imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

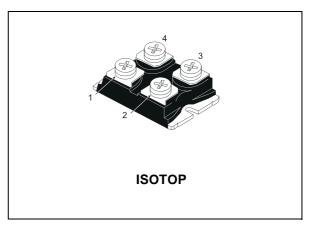
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

STE53NC50 N-CHANNEL 500V - 0.070Ω - 53A ISOTOP PowerMesh[™]II MOSFET

TYPE	V _{DSS}	R _{DS(on)}	I _D
STE53NC50	500V	< 0.08Ω	53 A
STE53NC50	5000		53 A


- TYPICAL $R_{DS}(on) = 0.07 \Omega$
- EXTREMELY HIGH dv/dt CAPABILITY
- 100% AVALANCHE TESTED
- NEW HIGH VOLTAGE BENCHMARK
- GATE CHARGE MINIMIZED

DESCRIPTION

The PowerMESH[™]II is the evolution of the first generation of MESH OVERLAY[™]. The layout refinements introduced greatly improve the Ron*area figure of merit while keeping the device at the leading edge for what concerns swithing speed, gate charge and ruggedness.

APPLICATIONS

- HIGH CURRENT, HIGH SPEED SWITCHING
- SWITH MODE POWER SUPPLIES (SMPS)
- DC-AC CONVERTERS FOR WELDING EQUIPMENT AND UNINTERRUPTIBLE POWER SUPPLIES AND MOTOR DRIVER

INTERNAL SCHEMATIC DIAGRAM

Ó2

SC04590

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	500	V
V _{DGR}	Drain-gate Voltage (R_{GS} = 20 k Ω)	500	V
V _{GS}	Gate- source Voltage	±30	V
I _D	Drain Current (continuos) at T _C = 25°C	53	А
I _D	Drain Current (continuos) at T _C = 100°C	33	А
I _{DM} (•)	Drain Current (pulsed)	212	Α
P _{TOT}	Total Dissipation at $T_C = 25^{\circ}C$	460	W
	Derating Factor	3.68	W/°C
dv/dt (1)	Peak Diode Recovery voltage slope	3	V/ns
VISO	Insulation Winthstand Voltage (AC-RMS)	2500	V
T _{stg}	Storage Temperature	– 65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C
ulse width lin y 2002	mited by safe operating area	(1) $I_{SD} \leq 53A$, di/dt $\leq 100 A/\mu s$, $V_{DD} \leq 24V$, $Tj \leq T_{jMAX}$	1/8

ABSOLUTE MAXIMUM RATINGS

STE53NC50

THERMAL DATA

Rthj-case	Thermal Resistance Junction-case	Max	0.272	°C/W
Rthc-h	Thermal Resistance Case-heatsink with Grease Applied	Conductive	0.05	°C/W

AVALANCHE CHARACTERISTICS

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T_j max)	53	A
E _{AS}	Single Pulse Avalanche Energy (starting $T_j = 25 \text{ °C}, I_D = I_{AR}, V_{DD} = 50 \text{ V}$)	1043	mJ

ELECTRICAL CHARACTERISTICS (TCASE = 25 °C UNLESS OTHERWISE SPECIFIED) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_{D} = 250 \ \mu A, \ V_{GS} = 0$	500			V
I _{DSS}	Zero Gate Voltage	V _{DS} = Max Rating			10	μA
	Drain Current (V _{GS} = 0)	V_{DS} = Max Rating, T_{C} = 125 °C			100	μA
IGSS	Gate-body Leakage Current (V _{DS} = 0)	$V_{GS} = \pm 30V$			±100	nA

ON (1)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10V, I _D = 27A		0.07	0.08	Ω

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (1)	Forward Transconductance	$V_{DS} > I_{D(on)} \times R_{DS(on)max,}$ $I_{D} = 15 \text{ A}$		42		S
Ciss	Input Capacitance	$V_{DS} = 25V, f = 1 \text{ MHz}, V_{GS} = 0$		11.2		nF
Coss	Output Capacitance			1350		pF
C _{rss}	Reverse Transfer Capacitance			115		pF

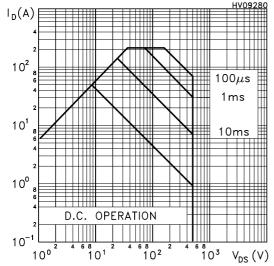
Note: 1. Pulsed: Pulse duration = 300 µs, duty cycle 1.5 %.

ELECTRICAL CHARACTERISTICS (CONTINUED) SWITCHING ON

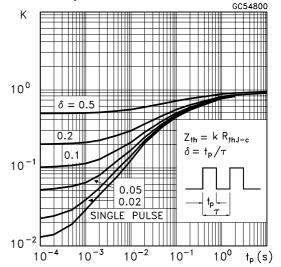
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on Delay Time	$V_{DD} = 250V, I_D = 26.5A$		46		ns
tr	Rise Time	$R_G = 4.7\Omega V_{GS} = 10V$ (see test circuit, Figure 3)		70		ns
Qg	Total Gate Charge	$V_{DD} = 400V, I_D = 53A,$		310	434	nC
Q _{gs}	Gate-Source Charge	V _{GS} = 10V		46		nC
Q _{gd}	Gate-Drain Charge			150		nC

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{r(Voff)}	Off-voltage Rise Time	$V_{DD} = 400V, I_D = 53A,$		45		ns
t _f	Fall Time	$R_G = 4.7\Omega$, $V_{GS} = 10V$ (see test circuit, Figure 5)		38		ns
t _c	Cross-over Time			85		ns

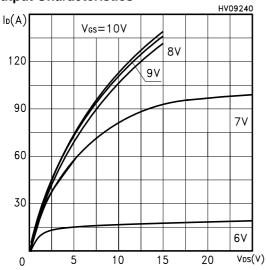

SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain Current				53	А
I _{SDM} (2)	Source-drain Current (pulsed)				212	А
V _{SD} (1)	Forward On Voltage	$I_{SD} = 53A, V_{GS} = 0$			1.6	V
t _{rr}	Reverse Recovery Time	I _{SD} = 53A, di/dt = 100A/µs,		760		ns
Qrr	Reverse Recovery Charge	V _{DD} = 70V, T _j = 150°C (see test circuit, Figure 5)		17.86		μC
I _{RRM}	Reverse Recovery Current			47		А

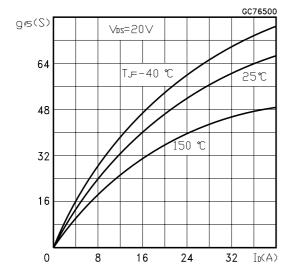

Note: 1. Pulsed: Pulse duration = 300 µs, duty cycle 1.5 %.

2. Pulse width limited by safe operating area.

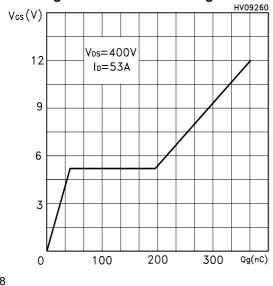
Safe Operating Area

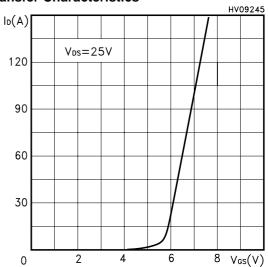


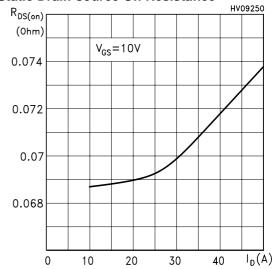
Thermal Impedence

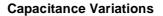


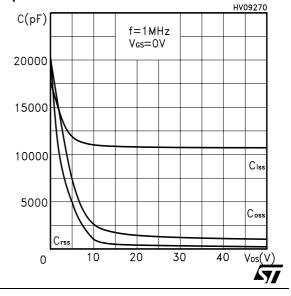
STE53NC50

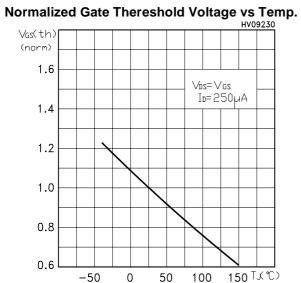

Output Characteristics


Transconductance

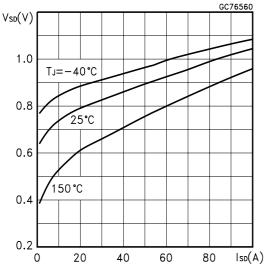

Gate Charge vs Gate-source Voltage

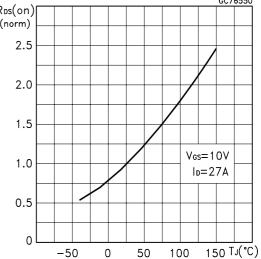



Transfer Characteristics

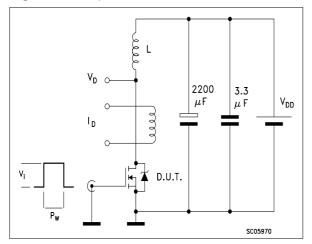


Static Drain-source On Resistance

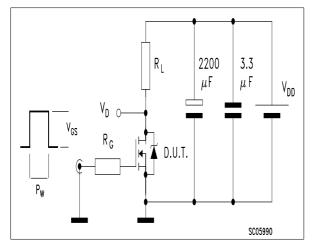




Source-drain Diode Forward Characteristics



Normalized On Resistance vs Temperature GC76550 Ros(on) (norm)



STE53NC50

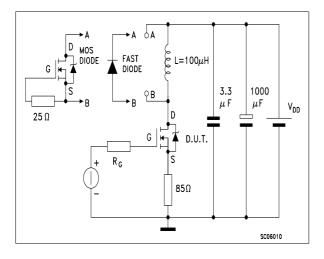
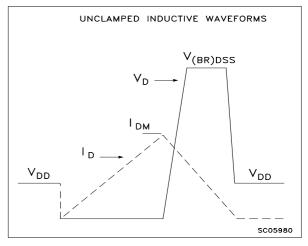
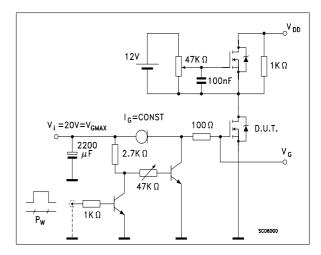
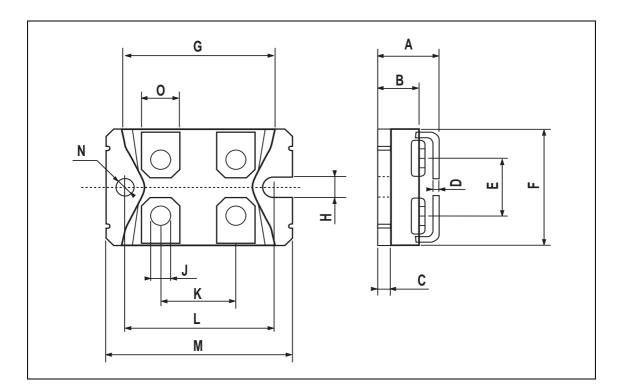

Fig. 1: Unclamped Inductive Load Test Circuit

Fig. 3: Switching Times Test Circuit For Resistive Load

Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

Fig. 2: Unclamped Inductive Waveform


Fig. 4: Gate Charge test Circuit

57

DIM.		mm		inch			
Diwi.	MIN.	TYP.	MAX.	MIN.	IN. TYP.		
А	11.8		12.2	0.466		0.480	
В	8.9		9.1	0.350		0.358	
С	1.95		2.05	0.076		0.080	
D	0.75		0.85	0.029		0.033	
E	12.6		12.8	0.496		0.503	
F	25.15		25.5	0.990		1.003	
G	31.5		31.7	1.240		1.248	
Н	4			0.157			
J	4.1		4.3	0.161		0.169	
К	14.9		15.1	0.586		0.594	
L	30.1		30.3	1.185		1.193	
М	37.8		38.2	1.488		1.503	
Ν	4			0.157			
0	7.8		8.2	0.307		0.322	

ISOTOP MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

57

© http://www.st.com