imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

STE48NM60

N-CHANNEL 650V @ Tjmax - 0.09Ω - 48A ISOTOP

MDmesh[™] MOSFET

Table 1: General Features

ТҮРЕ	V_{DSS} (@Tjmax)	R _{DS(on)}	ID
STE48NM60	650V	< 0.11Ω	48 A

- TYPICAL R_{DS}(on) = 0.09Ω
- HIGH dv/dt AND AVALANCHE CAPABILITIES
- 100% AVALANCHE TESTED
- LOW INPUT CAPACITANCE AND GATE CHARGE
- LOW GATE INPUT RESISTANCE
- TIGHT PROCESS CONTROL AND HIGH MANUFACTURING YIELDS

DESCRIPTION

The MDmesh[™] is a new revolutionary MOSFET technology that associates the Multiple Drain process with the Company's PowerMESH[™] horizontal layout. The resulting product has an outstanding low on-resistance, impressively 'high dv/dt and excellent avalanche characteristics. The adoption of the Company's proprietary stip technique yields overall dynamic performance inat is significantly better than that of similar competition's products.

APPLICATIONS

The MDmesh™ family is vely suitable for increasing power density of high voltage converters allowing system miniaturization and higher efficiencies.

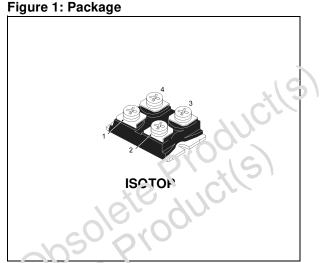
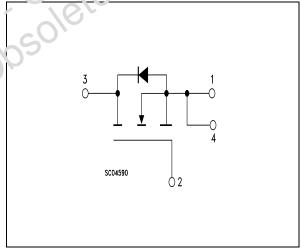



Figure 2: Internal Schematic Diagram

Table 2: Order Codes

SALES TYPE	MARKING	PACKAGE	PACKAGING
STE48NM60	E48NM60	ISOTOP	TUBE

Symbol	Parameter	Value	Unit
V_{GS}	Gate- source Voltage	±30	V
ID	Drain Current (continuous) at $T_C = 25^{\circ}C$	48	A
ID	Drain Current (continuous) at T _C = 100°C	30	A
I _{DM} (•)	Drain Current (pulsed)	192	A
P _{TOT}	Total Dissipation at T _C = 25°C	450	W
	Derating Factor	3.57	W/°C
dv/dt (1)	Peak Diode Recovery voltage slope	15	V/ns
V _{ISO}	Insulation Winthstand Voltage (AC-RMS)	2500	V
T _{stg}	Storage Temperature	-65 to 150	°C
Тj	Max. Operating Junction Temperature	150	<u>۰</u> ۲

Table 3: Absolute Maximum ratings

(•)Pulse width limited by safe operating area

(1) $I_{SD} \le 48A$, di/dt $\le 400 A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_j \le T_{JMAX}$.

Table 4: Thermal Data

Rthj-case	Thermal Resistance Junction-case	Max	0.28	°C/W
Rthj-amb	Thermal Resistance Junction-ambient	Max	30	°C/W
ΤI	Maximum Lead Temperature For Soldering	Purpose	300	°C

(*) with conductive GREASE Applies

Table 5: Avalanche Characteristics

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by Tj max)	15	A
E _{AS}	Single Pulse Avalanche Energy (starting $T_j = 25 \text{ °C}, I_D = I_{AB}, V_{LD} - 35 \text{ V}$)	850	mJ

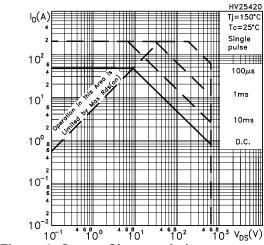
ELECTRICAL CHARACT FISTICS (T_{CASE} =25°C UNLESS OTHERWISE SPECIFIED) Table 6: On/Off

Symbol	Faraneter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0$	600			V
in st	Zero Gate Voltage	V _{DS} = Max Rating			10	μA
U.	Drain Current (V _{GS} = 0)	V _{DS} = Max Rating, T _C = 125°C			100	μA
IGSS	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ±30V			±100	nA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	3	4	5	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10V, I _D = 22.5A		0.09	0.11	Ω

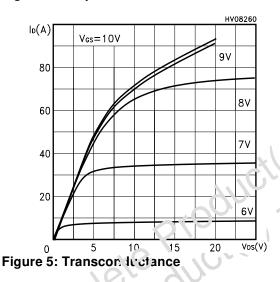
ELECTRICAL CHARACTERISTICS (CONTINUED) **Table 7: Dynamic**

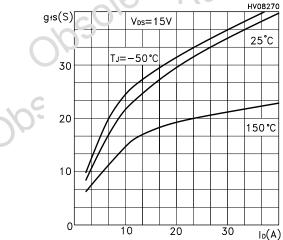
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (1)	Forward Transconductance	$V_{DS} > I_{D(on)} \times R_{DS(on)max}$, $I_D = 24A$		20		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 25V, f = 1 MHz, V _{GS} = 0		3800 1250 80		pF pF pF
C _{oss eq.} (2)	Equivalent Output Capacitance	$V_{GS} = 0V, V_{DS} = 0V$ to 480V		340		pF
R _G	Gate Input Resistance	f=1 MHz Gate DC Bias = 0 Test Signal Level = 20mV Open Drain		1.4		Ω
t _{d(on)} t _r	Turn-on Delay Time Rise Time	$\label{eq:VDD} \begin{array}{l} V_{DD} = 250V, \ I_D = 22.5A \ R_G = 4.7\Omega \\ V_{GS} = 10V \\ (see \ Figure \ 14) \end{array}$		30 20	عملا	n3 113
t _{r(Voff)} t _f t _c	Off-voltage Rise Time Fall Time Cross-over Time	$\label{eq:VDD} \begin{array}{l} V_{\text{DD}} = 400 V, \ I_{\text{D}} = 45 A, \ R_{\text{G}} = 4.7 \Omega, \\ V_{\text{GS}} = 10 V \end{array}$		16 23 40	x (9	ns ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 400V, I_D = 45A, V_{GS} = 10V$ (see Figure 18)		96 31 43	134	nC nC nC
able 8: So	urce Drain Diode	0050	515			-

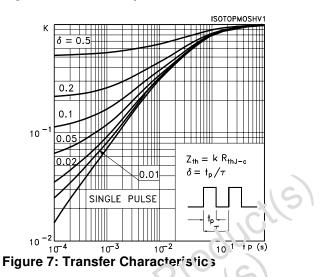
Table 8: Source Drain Diode

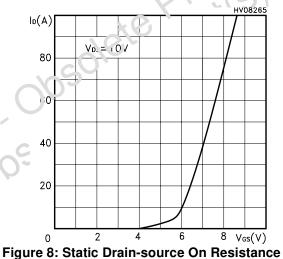

Symbol	Parameter Test Conditions		Min.	Тур.	Max.	Unit
I _{SD}	Source-drain Current	100			48	Α
I _{SDM} (2)	Source-drain Current (pulsed)	*(S) _ GO'			192	А
V _{SD} (1)	Forward On Voltage	$s_{SD} = 45A, V_{GS} = 0$			1.5	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charac Reverse Recovery Ourcont	$i_{SD} = 45A$, di/dt = 100A/µs, V _{DD} = 100 V, T _j = 25°C (see Figure 16)		508 10 40		ns μC Α
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Procovery Charge Reverse Pecovery Current	I _{SD} = 45A, di/dt = 100A/μs, V _{DD} = 100 V, Τ _j = 150°C (see Figure 16)		650 14 43		ns μC Α

 1. Pulsed: Pulse duration = 300 µs, duty cycle 1.5 %.


 2. Cost en le defined as a constant equivalent capacitance giving the same charging time as Cost when VDS increases from 0 to 80% '/DSS


JOSSOFE


Figure 3: Safe Operating Area


Figure 4: Output Characteristics

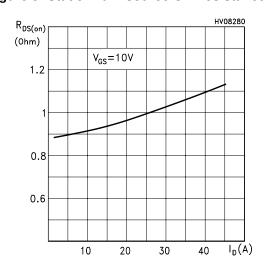


Figure 6: Thermal Impedance

Figure 9: Gate Charge vs Gate-source Voltage

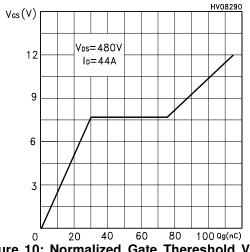


Figure 10: Normalized Gate Thereshold Voltage vs Temperature

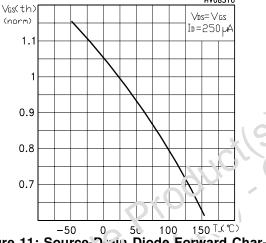
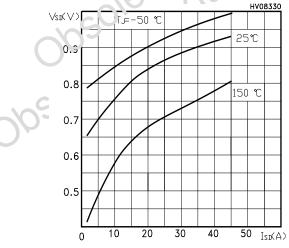



Figure 11: Source Drain Diode Forward Characteristics

Figure 12: Capacitance Variations

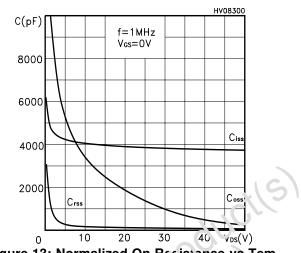
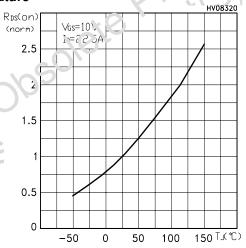



Figure 13: Normalized On Resistance vs Temperature

57.

Figure 14: Unclamped Inductive Load Test Circuit

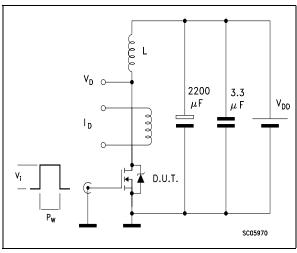


Figure 15: Switching Times Test Circuit For Resistive Load

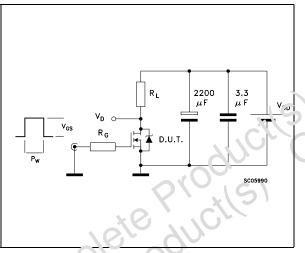
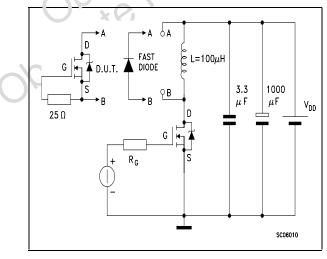
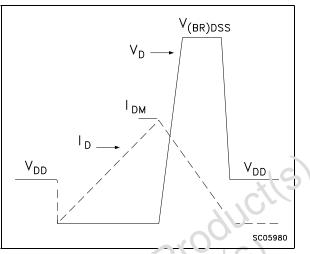
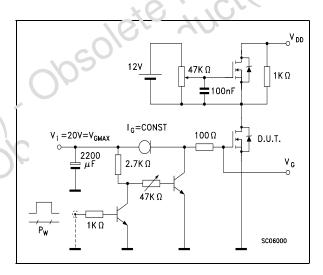
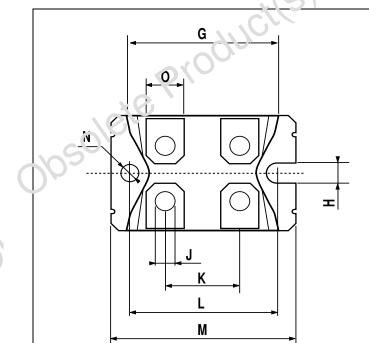
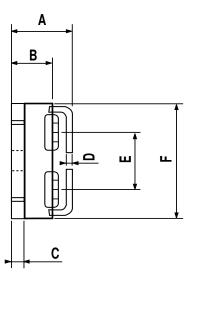



Figure 16. Sest Circuit For Inductive Load Switching and Diode Recovery Times

Figure 17: Unclamped Inductive Wafeform


Figure 18: Gate Charge Yest Circuit

DIM.		mm		inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	11.8		12.2	0.466		0.480
В	8.9		9.1	0.350		0.358
С	1.95		2.05	0.076		0.080
D	0.75		0.85	0.029		0.033
E	12.6		12.8	0.496		0.503
F	25.15		25.5	0.990		1.70:
G	31.5		31.7	1.240		1.248
Н	4			0.157	0	
J	4.1		4.3	0.161	0	0.169
К	14.9		15.1	0.586	10	0.594
L	30.1		30.3	1.185		1.193
М	37.8		38.2	i. +03		1.503
Ν	4		(J.157		
0	7.8		8.2	0.307		0.322

Table 9: Revision History

Date	Revision	Description of Changes	
30/Mar/2005	2	Modified value in table 7	

Obsolete Product(s)-Obsolete Product(s) Obsolete Product(s)-Obsolete Product(s) Obsolete Product(s)-Obsolete Product(s)

obsolete Production Infermation turnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

All other names are the property of their respective owners

© 2005 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America