

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

STD3NK60ZD

N-channel 600 V, 3.3 Ω, 2.4 A, DPAK SuperFREDMesh™ Power MOSFET

Features

Туре	V _{DSS}	R _{DS(on)} max	I _D
STD3NK60ZD	600 V	< 3.6Ω	2.4 A

- 100% avalanche tested
- Extremely high dv/dt capability
- Gate charge minimized
- Very low intrinsic capacitances
- Fast internal recovery diode

Application

■ Switching applications

Description

The SuperFREDMesh™ series associates all advantages of reduced on-resistance, Zener gate protection and very high dv/dt capability with a fast body-drain recovery diode. Such series complements the "FDmesh™" advanced technology.

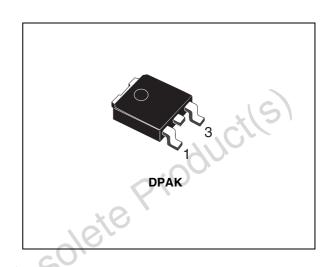


Figure 1. Internal schematic diagram

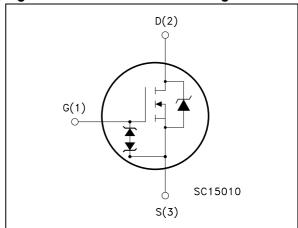


Table 1. Device summary

Order code	Marking	Package	Packaging
STD3NK60ZD	STD3NK60ZD 3NK60ZD		Tape and reel

Contents STD3NK60ZD

Contents

1	Electrical ratings 3
2	Electrical characteristics
3	Test circuits9
4	Package mechanical data
5	Package mechanical data
6	Revision history
Obs	Revision history

STD3NK60ZD Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage (V _{GS} = 0)	600	V
V _{GS}	Gate- source voltage	± 30	V
I _D	Drain current (continuous) at T _C = 25 °C	2.4	Α
I _D	Drain current (continuous) at T _C = 100 °C	1.51	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	9.6	Α
P _{TOT}	Total dissipation at T _C = 2 5°C	45	W
	Derating factor	0.36	W/°C
dv/dt (2)	Peak diode recovery voltage slope	15	V/ns
T _j T _{stg}	Operating junction temperature Storage temperature	-55 to 150	°C

^{1.} Pulse width limited by safe operating area

Table 3. Thermal data

Symbol	Parameter	Value	Unit
Rthj-amb	Thermal resistance junction-ambient max	100	°C/W
Rthj-pcb	Thermal resistance junction-pcb max	50	°C/W
Tı	Maximum lead temperature for soldering purpose	300	°C

Table 4. Avalanche characteristics

Symbol	Parameter	Max value	Unit
I _{AR}	Avalanche current, repetitive or not-repetitive (pulse width limited by T_j max)	2.4	А
E _{AS}	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	150	mJ

^{2.} $I_{SD} \leq$ 2.4 A, di/dt \leq 600 A/ μ s, V_{DD} = 80% $V_{(BR)DSS}$

Electrical characteristics STD3NK60ZD

2 **Electrical characteristics**

(Tcase =25 °C unless otherwise specified)

Table 5. On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_D = 1 \text{ mA}, V_{GS} = 0$	600			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V_{DS} = Max rating V_{DS} = Max rating, T_{C} =125 °C			1 50	μ Α μ Α
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 20 V		. (± 10	μА
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 50 \mu A$	3	3.75	4.5	V
R _{DS(on}	Static drain-source on resistance	V _{GS} = 10 V, I _D = 1.2 A	0/0	3.3	3.6	Ω

Table 6. **Dynamic**

	Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
	C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	$V_{DS} = 25 \text{ V, f} = 1 \text{ MHz, } V_{GS} = 0$		311 43 8		pF pF pF
	C _{oss eq} ⁽¹⁾	Equivalent output capacitance	$V_{GS} = 0$, $V_{DS} = 0$ to 400 V		27		pF
	Q_g	Total gate charge	$V_{DD} = 400 \text{ V}, I_D = 2.4 \text{ A},$		11.8		nC
	Q_{gs}	Gate-source charge	V _{GS} = 10 V		2.6		nC
	Q_{gd}	Gate-drain charge	(see Figure 16)		6.4		nC
Obsole	1. C _{oss eq} . is increases	defined as a constant equivipolation of the solution of the so	valent capacitance giving the same ch	narging tir	ne as C _{os}	_s when V	_D S

Table 7. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max	Unit
$t_{d(on)}$ t_{r} $t_{d(off)}$ t_{f}	Turn-on delay time Rise time Turn-off-delay time Fall time	$V_{DD} = 480 \text{ V}, I_{D} = 3 \text{ A},$ $R_{G} = 4.7 \Omega, V_{GS} = 10 \text{ V}$ (see <i>Figure 15</i>)		9 14 19 14		ns ns ns ns

Table 8. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current Source-drain current (pulsed)				2.4 9.6	A A
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 10 A, V _{GS} = 0	1		1.6	V
t _{rr}	Reverse recovery time	I _{SD} = 2.4 A, di/dt = 100 A/μs		98		ns
Q_{rr}	Reverse recovery charge	V _{DD} = 60 V		170		nC
I _{RRM}	Reverse recovery current	(see Figure 20)		3.4		Α
t _{rr}	Reverse recovery time	$I_{SD} = 2.4 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$		105		ns
Q_{rr}	Reverse recovery charge	V _{DD} = 60 V, T _j = 150 °C		184		nC
I _{RRM}	Reverse recovery current	(see Figure 20)		3.5		Α

^{1.} Pulse width limited by safe operating area

^{2.} Pulsed: Pulse duration = 300 μs, duty cycle 1.5%

Electrical characteristics STD3NK60ZD

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area

Figure 3. Thermal impedance

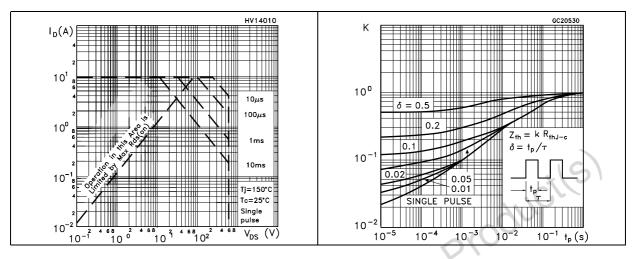


Figure 4. Output characteristics

Figure 5. Transfer characteristics

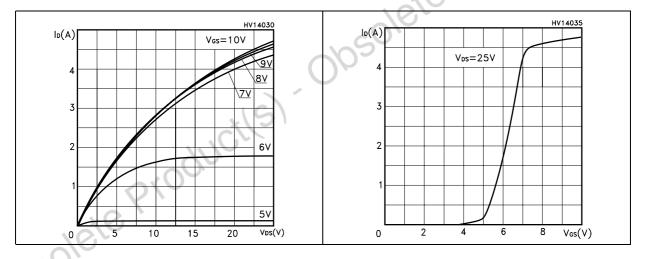


Figure 6. Transconductance

Figure 7. Static drain-source on resistance

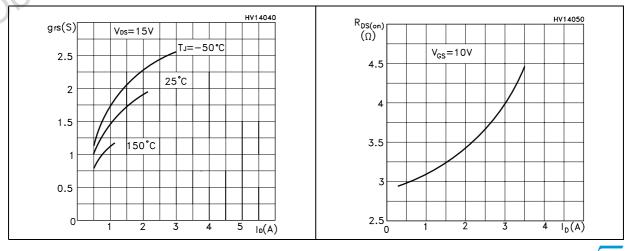


Figure 8. Gate charge vs gate-source voltage Figure 9. Capacitance variations

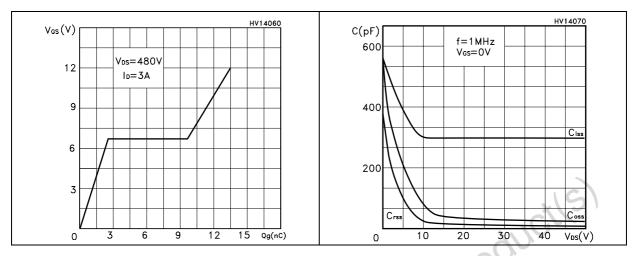
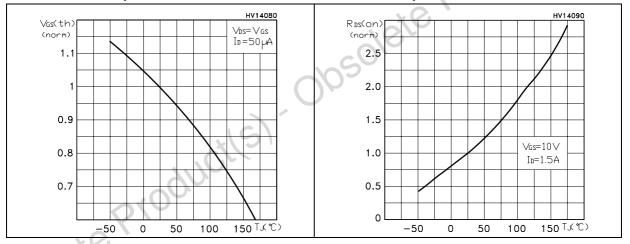
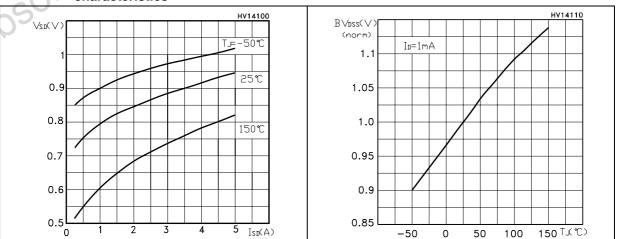


Figure 10. Normalized gate threshold voltage vs temperature

Figure 11. Normalized on resistance vs temperature

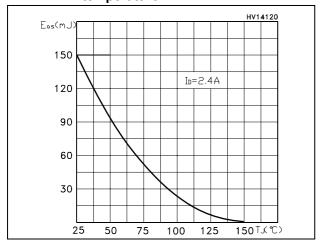

Figure 12. Source-drain diode forward characteristics

Figure 13. Normalized \mathbf{B}_{VDSS} vs temperature

Electrical characteristics STD3NK60ZD

Figure 14. Maximum avalanche energy vs temperature

Obsolete Producits)

STD3NK60ZD Test circuits

3 Test circuits

Figure 15. Switching times test circuit for resistive load

Figure 16. Gate charge test circuit

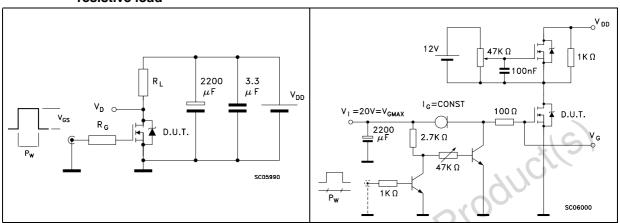


Figure 17. Test circuit for inductive load switching and diode recovery times

Figure 18. Unclamped Inductive load test circuit

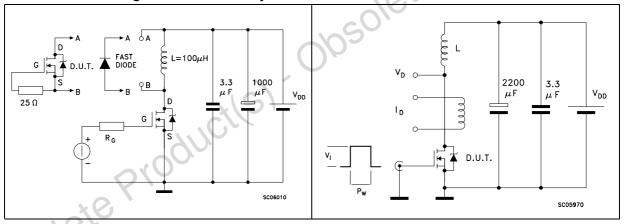
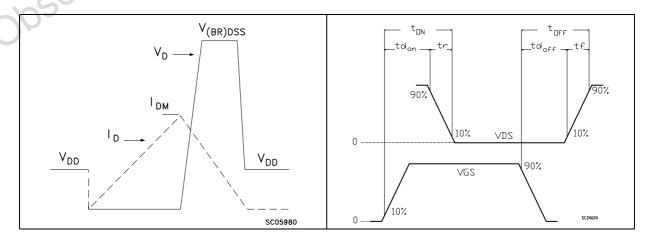
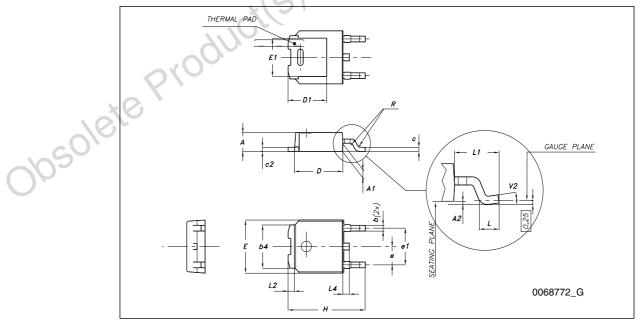



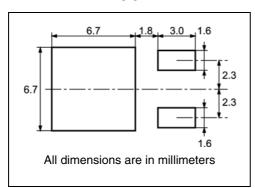
Figure 19. Unclamped inductive waveform

Figure 20. Switching time waveform

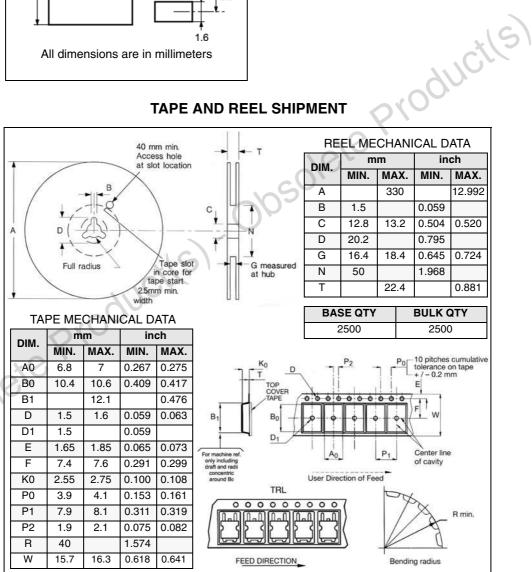

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

Obsolete Produci(s)


TO-252 (DPAK) mechanical data

DIM.	mm.			
DIIVI.	min.	typ	max.	
Α	2.20		2.40	
A1	0.90		1.10	
A2	0.03		0.23	
b	0.64		0.90	
b4	5.20		5.40	
С	0.45		0.60	
c2	0.48		0.60	
D	6.00		6.20	
D1		5.10	AU	
E	6.40		6.60	
E1		4.70		
е		2.28		
e1	4.40	20,	4.60	
Н	9.35	10.	10.10	
L	1			
L1		2.80		
L2		0.80		
L4	0.60		1	
R		0.20		
V2	0 °		8 °	



Package mechanical data 5

DPAK FOOTPRINT

TAPE AND REEL SHIPMENT

STD3NK60ZD Revision history

6 Revision history

Table 9. Document revision history

Date	Revision	Changes
24-Jul-2008	1	First release
11-Sep-2008	2	Document status changed from preliminay data to datasheet

Obsolete Product(s) - Obsolete Product(s)

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com