

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

STD830CP40

Complementary transistor pair in a single package

Datasheet — production data

Features

- Low V_{CE(sat)}
- Simplified circuit design
- Reduced component count
- Low spread of dynamic parameters

Application

■ Compact fluorescent lamp (CFL) 220 V mains

Description

The STD830CP40 is a hybrid complementary pair of power bipolar transistors manufactured by using the high voltage multi-epitaxial planar technology for high switching speeds and medium voltage capability.

The STD830CP40 is housed in dual island DIP-8 package with separated terminals for higher assembly flexibility, specifically recommended to be used in a new solution for compact fluorescent lamp (CFL).

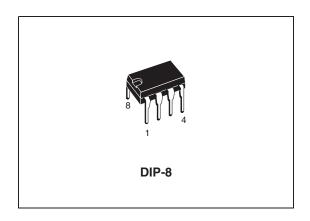


Figure 1. Internal schematic diagram

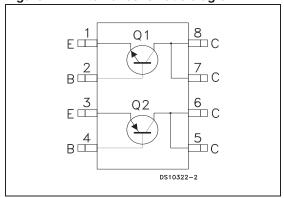


Table 1. Device summary

Order code	Marking	Package	Packing
STD830CP40	D830CP40	DIP-8	Tube

Electrical ratings STD830CP40

1 Electrical ratings

Table 2. Absolute maximum ratings

Cumhal	Devenuetor	Value		11	
Symbol	Parameter	NPN	PNP	- Unit	
V _{CBO}	Collector-base voltage (I _E = 0)		500	V	
V _{CEO}	Collector-emitter voltage (I _B = 0) 400		00	V	
V _{EBO}	Emitter-base voltage ($I_C = 0$, $I_B = 1.5$ A, $t_p < 10$ ms)	V _{(BR)EBO}		V	
I _C	Collector current		3		
I _{CM}	Collector peak current (t _P < 5 ms)	6		Α	
I _B	Base current	1.5		Α	
I _{BM}	Base peak current (t _P < 1 ms)	3		Α	
P _{TOT}	Total dissipation at T _{amb} = 25 °C single transistor 3		3	W	
P _{TOT}	Total dissipation at T _{case} = 25 °C single transistor		45		
T _{STG}	Storage temperature		-65 to 150		
TJ	Max. operating junction temperature		150		

Table 3. Thermal data

	Symbol	Parameter	Value	Unit
Ī	R _{thJA} (1)	Thermal resistance junction-ambient (single transistor)	42	°C/W
	R _{thJC} ⁽¹⁾	Thermal resistance junction-case (single transistor)	2.7	°C/W

^{1.} When mounted on 25mm square pad of 2 oz. copper, $t \le 10$ sec.

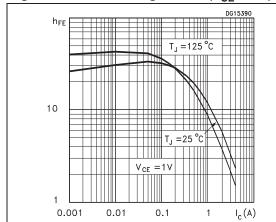
Note: For PNP types voltage and current values are negative

2 Electrical characteristics

 T_{case} = 25 °C unless otherwise specified.

Table 4. Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{CES}	Collector cut-off current (V _{BE} = 0)	For NPN: V _{CE} = 700 V V _{CE} = 700 V			0.1 0.5 0.1 0.5	mA mA mA
V _{(BR)EBO}	Emitter-base breakdown voltage (I _C = 0)	I _E = 10 mA For NPN: For PNP:	10 5		18 10	V V
V _{CEO(sus)} ⁽¹⁾	Collector-emitter sustaining voltage (I _B = 0)	I _C = 5 mA	400			V
V _{CE(sat)} ⁽¹⁾	Collector-emitter saturation voltage	$I_C = 0.7 \text{ A}$ $I_B = 0.1 \text{ A}$ $I_C = 1 \text{ A}$ $I_B = 0.2 \text{ A}$			0.5 0.5	V V
V _{BE(sat)} ⁽¹⁾	Base-emitter saturation voltage	$I_C = 0.5 \text{ A}$ $I_B = 0.1 \text{ A}$ $I_C = 1 \text{ A}$ $I_B = 0.2 \text{ A}$			1.1 1.2	V V
h _{FE} ⁽¹⁾	DC current gain	$\begin{split} I_{C} &= 10 \text{ mA} & V_{CE} &= 5 \text{ V} \\ I_{C} &= 0.7 \text{ A} & V_{CE} &= 5 \text{ V} \\ I_{C} &= 2 \text{ A} & V_{CE} &= 5 \text{ V} \end{split}$	18		34	
t _r t _s	Resistive load Rise time Storage time Fall time	$I_C = 0.7 \text{ A}$ $V_{CC} = 250 \text{ N}$ $I_{B1} = 0.14 \text{ A}$ $I_{B2} = -0.14 \text{ A}$ $t_p = 30 \mu\text{s}$		100 2.4 100		ns µs ns
t _s	Inductive load Storage time Fall time	$\begin{split} I_{C} &= 1 \text{ A} & I_{B1} = 0.2 \text{ A} \\ V_{BE(off)} &= -5 \text{ V} & R_{BB} = 0 \\ V_{clamp} &= 200 \text{ V} & L = 1 \text{ mHz} \end{split}$		450 100		ns ns


^{1.} Pulse test: pulse duration ≤300 µs, duty cycle ≤2 %.

Note: For PNP types voltage and current values are negative

Electrical characteristics STD830CP40

2.1 Electrical characteristics (curves)

Figure 2. DC current gain NPN ($V_{CE} = 5 \text{ V}$) Figure 3. DC current gain PNP ($V_{CE} = -5 \text{ V}$)

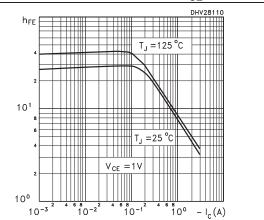


Figure 4. DC current gain NPN ($V_{CE} = 1 \text{ V}$) Figure 5.

10 T_J = 125 °C V_{CE} = 5V V_{CE} = 5V V_{CE} (A)

Figure 5. DC current gain PNP (V_{CE} = - 1 V)

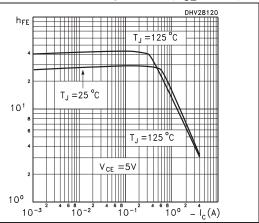
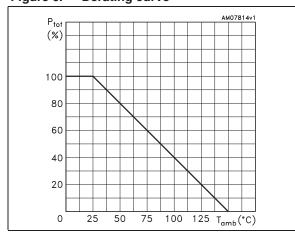



Figure 6. Derating curve

 $V_{CE (sat)} \ (V)$ -V_{CE (sat)} h_{FE} =5 10¹ $T_J = 125$ °C $T_J = 125$ 10° 0.1 $T_J = 25$ °C $T_J^{'}=125$ °C 10 0.01 10^{-2} 10-22 $10^{-\frac{2}{3}}$ 10⁻¹ 0.001 0.01 0.1 10° - Ic (A) 1_C (A) 1

Collector emitter saturation voltage Figure 8. Collector emitter saturation voltage Figure 7.

Figure 9. Base emitter saturation voltage NPN

Figure 10. Base emitter saturation voltage **PNP**

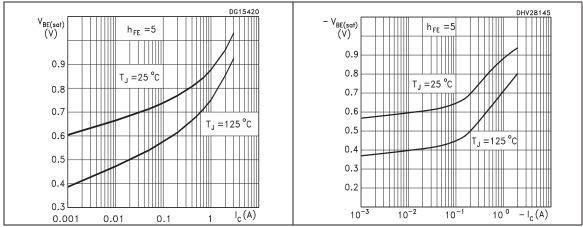


Figure 11. Resistive load fall time NPN

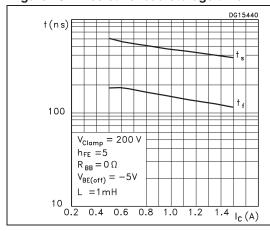

t (n s) t (n s) †_s t_s 1000 1000 †_f †_f 100 100 $V_{Clamp} = 250 V$ $V_{Clamp} = 250 V$ $h_{FE} = 5$ $h_{FE} = 5$ $I_{bon} = - I_{boff}$ $I_{bon} = - I_{boff}$ $V_{BE(off)} = -5V$ $V_{BE(off)} = 5V$ 10 10 0.5 0.7 0.5 0.9 1.3 I_c(A) 0.7 0.9 1.3 - I_C (A)

Figure 12. Resistive load fall time PNP

Electrical characteristics STD830CP40

Figure 13. Resistive load storage time NPN Figure

Figure 14. Resistive load storage time PNP

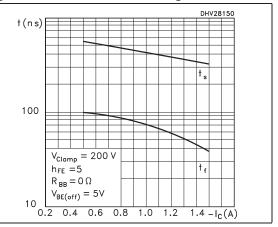
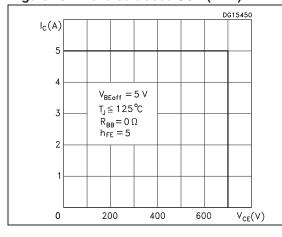
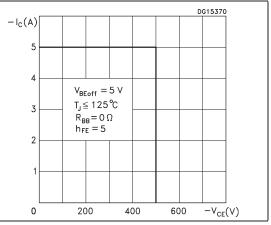




Figure 15. Reverse biased SOA (NPN)

Figure 16. Reverse biased SOA (PNP)

6/10 Doc ID 15767 Rev 3

3 Package mechanical data

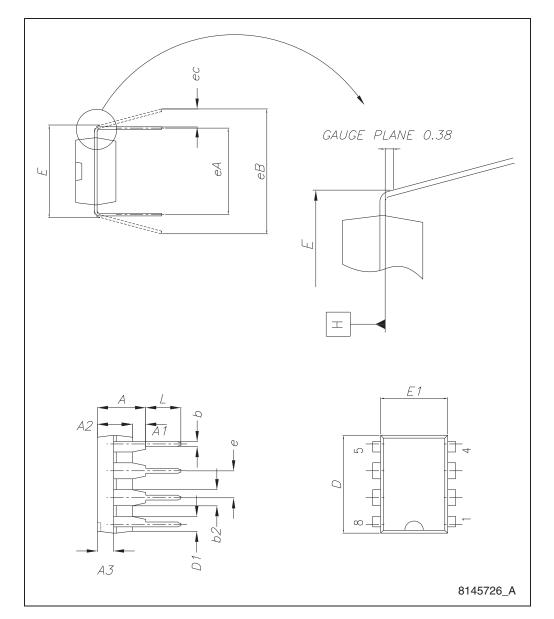

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Table 5. DIP-8 mechanical data

Dim		mm.	
Dim.	Min.	Тур.	Max.
А			4.80
A1	0.50		
A2	3.10		3.50
A3	1.40		1.60
b	0.38		0.55
b1	0.38		0.51
b2	1.47		1.57
b3	0.89		1.09
С	0.21		0.35
c1	0.20		0.30
D	9.10		9.30
D1	0.13		
Е	7.62		8.25
E1	6.25		6.45
е		2.54	
eA		7.62	
eB	7.62		10.90
eC	0		1.52
L	2.92		3.81

8/10

Figure 17. Drawing dimension DIP-8

STD830CP40 Revision history

4 Revision history

Table 6. Document revision history

Date	Revision	Changes
27-May-2009	1	Initial release.
29-Jun-2010	2	Modified: Table 2 and Table 3 on page 2, added Section 2.1: Electrical characteristics (curves).
05-Oct-2012	3	Table 2 and Table 3 on page 2 have been modified.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

10/10 Doc ID 15767 Rev 3