

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

STD96N3LLH6

N-channel 30 V, 0.0037 Ω 80 A, DPAK STripFET™ VI DeepGATE™ Power MOSFET

Features

Туре	V _{DSS}	R _{DS(on)} max	I _D
STD96N3LLH6	30 V	$0.0042~\Omega$	80 A

- R_{DS(on)} * Q_g industry benchmark
- Extremely low on-resistance R_{DS(on)}
- High avalanche ruggedness
- Low gate drive power losses

Application

- Switching applications
 - Automotive

This product is an N-channel Power MOSFET that utilizes the 6th generation of design rules of ST's proprietary STripFETTM technology, with a new gate structure. The resulting Power MOSFET exhibits the lowest $R_{DS(on)}$ in all packages.

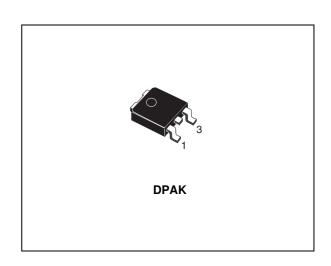


Figure 1. Internal schematic diagram

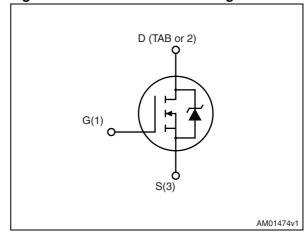


Table 1. Device summary

Order codes	Marking	Package	Packaging
STD96N3LLH6	96N3LLH6	DPAK	Tape and reel

Contents STD96N3LLH6

Contents

1	Electrical ratings	. 3
2	Electrical characteristics	
3	Test circuits	. 8
4	Package mechanical data	10
5	Packaging mechanical data	12
6	Revision history	14

STD96N3LLH6 Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage (V _{GS} = 0)	30	V
V _{GS}	Gate-source voltage	± 20	V
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	80	Α
I _D	Drain current (continuous) at T _C = 100 °C	61	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	320	Α
P _{TOT}	Total dissipation at T _C = 25 °C	70	W
	Derating factor	0.47	W/°C
E _{AS} (3)	Single pulse avalanche energy	150	mJ
T _{stg}	Storage temperature	-55 to 175	°C
T _j	Max. operating junction temperature	175	°C

^{1.} Limited by wire bonding.

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	2.14	°C/W
R _{thj-amb}	Thermal resistance junction-ambient max	100	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb max	35	°C/W
T _I	Maximum lead temperature for soldering purpose	275	°C

^{1.} When mounted on FR-4 board of 1 inch², 2 oz Cu.

^{2.} Pulse width limited by safe operating area.

^{3.} Starting Tj = 25° C, $I_{AV} = 55$ A, L = 0.1 mH

Electrical characteristics STD96N3LLH6

2 Electrical characteristics

 $(T_{CASE} = 25 \, ^{\circ}C \text{ unless otherwise specified})$

Table 4. Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown Voltage	$I_D = 250 \ \mu\text{A}, \ V_{GS} = 0$	30			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = 30 V V _{DS} = 30 V, Tc = 125 °C			1 10	μ Α μ Α
I _{GSS}	Gate body leakage current (V _{DS} = 0)	V _{GS} = ± 20 V			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1		2.5	٧
D	Static drain-source on	V _{GS} = 10 V, I _D = 40 A		0.0037	0.0042	Ω
R _{DS(on)}	resistance	V _{GS} = 5.5 V, I _D = 40 A		0.0055	0.007	Ω

Table 5. Dynamic

Symbol	Parameter	Test conditions		Тур.	Max.	Unit
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	$V_{DS} = 25 \text{ V, f=1 MHz,} $ $V_{GS} = 0$	-	2200 400 280	-	pF pF pF
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	$V_{DD} = 15 \text{ V}, I_{D} = 80 \text{ A}$ $V_{GS} = 4.5 \text{ V}$ Figure 13	-	20 8.2 7.5	-	nC nC nC
Q _{gs1}	Pre V _{th} gate-to-source charge Post V _{th} gate-to-source charge	V _{DD} = 15 V, I _D = 80 A Figure 18	-	3.4 6.2	-	nC nC
R _G	Gate input resistance	f = 1 MHz gate bias Bias = 0 test signal level = 20 mV open drain	-	1	-	Ω

Table 6. Switching on/off (inductive load)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time Rise time	$V_{DD} = 15 \text{ V}, I_{D} = 40 \text{ A},$ $R_{G} = 4.7 \Omega, V_{GS} = 5 \text{ V}$ Figure 12	-	19 91	-	ns ns
t _{d(off)}	Turn-off delay time Fall time	$V_{DD} = 15 \text{ V}, I_{D} = 40 \text{ A},$ $R_{G} = 4.7 \Omega, V_{GS} = 5 \text{ V}$ Figure 12	-	24.5 23.4	-	ns ns

Table 7. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current Source-drain current (pulsed)		-		80 320	A A
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 40 A, V _{GS} = 0	-		1.1	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	$I_{SD} = 80 \text{ A},$ di/dt = 100 A/ μ s, $V_{DD} = 24 \text{ V}$ Figure 14	-	28.6 22.8 1.6		ns nC A

^{1.} Pulse width limited by safe operating area

^{2.} Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

Electrical characteristics STD96N3LLH6

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area

Figure 3. Thermal impedance



Figure 4. Output characteristics

Figure 5. Transfer characteristics

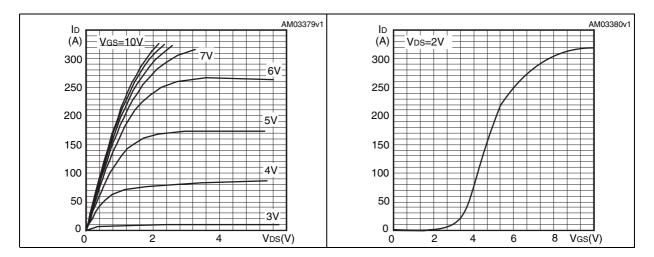
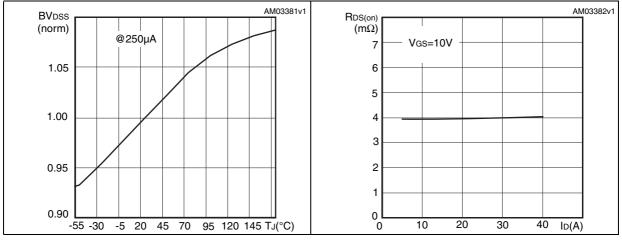



Figure 6. Normalized BV_{DSS} vs temperature Figure 7. Static drain source on resistance

6/15 Doc ID 18432 Rev 1

Figure 8. Gate charge vs gate-source voltage Figure 9. Capacitance variations

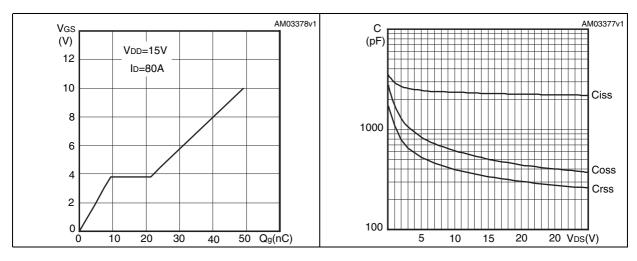
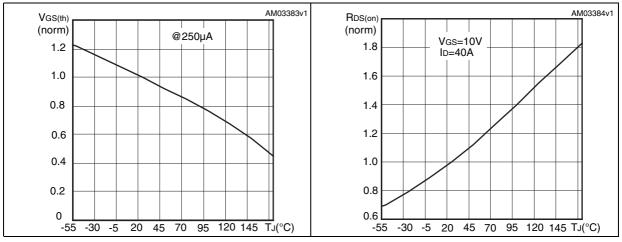



Figure 10. Normalized gate threshold voltage Figure 11. Normalized on resistance vs vs temperature temperature

Test circuits STD96N3LLH6

3 Test circuits

Figure 12. Switching times test circuit for resistive load

Figure 13. Gate charge test circuit

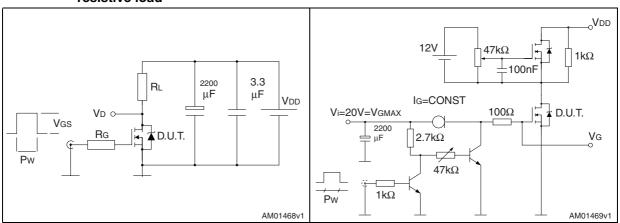


Figure 14. Test circuit for inductive load switching and diode recovery times

Figure 15. Unclamped inductive load test circuit

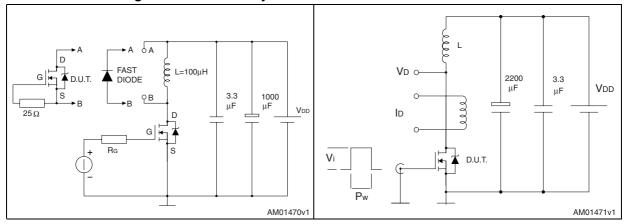
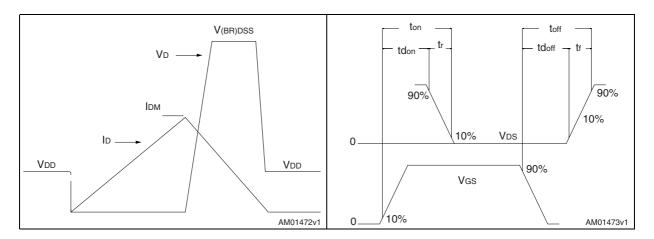



Figure 16. Unclamped inductive waveform

Figure 17. Switching time waveform

577

STD96N3LLH6 Test circuits

Figure 18. Gate charge waveform

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Table 8. DPAK (TO-252) mechanical data

Dim.		mm	
Dim.	Min.	Тур.	Max.
А	2.20		2.40
A1	0.90		1.10
A2	0.03		0.23
b	0.64		0.90
b4	5.20		5.40
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
D1		5.10	
E	6.40		6.60
E1		4.70	
е		2.28	
e1	4.40		4.60
Н	9.35		10.10
L	1		
L1		2.80	
L2		0.80	
L4	0.60		1
R		0.20	
V2	0°		8°

10/15 Doc ID 18432 Rev 1

THERMAL PAD

E1

D1

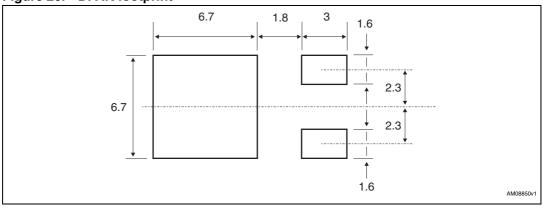
R

GAUGE PLANE

1

O068772_G

O068772_G


Figure 19. DPAK (TO-252) drawing

5 Packaging mechanical data

Table 9. DPAK (TO-252) tape and reel mechanical data

	Таре			Reel	
Dim.	mm		Dim.	1	mm
Dilli.	Min.	Max.		Min.	Max.
A0	6.8	7	Α		330
B0	10.4	10.6	В	1.5	
B1		12.1	С	12.8	13.2
D	1.5	1.6	D	20.2	
D1	1.5		G	16.4	18.4
Е	1.65	1.85	N	50	
F	7.4	7.6	Т		22.4
K0	2.55	2.75			
P0	3.9	4.1		Base qty.	2500
P1	7.9	8.1		Bulk qty.	2500
P2	1.9	2.1			
R	40				
Т	0.25	0.35			
W	15.7	16.3			

Figure 20. DPAK footprint^(a)

12/15 Doc ID 18432 Rev 1

a. All dimension are in millimeters

Figure 21. Tape for DPAK (TO-252)

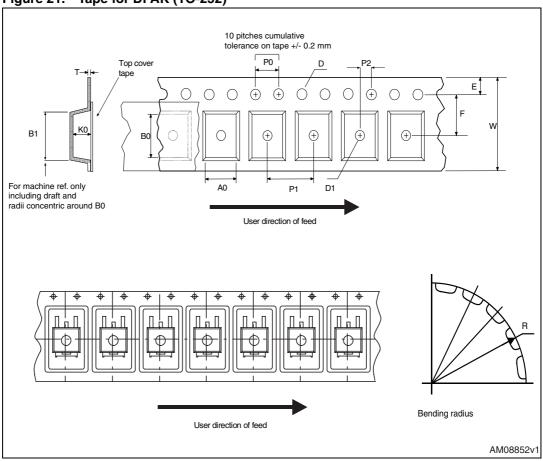
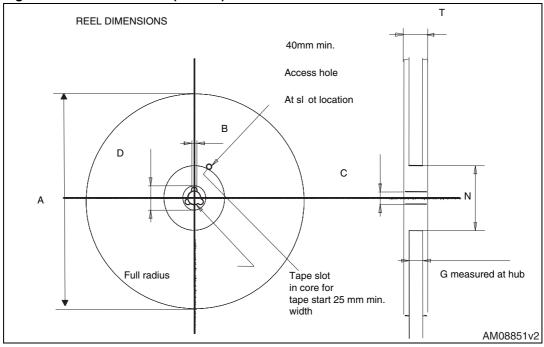



Figure 22. Reel for DPAK (TO-252)

57

Revision history STD96N3LLH6

6 Revision history

Table 10. Document revision history

Date	Revision	Changes
27-Jan-2011	1	First release.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

