imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

STD28P3LLH6AG

Automotive-grade P-channel -30 V, 0.027 Ω typ., -12 A STripFET™ H6 Power MOSFET in a DPAK package

Datasheet - production data

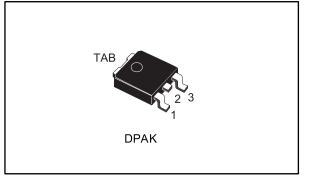
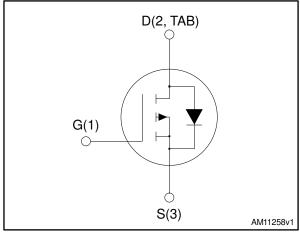



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	ID	Ρτοτ
STD28P3LLH6AG	-30V	0.030Ω	-12A	33W

- Designed for automotive applications and AEC-Q101 qualified
- Very low on-resistance
- Very low gate charge
- High avalanche ruggedness
- Low gate drive power loss
- Logic level

Applications

• Switching applications

Description

This device is a P-channel Power MOSFET developed using the STripFETTM H6 technology with a new trench gate structure. The resulting Power MOSFET exhibits very low $R_{DS(on)}$ in all packages.

Table 1: Device summary

Order code	Marking	Package	Packing
STD28P3LLH6AG	28P3LLH6	DPAK	Tape and reel

1/15

This is information on a product in full production.

Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	DPAK (TO-252) type A package information	9
	4.2	DPAK (TO-252) packing information	
5	Revisio	n history	14

57

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	-30	V
V _{GS}	Gate-source voltage	±18	V
I _D ⁽¹⁾	Drain current (continuous) at $T_{case} = 25 \text{ °C}$		٨
ID, ,	Drain current (continuous) at T _{case} = 100 °C	-12	A
I _{DM} ⁽²⁾	Drain current (pulsed)	-48	А
Ρτοτ	Total dissipation at T _{case} = 25 °C	33	W
Eas ⁽³⁾	Single pulse avalanche energy	210	mJ
T _{stg}	Storage temperature	–55 to 150	°C
Tj	Maximum operating junction temperature	150	°C

Notes:

⁽¹⁾Limited by wire bonding

⁽²⁾ Pulse width is limited by safe operating area.

 $^{(3)}$ starting T_j = 25 °C, I_{AS} =-6 A, V_{DD} = -25 V, V_{gs} = -10 V .

Table 3: Thermal data

Symbol	Parameter	Value	Unit	
R _{thj-case}	Thermal resistance junction-case	3.75	0 0 AM	
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	50	°C/W	

Notes:

 $^{(1)}$ When mounted on a 1-inch² FR-4, 2 Oz copper board

2 Electrical characteristics

 $(T_{case} = 25 \text{ °C unless otherwise specified})$

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V_{GS} = 0 V, I _D = -250 μ A	-30			V
	Zara gata valtaga drain	V_{GS} = 0 V, V_{DS} = -30 V			-1	
I _{DSS}	Zero gate voltage drain current	$\label{eq:VGS} \begin{array}{l} V_{GS} = 0 \ V, \ V_{DS} = -30 \ V, \\ T_{case} = 125 \ ^{\circ}\text{C} \end{array}$			-10	μA
I _{GSS}	Gate-body leakage current	$V_{\text{DS}} = 0 \text{ V}, V_{\text{GS}} = \pm 18 \text{ V}$			±100	nA
$V_{GS(th)}$	Gate threshold voltage	$V_{DS}=V_{GS},I_{D}=-250\;\mu A$	-1		-2.5	V
Static drain-source on-		$V_{GS} = -10 V, I_D = -6 A$		0.027	0.03	Ω
R _{DS(on)}	resistance	$V_{GS}=-4.5~V,~I_{D}=-6~A$		0.038	0.05	Ω

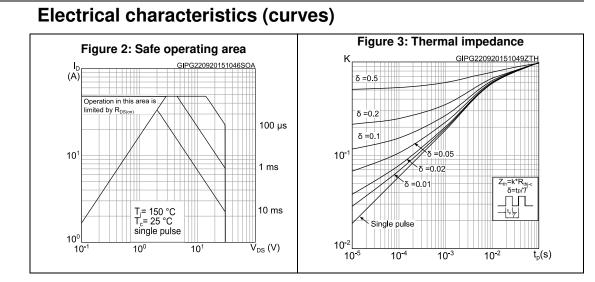
Table 5: Dynamic						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	1480	-	
Coss	Output capacitance	V _{DS} = -25 V, f = 1 MHz, V _{GS} = 0 V	-	170	-	pF
C _{rss}	Reverse transfer capacitance			125	-	
Qg	Total gate charge	$V_{DD} = -15 \text{ V}, I_D = -12 \text{ A}, V_{GS} = -10 \text{ V}$ (see Figure 14: "Gate charge test circuit")		29	-	
Q _{gs}	Gate-source charge			4.7	-	nC
Q _{gd}	Gate-drain charge		-	5.6	-	

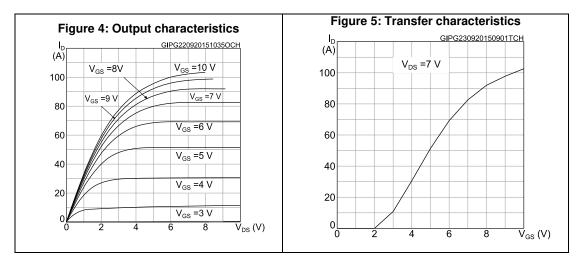
Table 6: Switching on/off (inductive load)

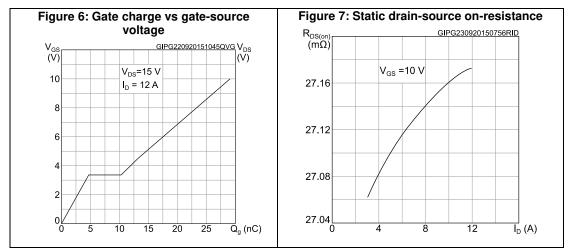
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time		-	10	-	
tr	Rise time	$V_{DD} = -15 \text{ V}, \text{ I}_D = -6 \text{ A} \text{ R}_G = 4.7 \Omega,$	-	7.9	-	
$t_{d(off)}$	Turn-off delay time	$V_{GS} = -10 V$ (see Figure 13: "Switching times test circuit for resistive load")	-	41.5	-	ns
t _f	Fall time		-	6.9	-	

Electrical characteristics

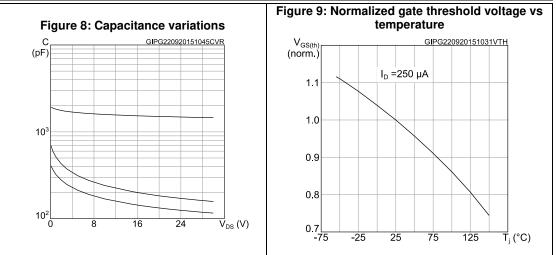
LINGAG							
	Table 7: Source-drain diode						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
I _{SD}	Source-drain current		-		-12	А	
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		-48	А	
V _{SD} ⁽²⁾	Forward on voltage	$V_{GS} = 0 V, I_{SD} = -12 A$	-		-1.3	V	
t _{rr}	Reverse recovery time		-	17.8		ns	
Q _{rr}	Reverse recovery charge	I_{SD} = -12 A, di/dt = 100 A/µs, V _{DD} = -24 V (see Figure 15: "Test circuit for inductive load switching and diode recovery times")	-	10.2		nC	
I _{RRM}	Reverse recovery current		-	-1.2		А	

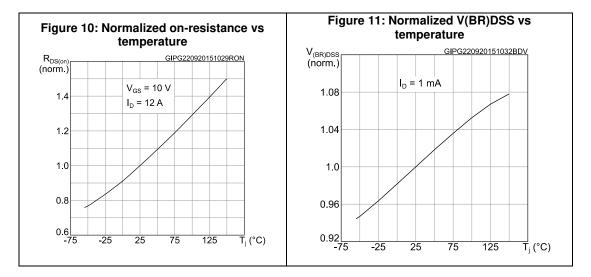

Notes:

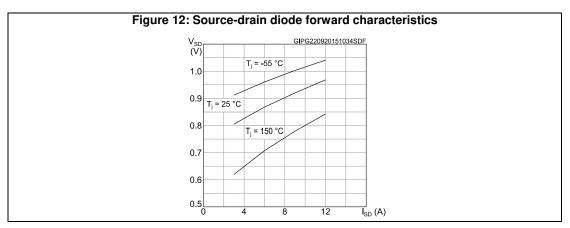

 $^{\left(1\right) }$ Pulse width is limited by safe operating area.


 $^{(2)}$ Pulse test: pulse duration = 300 $\mu s,$ duty cycle 1.5%.

2.2

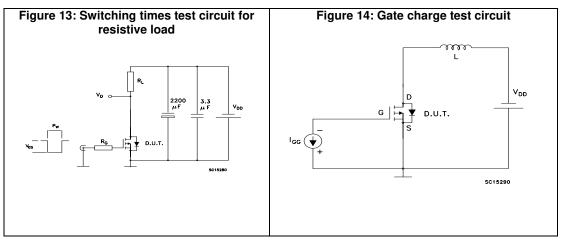


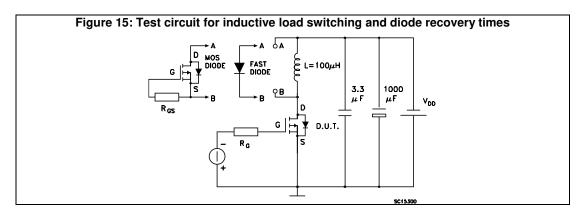

DocID028397 Rev 1



57

Electrical characteristics





For the P-channel Power MOSFET, current and voltage polarities are reversed.

DocID028397 Rev 1

3 Test circuits

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4.1 DPAK (TO-252) type A package information

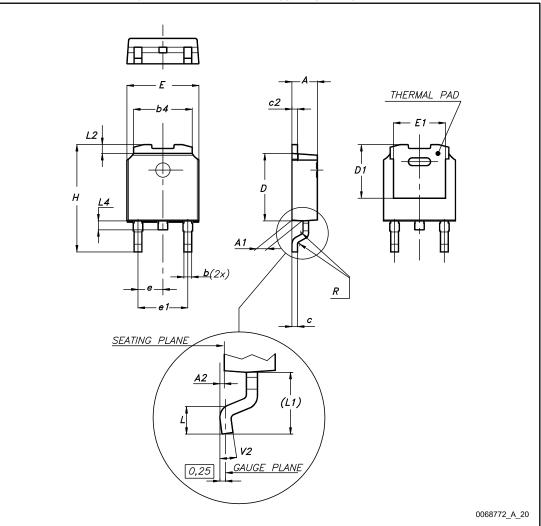
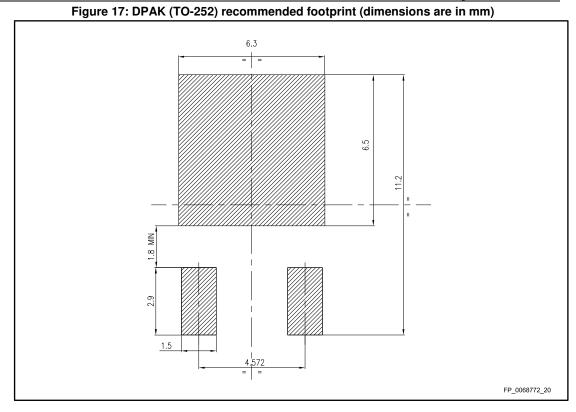
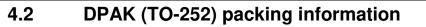


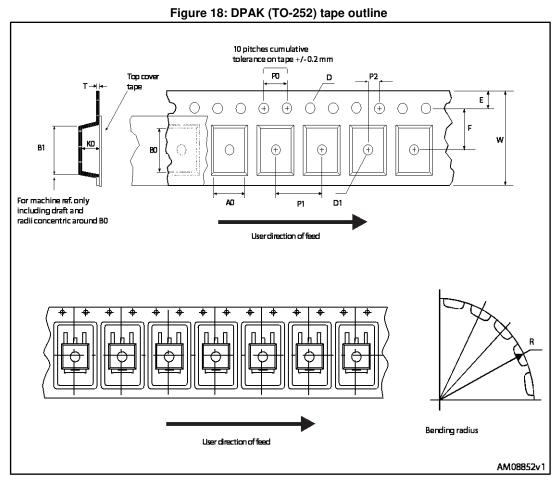
Figure 16: DPAK (TO-252) type A package outline

Package information


STD28P3LLH6AG

formation	ormation STD28P3LLH6AG Table 8: DPAK (TO-252) type A mechanical data					
	Table 8: DPAK (10-252		la			
Dim.	mm					
	Min.	Тур.	Max.			
A	2.20		2.40			
A1	0.90		1.10			
A2	0.03		0.23			
b	0.64		0.90			
b4	5.20		5.40			
С	0.45		0.60			
c2	0.48		0.60			
D	6.00		6.20			
D1	4.95	5.10	5.25			
E	6.40		6.60			
E1	4.60	4.70	4.80			
е	2.16	2.28	2.40			
e1	4.40		4.60			
Н	9.35		10.10			
L	1.00		1.50			
(L1)	2.60	2.80	3.00			
L2	0.65	0.80	0.95			
L4	0.60		1.00			
R		0.20				
V2	0°		8°			




STD28P3LLH6AG

Package information

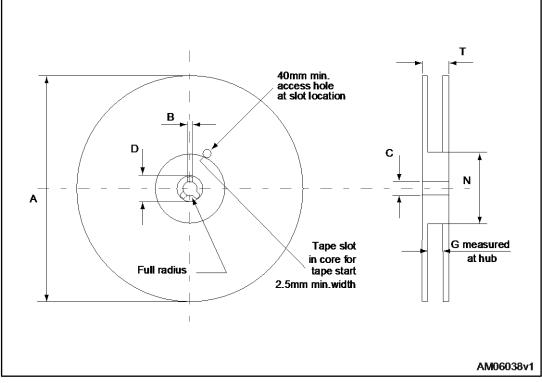


Figure 19: DPAK (TO-252) reel outline

Package information

Table 9: DPAK (TO-252) tape and reel mechanical data					
	Таре			Reel	
Dim	n	nm	Dim	n	nm
Dim.	Min.	Max.	Dim.	Min.	Max.
A0	6.8	7	А		330
B0	10.4	10.6	В	1.5	
B1		12.1	С	12.8	13.2
D	1.5	1.6	D	20.2	
D1	1.5		G	16.4	18.4
E	1.65	1.85	Ν	50	
F	7.4	7.6	Т		22.4
K0	2.55	2.75			
P0	3.9	4.1	Base	e qty.	2500
P1	7.9	8.1	Bulk	qty.	2500
P2	1.9	2.1			
R	40				
Т	0.25	0.35			
W	15.7	16.3			

Table 9: DPAK (TO-252) tape and reel mechanical data

Revision history 5

Table 10: Document revision history

Date	Revision	Changes
21-Sep-2015	1	First release.

STD28P3LLH6AG

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

