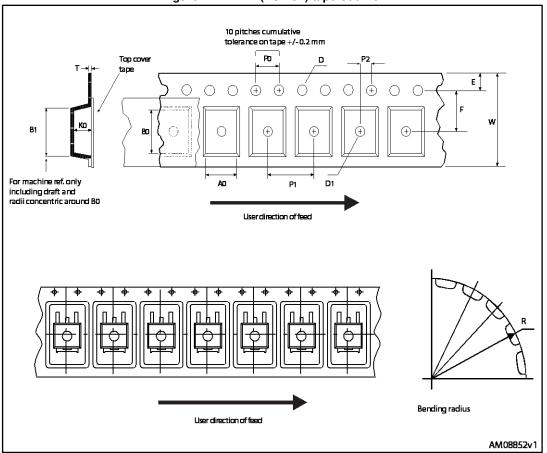

Dim	,	mm	
Dim.	Min.	Тур.	Max.
Α	2.20		2.40
A1	0.90		1.10
A2	0.03		0.23
b	0.64		0.90
b4	5.20		5.40
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
D1	4.95	5.10	5.25
Е	6.40		6.60
E1	5.10	5.20	5.30
е	2.16	2.28	2.40
e1	4.40		4.60
Н	9.35		10.10
L	1.00		1.50
L1	2.60	2.80	3.00
L2	0.65	0.80	0.95
L4	0.60		1.00
R		0.20	
V2	0°		8°

Figure 21: DPAK (TO-252) type A2 recommended footprint (dimensions are in mm)

STD13N60DM2 Package information

4.2 DPAK (TO-252) packing information

Figure 22: DPAK (TO-252) tape outline

A 40mm min. access hole at slot location

Tape slot in core for tape start 2.5mm min.width

Figure 23: DPAK (TO-252) reel outline

Table 11: DPAK (TO-252) tape and reel mechanical data

AM06038v1

	Таре		Reel		
Dim.	mm		Dim.	mm	
	Min.	Max.	DIIII.	Min.	Max.
A0	6.8	7	Α		330
В0	10.4	10.6	В	1.5	
B1		12.1	С	12.8	13.2
D	1.5	1.6	D	20.2	
D1	1.5		G	16.4	18.4
E	1.65	1.85	N	50	
F	7.4	7.6	Т		22.4
K0	2.55	2.75			
P0	3.9	4.1	Base qty. 2500		2500
P1	7.9	8.1	Bulk qty. 2500		2500
P2	1.9	2.1			
R	40				
Т	0.25	0.35			
W	15.7	16.3			

STD13N60DM2 Revision history

5 Revision history

Table 12: Document revision history

Date	Revision	Changes	
11-Apr-2016	1	First release.	
07-Dec-2016	2	Document status promoted from preliminary to production data.	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

