imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

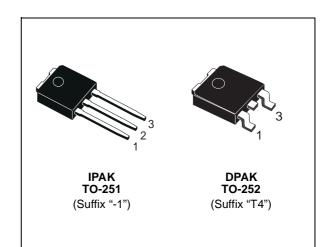
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

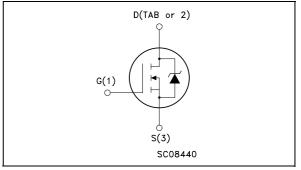
N-CHANNEL 60V - 0.020 Ω - 28A IPAK/DPAK STripFET™ II POWER MOSFET

ТҮРЕ	V _{DSS}	R _{DS(on)}	ID
STD30NF06	60 V	<0.028 Ω	28 A

- TYPICAL $R_{DS}(on) = 0.020\Omega$
- EXCEPTIONAL dv/dt CAPABILITY
- 100% AVALANCHE TESTED
- THROUGH-HOLE IPAK (TO-251) POWER PACKAGE IN TUBE (SUFFIX "-1")
- SURFACE-MOUNTING DPAK (TO-252) POWER PACKAGE IN TAPE & REEL (SUFFIX "T4")


DESCRIPTION

This Power MOSFET is the latest development of STMicroelectronis unique "Single Feature Size™" stripbased process. The resulting transistor shows extremely high packing density for low on-resistance, rugged avalanche characteristics and less critical alignment steps therefore a remarkable manufacturing reproducibility.


APPLICATIONS

- HIGH CURRENT, HIGH SWITCHING SPEED
- MOTOR CONTROL , AUDIO AMPLIFIERS
- SOLENOID AND RELAY DRIVERS
- DC-DC & DC-AC CONVERTERS

ABSOLUTE MAXIMUM RATINGS

INTERNAL SCHEMATIC DIAGRAM

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage ($V_{GS} = 0$)	60	V
V _{DGR}	Drain-gate Voltage (R_{GS} = 20 k Ω)	60	V
V _{GS}	Gate- source Voltage	± 20	V
ID	Drain Current (continuous) at $T_C = 25^{\circ}C$	28	A
I _D Drain Current (continuous) at T _C = 100°C		20	A
I _{DM} (•)	Drain Current (pulsed)	112	A W
P _{tot}	Total Dissipation at $T_C = 25^{\circ}C$	70	
	Derating Factor	0.47	W/°C
dv/dt (1)	Peak Diode Recovery voltage slope	10	V/ns
E _{AS} (2)	Single Pulse Avalanche Energy	230	mJ
T _{stg} Storage Temperature		55 to 175	°C
Tj	Max. Operating Junction Temperature	-55 to 175	
Pulse width	limited by safe operating area.	(1) $I_{SD} \leq 28A$, di/dt $\leq 300A/\mu s$, $V_{DD} \leq V_{(BR)DSS}$,	$T_j \leq T_{JMAX}$

(2) Starting $T_j = 25 \text{ °C}$, $I_D = 15A$, $V_{DD} = 30V$

March 2002

THERMAL DATA

Rthj-case Rthj-amb Tl	Thermal Resistance Junction-case Thermal Resistance Junction-ambient Maximum Lead Temperature For Soldering Purpose	Max Max	2.14 100 275	°C/W °C/W °C
1	Maximum Leau Temperature For Soluening Fulpose		215	C

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0$	60			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating T _C = 100°C			1 10	μΑ μΑ
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 20 V			±100	nA

ON (*)

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	I _D = 250 μA	2		4	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10 V	I _D = 15 A		0.020	0.028	Ω

DYNAMIC

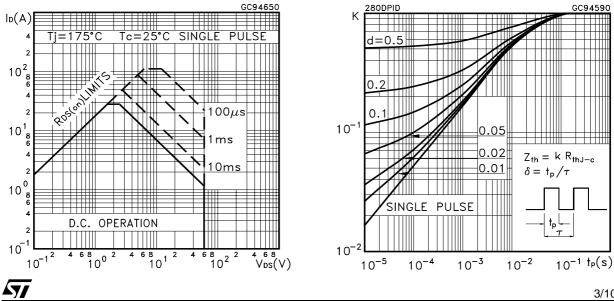
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (*)	Forward Transconductance	V _{DS} = 15 V I _D = 15 A		40		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 25V, f = 1 MHz, V _{GS} = 0		1750 220 70		pF pF pF

ELECTRICAL CHARACTERISTICS (continued)

SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Delay Time Rise Time			20 100		ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V _{DD} = 48V I _D = 38A V _{GS} = 10V		43 9.5 15	58	nC nC nC

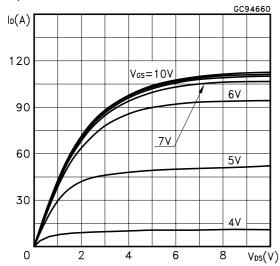
SWITCHING OFF

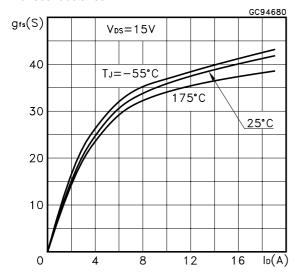

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(off)} t _f	Turn-off Delay Time Fall Time			50 20		ns ns

SOURCE DRAIN DIODE

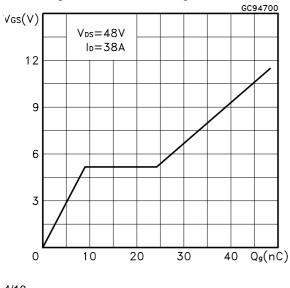
Symbol	Parameter	Test Co	Test Conditions		Тур.	Max.	Unit
I _{SD} I _{SDM} (●)	Source-drain Current Source-drain Current (pulsed)					28 112	A A
V _{SD} (*)	Forward On Voltage	I _{SD} = 28 A	$V_{GS} = 0$			1.5	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$I_{SD} = 28 \text{ A}$ $V_{DD} = 30 \text{ V}$ (see test circu	di/dt = 100A/µs T _j = 150°C it, Figure 5)		95 260 5.5		ns μC Α

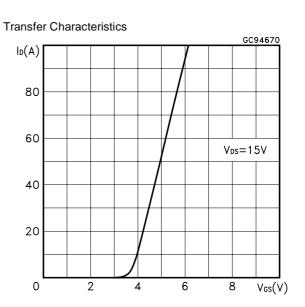
(*)Pulsed: Pulse duration = 300 µs, duty cycle 1.5 %.
(•)Pulse width limited by safe operating area.

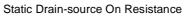

Safe Operating Area

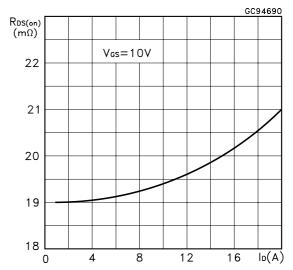

Thermal Impedance

3/10

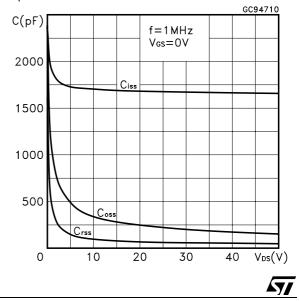

Output Characteristics

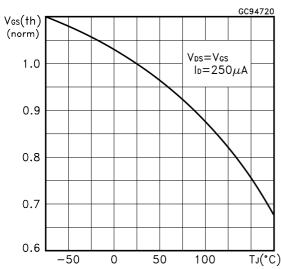


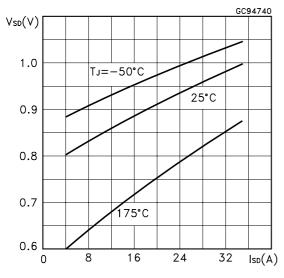

Transconductance

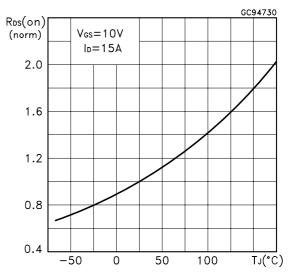


Gate Charge vs Gate-source Voltage

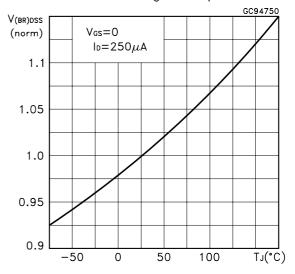




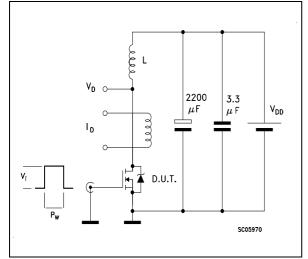

Capacitance Variations



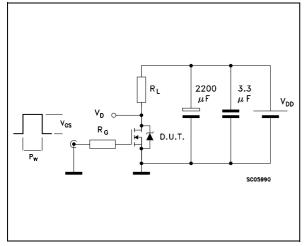
Normalized Gate Threshold Voltage vs Temperature


Source-drain Diode Forward Characteristics

Normalized on Resistance vs Temperature



Normalized Breakdown Voltage vs Temperature




57

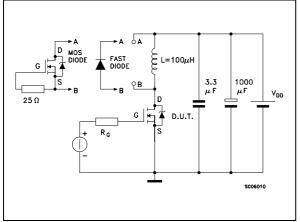
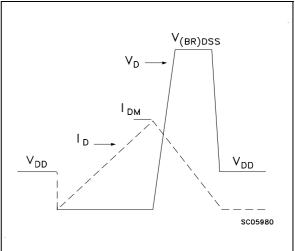
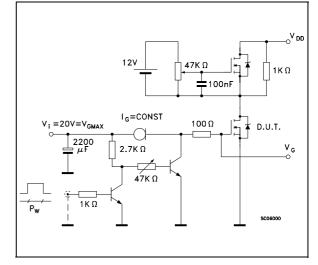
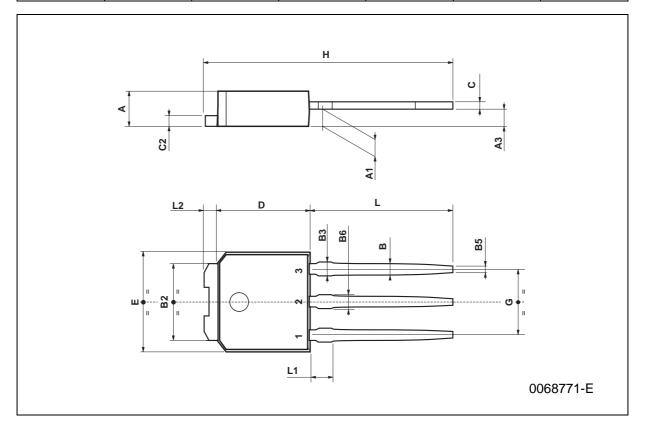

Fig. 1: Unclamped Inductive Load Test Circuit

Fig. 3: Switching Times Test Circuits For Resistive Load

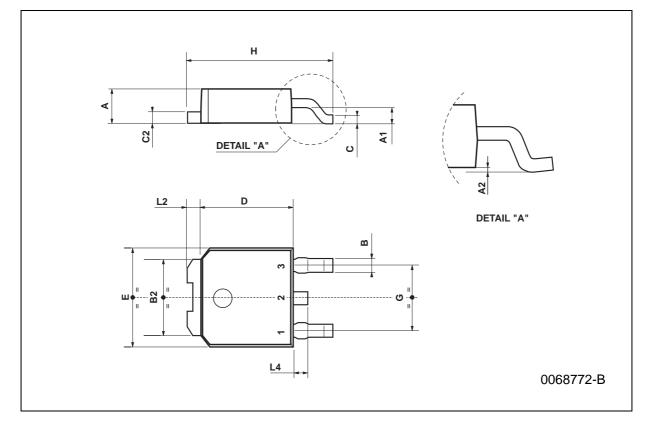
Fig. 2: Unclamped Inductive Waveform

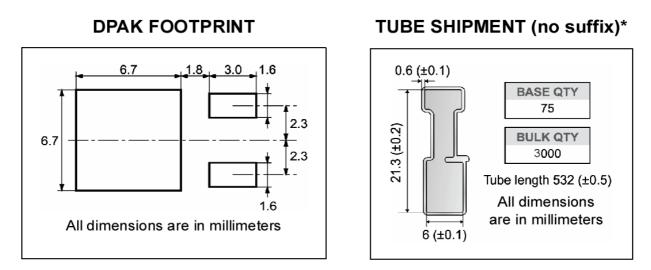




Fig. 4: Gate Charge test Circuit

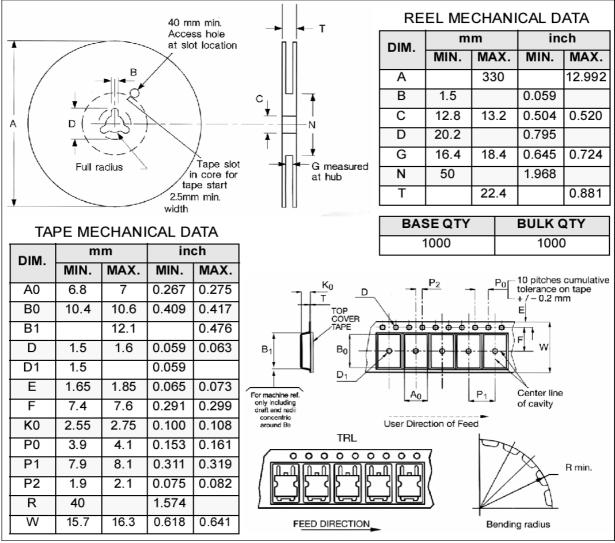
57

DIM.		mm			inch	
DINI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	2.2		2.4	0.086		0.094
A1	0.9		1.1	0.035		0.043
A3	0.7		1.3	0.027		0.051
В	0.64		0.9	0.025		0.031
B2	5.2		5.4	0.204		0.212
B3			0.85			0.033
B5		0.3			0.012	
B6			0.95			0.037
С	0.45		0.6	0.017		0.023
C2	0.48		0.6	0.019		0.023
D	6		6.2	0.236		0.244
Е	6.4		6.6	0.252		0.260
G	4.4		4.6	0.173		0.181
Н	15.9		16.3	0.626		0.641
L	9		9.4	0.354		0.370
L1	0.8		1.2	0.031		0.047
L2		0.8	1		0.031	0.039


TO-251 (IPAK) MECHANICAL DATA


7/10

DIM.		mm		inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	2.2		2.4	0.086		0.094	
A1	0.9		1.1	0.035		0.043	
A2	0.03		0.23	0.001		0.009	
В	0.64		0.9	0.025		0.035	
B2	5.2		5.4	0.204		0.212	
С	0.45		0.6	0.017		0.023	
C2	0.48		0.6	0.019		0.023	
D	6		6.2	0.236		0.244	
E	6.4		6.6	0.252		0.260	
G	4.4		4.6	0.173		0.181	
Н	9.35		10.1	0.368		0.397	
L2		0.8			0.031		
L4	0.6		1	0.023		0.039	



57

TAPE AND REEL SHIPMENT (suffix "T4")*

*on sales type

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

All other names are the property of their respective owners.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

10/10

