

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Automotive-grade N-channel 40 V, 5.5 mΩ typ., 80 A STripFET™ VI DeepGATE™ Power MOSFET in a DPAK package

Datasheet - production data

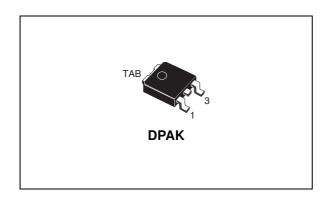
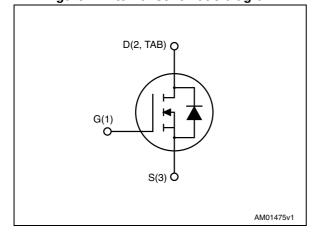



Figure 1. Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max	I _D
STD80N4F6	40 V	$6~\text{m}\Omega$	80 A

- Designed for automotive applications and AEC-Q101 qualified
- · Low gate charge
- Very low on-resistance
- · High avalanche ruggedness

Applications

· Switching applications

Description

This device is an N-channel Power MOSFET developed using the 6^{th} generation of STripFETTM DeepGATETM technology, with a new gate structure. The resulting Power MOSFET exhibits the lowest $R_{DS(on)}$ in all packages.

Table 1. Device summary

Order code	Marking	Package	Packaging
STD80N4F6	80N4F6	DPAK	Tape and reel

Contents STD80N4F6

Contents

1	Electrical ratings	3
2	Electrical characteristics	
3	Test circuits	8
4	Package mechanical data	9
5	Packaging mechanical data1	13
6	Revision history 1	15

STD80N4F6 Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	40	V
V _{GS}	Gate-source voltage	± 20	٧
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	80	Α
I _D ⁽¹⁾	Drain current (continuous) at T _C = 100 °C	56	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	320	Α
P _{TOT}	Total dissipation at T _C = 25 °C	70	W
I _{AV}	Avalanche current, repetitive or not-repetitive (pulse width limited by T _{Jmax}) 40		Α
E _{AS}	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AV}$, $V_{DD} = 25$ V)	149	
	Derating factor 0.47		W/°C
T _{stg}	Storage temperature -55 to 175		°C
T _j	Max. operating junction temperature	-55 to 175	°C

^{1.} Current limited by package.

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	2.14	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb max	50	°C/W

^{1.} When mounted on FR-4 board of inch 2 , 2 oz Cu

^{2.} Pulse width limited by safe operating area

Electrical characteristics STD80N4F6

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 4. On /off states

Symbol	Parameter	Parameter Test conditions		Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0$	40			V
1	Zero gate voltage	V _{DS} = 40 V			1	μΑ
I _{DSS}	drain current (V _{GS} = 0)	V _{DS} = 40 V, T _C =125 °C			100	μΑ
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 20 V			± 100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$	2		4	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 40 A		5.5	6	mΩ

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C_{iss}	Input capacitance		-	2150	-	pF
C _{oss}	Output capacitance	V _{DS} = 25 V, f = 1 MHz,	-	335	-	pF
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0$	-	160	-	pF
Q_g	Total gate charge	V _{DD} = 20 V, I _D = 80 A,	-	36	-	nC
Q_{gs}	Gate-source charge	V _{GS} = 10 V	-	11	-	nC
Q _{gd}	Gate-drain charge	(see Figure 14)	-	9	-	nC

Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max	Unit
t _{d(on)}	Turn-on delay time		-	10.5	-	ns
t _r	Rise time	$V_{DD} = 20 \text{ V}, I_D = 40 \text{ A},$ $R_G = 4.7 \Omega, V_{GS} = 10 \text{ V}$	-	7.6	-	ns
t _d (off)	Turn-off delay time	(see <i>Figure 15</i>)	-	46.1	-	ns
t _f	Fall time	,	-	11.9	-	ns

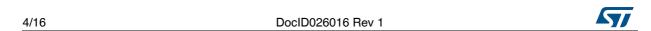


Table 7. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		80	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		320	Α
V _{SD} (2)	Forward on voltage	I _{SD} = 40 A, V _{GS} = 0	-		1.3	٧
t _{rr}	Reverse recovery time		-	41.1		ns
Q _{rr}	Reverse recovery charge	$I_{SD} = 80 \text{ A, di/dt} = 100 \text{ A/}\mu\text{s}$ $V_{DD} = 32 \text{ V (see Figure 17)}$	-	43.6		nC
I _{RRM}	Reverse recovery current	TOD = SE T (SSS Tigals TT)	-	2.1		Α

^{1.} Pulse width limited by safe operating area.

^{2.} Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

Electrical characteristics STD80N4F6

10ms

VDS(V)

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area

ID (A)

100

10

0.1

AM15599v1

AM15599v1

100µs

1ms

Tj=175°C

Tc=25°C Single pulse

10

Figure 3. Thermal impedance

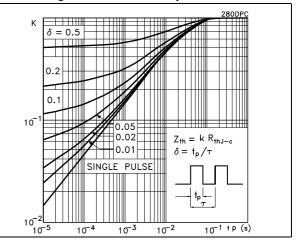


Figure 4. Output characteristics

Figure 5. Transfer characteristics

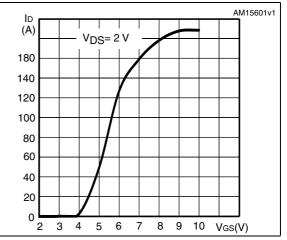
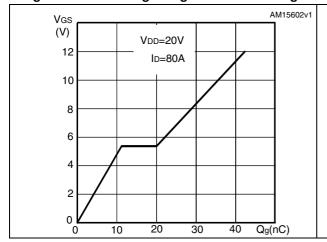
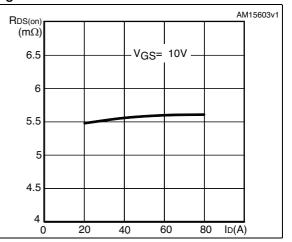
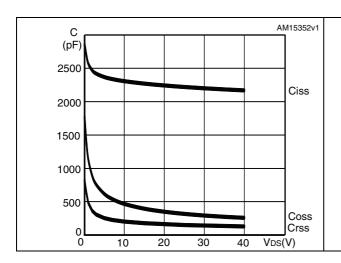




Figure 6. Gate charge vs gate-source voltage

Figure 7. Static drain-source on-resistance



577

6/16 DocID026016 Rev 1

Figure 8. Capacitance variations

Figure 9. Drain-source diode forward characteristics

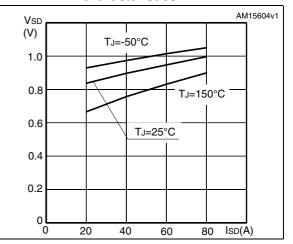
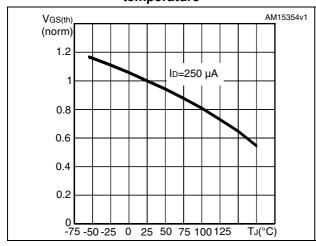



Figure 10. Normalized gate threshold voltage vs temperature

Figure 11. Normalized on-resistance vs temperature

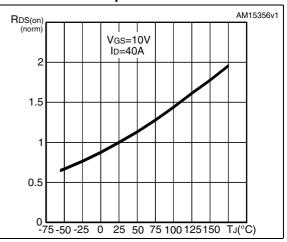
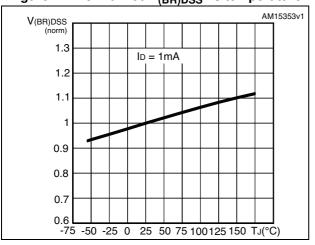



Figure 12. Normalized v_{(BR)DSS} vs temperature

Test circuits STD80N4F6

3 Test circuits

Figure 13. Switching times test circuit for resistive load

Figure 14. Gate charge test circuit

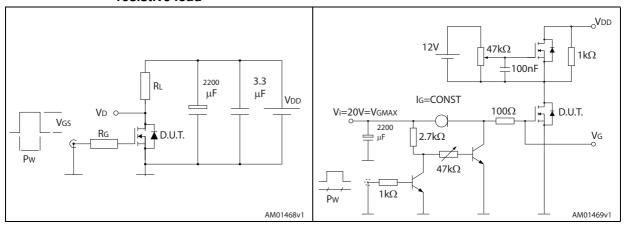


Figure 15. Test circuit for inductive load switching and diode recovery times

Figure 16. Unclamped inductive load test circuit

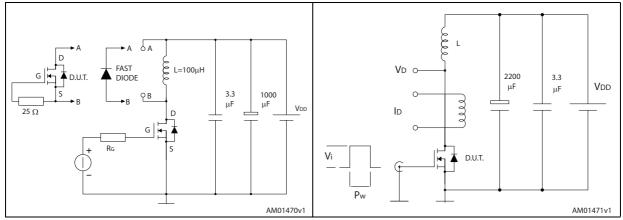
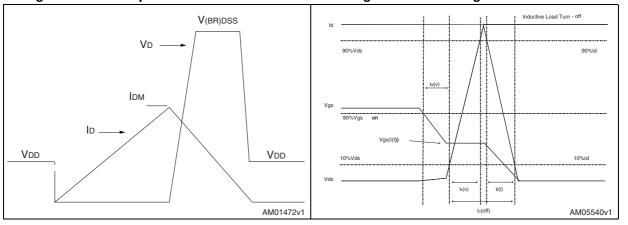



Figure 17. Unclamped inductive waveform

Figure 18. Switching time waveform

577

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

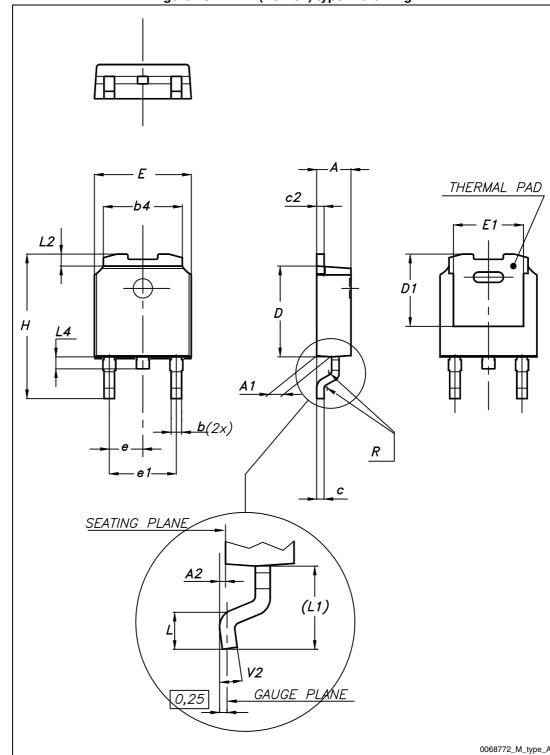


Figure 19. DPAK (TO-252) type A drawing

577

Table 8. DPAK (TO-252) type A mechanical data

Dime		mm	
Dim.	Min.	Тур.	Max.
Α	2.20		2.40
A1	0.90		1.10
A2	0.03		0.23
b	0.64		0.90
b4	5.20		5.40
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
D1		5.10	
E	6.40		6.60
E1		4.70	
е		2.28	
e1	4.40		4.60
Н	9.35		10.10
L	1.00		1.50
(L1)		2.80	
L2		0.80	
L4	0.60		1.00
R		0.20	
V2	0°		8°

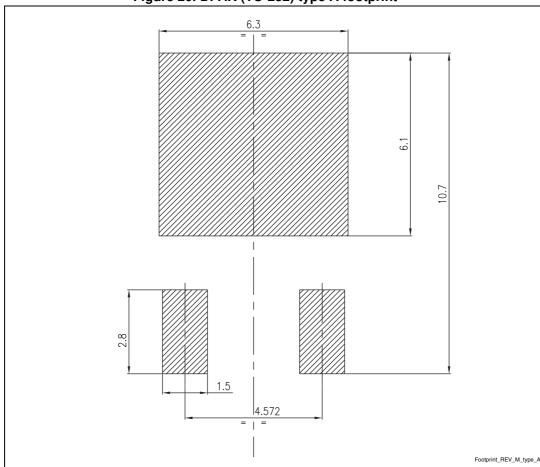


Figure 20. DPAK (TO-252) type A footprint ^(a)

a. All dimensions are in millimeters

5 Packaging mechanical data

Top cover tolerance on tape +/- 0.2 mm
tolerance on tape +/- 0.2 mm
Top cover tolerance on tape

Figure 21. Tape for DPAK (TO-252)

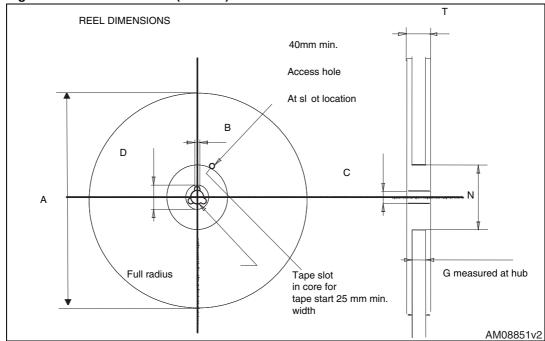


Figure 22. Reel for DPAK (TO-252)

Table 9. DPAK (TO-252) tape and reel mechanical data

	Таре			Reel		
Dim.	m	ım	Dim.	mm		
Dilli.	Min.	Max.	T DIIII.	Min.	Max.	
A0	6.8	7	Α		330	
В0	10.4	10.6	В	1.5		
B1		12.1	С	12.8	13.2	
D	1.5	1.6	D	20.2		
D1	1.5		G	16.4	18.4	
Е	1.65	1.85	N	50		
F	7.4	7.6	Т		22.4	
K0	2.55	2.75				
P0	3.9	4.1		Base qty.	2500	
P1	7.9	8.1		Bulk qty.	2500	
P2	1.9	2.1				
R	40					
Т	0.25	0.35				
W	15.7	16.3				

STD80N4F6 Revision history

6 Revision history

Table 10. Document revision history

Date	Revision	Changes
03-Mar-2014	1	Initial release. The part number previously included in datasheet DocID023839

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

16/16 DocID026016 Rev 1

