

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China









# STF20N65M5, STFI20N65M5, STFW20N65M5

N-channel 650 V, 0.160  $\Omega$  typ., 18 A MDmesh M5 Power MOSFETs in TO-220FP, I<sup>2</sup>PAKFP and TO-3PF packages

Datasheet - production data

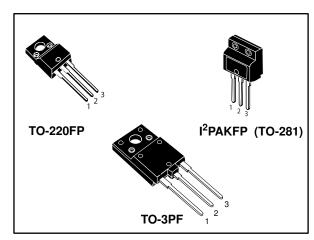
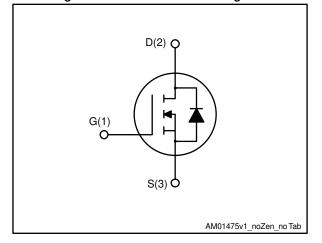




Figure 1: Internal schematic diagram



#### **Features**

| Order code  | V <sub>DS</sub> @ T <sub>Jmax</sub> | R <sub>DS(on)</sub> max | ΙD   |
|-------------|-------------------------------------|-------------------------|------|
| STF20N65M5  |                                     |                         |      |
| STFI20N65M5 | 710 V                               | 0.190 Ω                 | 18 A |
| STFW20N65M5 |                                     |                         |      |

- Extremely low R<sub>DS(on)</sub>
- Low gate charge and input capacitance
- Excellent switching performance
- 100% avalanche tested

### **Applications**

• Switching applications

### **Description**

These devices are N-channel Power MOSFET based on the MDmesh™ M5 innovative vertical process technology combined with the well-known PowerMESH™ horizontal layout. The resulting products offer extremely low onresistance, making them particularly suitable for applications requiring high power and superior efficiency.

Table 1: Device summary

| Order code  | Marking | Package                       | Packaging |
|-------------|---------|-------------------------------|-----------|
| STF20N65M5  |         | TO-220FP                      |           |
| STFI20N65M5 | 20N65M5 | I <sup>2</sup> PAKFP (TO-281) | Tube      |
| STFW20N65M5 |         | TO-3FP                        |           |

### Contents

| 1 | Electrical ratings |                                                   |    |
|---|--------------------|---------------------------------------------------|----|
| 2 |                    | eal characteristics                               |    |
|   | 2.1                | Electrical characteristics (curve)                | 6  |
| 3 | Test cir           | cuits                                             | 9  |
| 4 | Packag             | e information                                     | 10 |
|   | 4.1                | TO-220FP package information                      | 11 |
|   | 4.2                | I <sup>2</sup> PAKFP (TO-281) package information | 13 |
|   | 4.3                | TO-3PF package information                        | 15 |
| 5 | Revisio            | n history                                         | 17 |

# 1 Electrical ratings

Table 2: Absolute maximum ratings

|                                 |                                                                                                                   | Valu                              | e      |      |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------|------|
| Symbol                          | Parameter                                                                                                         | TO-220FP,<br>I <sup>2</sup> PAKFP | TO-3PF | Unit |
| $V_{GS}$                        | Gate- source voltage                                                                                              | ±25                               | ;      | V    |
| ΙD                              | Drain current (continuous) at Tc = 25 °C                                                                          | 18(1                              | ")     | Α    |
| ΙD                              | Drain current (continuous) at Tc = 100 °C                                                                         | 11.3 <sup>(1)</sup>               |        | Α    |
| I <sub>DM</sub> <sup>(2)</sup>  | Drain current (pulsed)                                                                                            | 36(1)                             |        | Α    |
| P <sub>TOT</sub>                | Total dissipation at T <sub>C</sub> = 25 °C                                                                       | 30 48                             |        | W    |
| dv/dt (3)                       | Peak diode recovery voltage slope                                                                                 | 15                                |        | V/ns |
| V <sub>ISO</sub> <sup>(4)</sup> | Insulation with stand voltage (RMS) from all three leads to external heat sink (t = 1 s; $T_C = 25$ °C) 2500 3500 |                                   | V      |      |
| T <sub>stg</sub>                | Storage temperature range - 55 to 150                                                                             |                                   | °C     |      |
| Tj                              | Operating junction temperature range                                                                              | - 55 10                           | 150    | 10   |

#### Notes:

Table 3: Thermal data

|                       |                                     | Valu                              |        |      |  |
|-----------------------|-------------------------------------|-----------------------------------|--------|------|--|
| Symbol                | Parameter                           | TO-220FP,<br>I <sup>2</sup> PAKFP | TO-3PF | Unit |  |
| R <sub>thj-case</sub> | Thermal resistance junction-case    | 4.17                              | 2.6    | °C/W |  |
| R <sub>thj-amb</sub>  | Thermal resistance junction-ambient | 62.5                              | 50     | °C/W |  |

**Table 4: Avalanche characteristics** 

| Symbol          | Parameter                                                                                | Value | Unit |
|-----------------|------------------------------------------------------------------------------------------|-------|------|
| I <sub>AR</sub> | Avalanche current, repetitive or not repetitive (pulse width limited by $T_{jmax}$ )     | 4     | °C/W |
| Eas             | Single pulse avalanche energy (starting $T_J = 25$ °C, $I_D = I_{AR}$ , $V_{DD} = 50$ V) | 270   | mJ   |

<sup>&</sup>lt;sup>(1)</sup>Limited by maximum junction temperature.

<sup>&</sup>lt;sup>(2)</sup>Pulse width limited by safe operating area

 $<sup>^{(3)}</sup>I_{SD} \leq$  18 A, di/dt = 400 A/ $\mu$ s,  $V_{DS(peak)} < V_{(BR)DSS}, V_{DD}$  = 400 V

 $<sup>^{(4)}</sup>V_{DS} \le 520 \text{ V}$ 

### 2 Electrical characteristics

(T<sub>C</sub> = 25 °C unless otherwise specified)

Table 5: On /off states

| Symbol              | Parameter                             | Test conditions                                            | Min. | Тур.  | Max.  | Unit |
|---------------------|---------------------------------------|------------------------------------------------------------|------|-------|-------|------|
| $V_{(BR)DSS}$       | Drain-source breakdown voltage        | $V_{GS} = 0$ , $I_D = 1$ mA                                | 650  |       |       | ٧    |
|                     | Zero gate voltage                     | $V_{GS} = 0$ , $V_{DS} = 650 \text{ V}$                    |      |       | 1     | μΑ   |
| IDSS                | drain current                         | $V_{GS} = 0$ , $V_{DS} = 650$ V, $T_{C} = 125$ °C $^{(1)}$ |      |       | 100   | μΑ   |
| lgss                | Gate-body leakage current             | $V_{DS} = 0, V_{GS} = \pm 25 \text{ V}$                    |      |       | ±100  | nA   |
| V <sub>GS(th)</sub> | Gate threshold voltage                | $V_{DS} = V_{GS}$ , $I_D = 250 \mu A$                      | 3    | 4     | 5     | V    |
| R <sub>DS(on)</sub> | Static drain-source on-<br>resistance | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 9 A               |      | 0.160 | 0.190 | Ω    |

#### Notes:

Table 6: Dynamic

| Symbol                            | Parameter                             | Test conditions                                          | Min. | Тур. | Max. | Unit |
|-----------------------------------|---------------------------------------|----------------------------------------------------------|------|------|------|------|
| Ciss                              | Input capacitance                     |                                                          | -    | 1434 | 1    | pF   |
| Coss                              | Output capacitance                    | $V_{GS} = 0$ , $V_{DS} = 100 V$ ,                        | -    | 38   | -    | pF   |
| C <sub>rss</sub>                  | Reverse transfer capacitance          | f = 1 MHz                                                |      | 3.7  | -    | pF   |
| C <sub>o(tr)</sub> (1)            | Equivalent capacitance time related   | $V_{GS} = 0$ , $V_{DS} = 0$ to 520 V                     | -    | 118  | ı    | pF   |
| C <sub>o(er)</sub> <sup>(2)</sup> | Equivalent capacitance energy related | V <sub>GS</sub> = 0, V <sub>DS</sub> = 0 to 520 V        | -    | 35   | -    | pF   |
| Rg                                | Intrinsic gate resistance             | f = 1 MHz, I <sub>D</sub> =0 A                           | -    | 3.5  | 1    | Ω    |
| $Q_g$                             | Total gate charge                     | $V_{DD} = 520 \text{ V}, I_D = 9 \text{ A},$             | -    | 36   | -    | nC   |
| Qgs                               | Gate-source charge                    | V <sub>GS</sub> = 0 to 10 V                              | -    | 7.5  | -    | nC   |
| $Q_{gd}$                          | Gate-drain charge                     | (see Figure 18: "Test circuit for gate charge behavior") | -    | 18   | -    | nC   |

#### Notes

4/18 DocID024223 Rev 3

<sup>&</sup>lt;sup>(1)</sup>Defined by design, not subject to production test

 $<sup>^{(1)}</sup>$ Co<sub>(tr)</sub> is a constant capacitance value that gives the same charging time as Coss while Vps is rising from 0 to 80% Vpss.

 $<sup>^{(2)}</sup>$ Co<sub>(er)</sub> is a constant capacitance value that gives the same stored energy as Coss while V<sub>DS</sub> is rising from 0 to 80% V<sub>DSS</sub>.

#### Table 7: Switching times

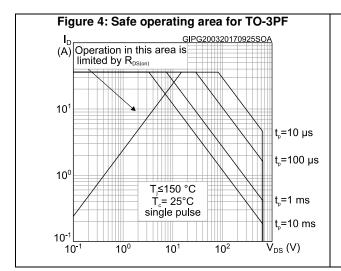
| Symbol              | Parameter          | Test conditions                                                 | Min. | Тур. | Max. | Unit |
|---------------------|--------------------|-----------------------------------------------------------------|------|------|------|------|
| t <sub>d(V)</sub>   | Voltage delay time | $V_{DD} = 400 \text{ V}, I_D = 12 \text{ A},$                   | ı    | 43   | 1    | ns   |
| t <sub>r(V)</sub>   | Voltage rise time  | $R_G = 4.7 \Omega$ , $V_{GS} = 10 V$                            | ı    | 7.5  | 1    | ns   |
| t <sub>f(i)</sub>   | Current fall time  | (see Figure 19: "Test circuit for inductive load switching and  | ı    | 7.5  | 1    | ns   |
| t <sub>c(off)</sub> | Crossing time      | diode recovery times" and Figure 22: "Switching time waveform") | -    | 11.5 | -    | ns   |

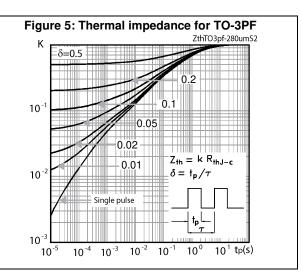
#### Table 8: Source drain diode

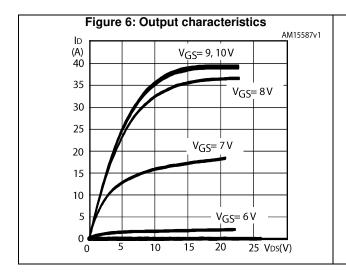
| Symbol                          | Parameter                     | Test conditions                                                                       | Min. | Тур. | Max. | Unit |
|---------------------------------|-------------------------------|---------------------------------------------------------------------------------------|------|------|------|------|
| Isp                             | Source-drain current          |                                                                                       | -    |      | 18   | Α    |
| I <sub>SDM</sub> <sup>(1)</sup> | Source-drain current (pulsed) |                                                                                       | -    |      | 36   | Α    |
| V <sub>SD</sub> <sup>(2)</sup>  | Forward on voltage            | I <sub>SD</sub> = 18 A, V <sub>GS</sub> = 0                                           | 1    |      | 1.5  | V    |
| trr                             | Reverse recovery time         | I <sub>SD</sub> = 18 A,                                                               | 1    | 288  |      | ns   |
| Qrr                             | Reverse recovery charge       | $di/dt = 100 \text{ A/}\mu\text{s}$ $V_{DD} = 100 \text{ V}$                          | -    | 4    |      | μС   |
| I <sub>RRM</sub>                | Reverse recovery current      | (see Figure 19: "Test circuit for inductive load switching and diode recovery times") |      | 27   |      | Α    |
| t <sub>rr</sub>                 | Reverse recovery time         | I <sub>SD</sub> = 18 A,                                                               | -    | 342  |      | ns   |
| Qrr                             | Reverse recovery charge       | $ di/dt = 100 \text{ A/}\mu\text{s} $ $V_{DD} = 100 \text{ V}, T_j = 150 \text{ °C} $ | -    | 4.7  |      | μС   |
| I <sub>RRM</sub>                | Reverse recovery current      | (see Figure 19: "Test circuit for inductive load switching and diode recovery times") | -    | 28   |      | Α    |

#### Notes:

<sup>&</sup>lt;sup>(1)</sup>Pulse width limited by safe operating area


 $<sup>^{(2)}\</sup>text{Pulsed:}$  pulse duration = 300  $\mu\text{s},$  duty cycle 1.5%


10


#### **Electrical characteristics (curve)** 2.1

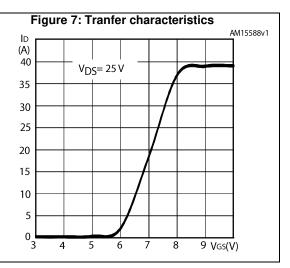
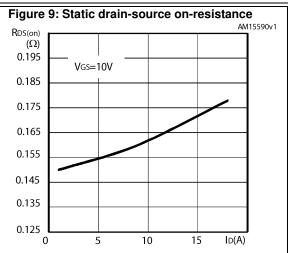
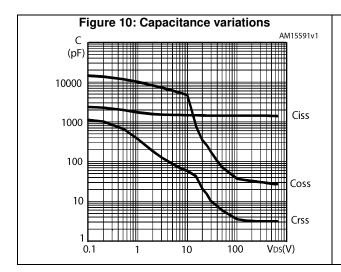

Figure 2: Safe operating area for TO-220FP and **I**<sup>2</sup>PAKFP GIPG200320170924SOA Operation in this area is limited by R<sub>DS(on)</sub> 10<sup>1</sup> t₀=10 µs t<sub>o</sub>=100 µs 10<sup>0</sup> t<sub>0</sub>=1 ms T<sub>i</sub>≤150 °C T<sub>c</sub>= 25°C t<sub>o</sub>=10 ms single pulse 10<sup>-1</sup> 10° 10<sup>1</sup> 10<sup>2</sup>  $\vec{V}_{DS}\left(V\right)$ 

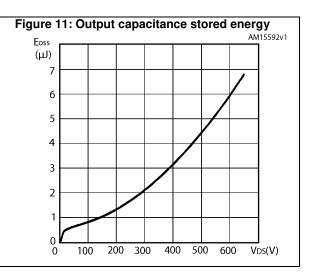
Figure 3: Thermal impedance for for TO-220FP and I<sup>2</sup>PAKFP 0.1 0.02  $\delta = t_{\rm p}/\tau$ SINGLE PULSE 10 -2 10<sup>-3</sup>  $10^{0} t_{p}(s)$  $10^{-2}$  $10^{-4}$  $10^{-1}$ 

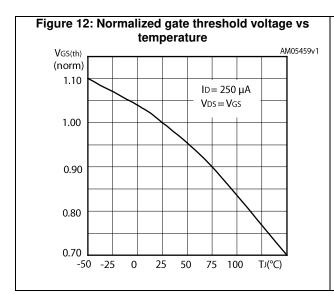


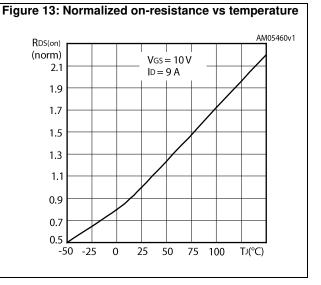


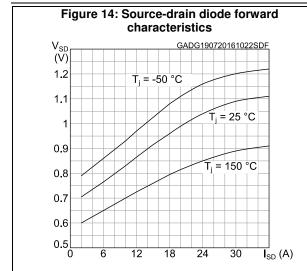


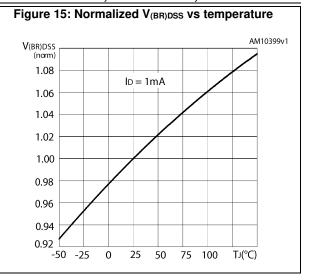



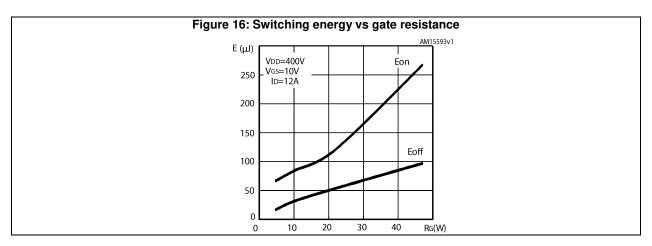


57


6/18


Figure 8: Gate charge vs gate-source voltage AM15589v1 **V**GS **V**DS (V) **V**DS VDD=520V (V) 12 500 ID=9A 10 400 8 300 6 200 4 100 2 0 10 30 Qg(nC) 0



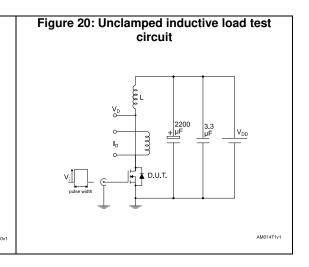



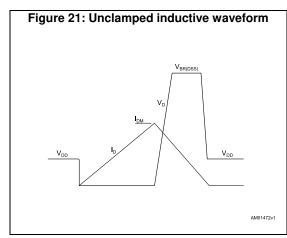










 $\mathsf{E}_{\text{on}}$  including reverse recovery of a SiC diode.

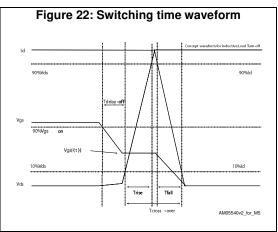

### 3 Test circuits

Figure 17: Test circuit for resistive load switching times

Figure 19: Test circuit for inductive load switching and diode recovery times







### 4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

10/18 DocID024223 Rev 3

### 4.1 TO-220FP package information

Figure 23: TO-220FP package outline

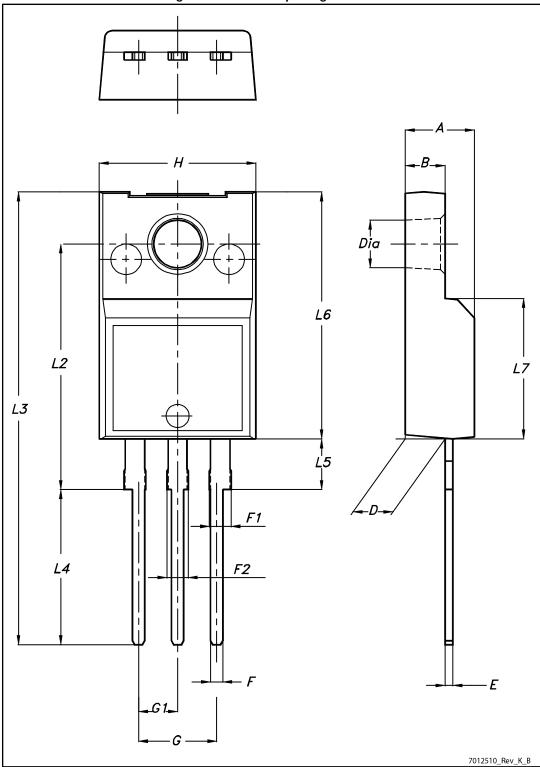



Table 9: TO-220FP package mechanical data

| Table 0. To 22011 package meetiamen and |      |      |      |  |  |
|-----------------------------------------|------|------|------|--|--|
| Dim.                                    |      | mm   |      |  |  |
| Diiii.                                  | Min. | Тур. | Max. |  |  |
| Α                                       | 4.4  |      | 4.6  |  |  |
| В                                       | 2.5  |      | 2.7  |  |  |
| D                                       | 2.5  |      | 2.75 |  |  |
| E                                       | 0.45 |      | 0.7  |  |  |
| F                                       | 0.75 |      | 1    |  |  |
| F1                                      | 1.15 |      | 1.70 |  |  |
| F2                                      | 1.15 |      | 1.70 |  |  |
| G                                       | 4.95 |      | 5.2  |  |  |
| G1                                      | 2.4  |      | 2.7  |  |  |
| Н                                       | 10   |      | 10.4 |  |  |
| L2                                      |      | 16   |      |  |  |
| L3                                      | 28.6 |      | 30.6 |  |  |
| L4                                      | 9.8  |      | 10.6 |  |  |
| L5                                      | 2.9  |      | 3.6  |  |  |
| L6                                      | 15.9 |      | 16.4 |  |  |
| L7                                      | 9    |      | 9.3  |  |  |
| Dia                                     | 3    |      | 3.2  |  |  |

### 4.2 I<sup>2</sup>PAKFP (TO-281) package information

Figure 24: I<sup>2</sup>PAKFP (TO-281) package outline

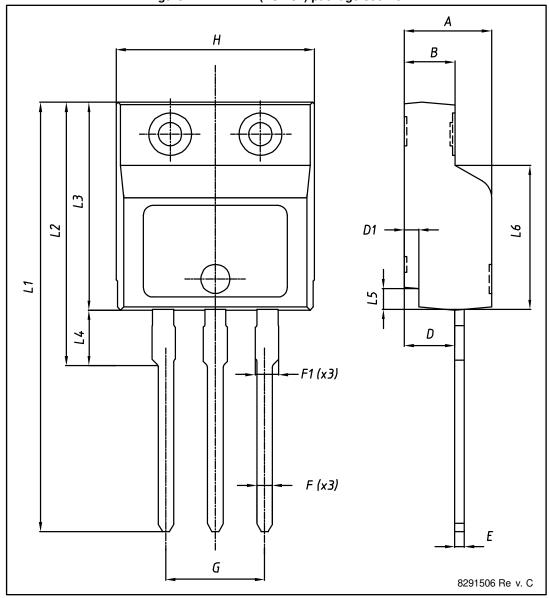



Table 10: I<sup>2</sup>PAKFP (TO-281) mechanical data

| Dim  | mm    |      |       |  |
|------|-------|------|-------|--|
| Dim. | Min.  | Тур. | Max.  |  |
| Α    | 4.40  |      | 4.60  |  |
| В    | 2.50  |      | 2.70  |  |
| D    | 2.50  |      | 2.75  |  |
| D1   | 0.65  |      | 0.85  |  |
| E    | 0.45  |      | 0.70  |  |
| F    | 0.75  |      | 1.00  |  |
| F1   |       |      | 1.20  |  |
| G    | 4.95  |      | 5.20  |  |
| Н    | 10.00 |      | 10.40 |  |
| L1   | 21.00 |      | 23.00 |  |
| L2   | 13.20 |      | 14.10 |  |
| L3   | 10.55 |      | 10.85 |  |
| L4   | 2.70  |      | 3.20  |  |
| L5   | 0.85  |      | 1.25  |  |
| L6   | 7.50  | 7.60 | 7.70  |  |

### 4.3 TO-3PF package information

Figure 25: TO-3PF package outline

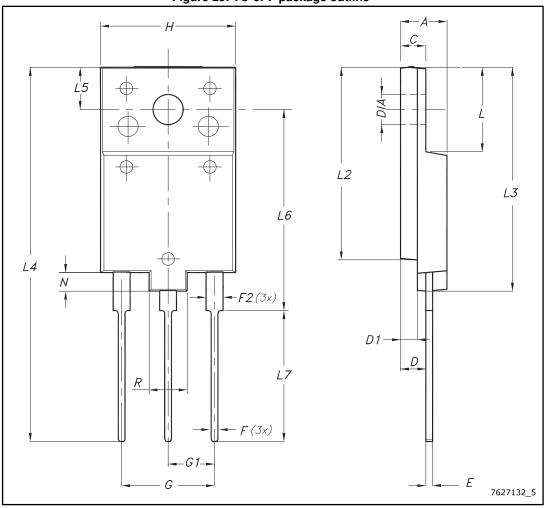



Table 11: TO-3PF mechanical data

| Table 11. 10-511 illectianical data |       |      |       |  |
|-------------------------------------|-------|------|-------|--|
| Dim.                                | mm    |      |       |  |
|                                     | Min.  | Тур. | Max.  |  |
| А                                   | 5.30  |      | 5.70  |  |
| С                                   | 2.80  |      | 3.20  |  |
| D                                   | 3.10  |      | 3.50  |  |
| D1                                  | 1.80  |      | 2.20  |  |
| Е                                   | 0.80  |      | 1.10  |  |
| F                                   | 0.65  |      | 0.95  |  |
| F2                                  | 1.80  |      | 2.20  |  |
| G                                   | 10.30 |      | 11.50 |  |
| G1                                  |       | 5.45 |       |  |
| Н                                   | 15.30 |      | 15.70 |  |
| L                                   | 9.80  | 10   | 10.20 |  |
| L2                                  | 22.80 |      | 23.20 |  |
| L3                                  | 26.30 |      | 26.70 |  |
| L4                                  | 43.20 |      | 44.40 |  |
| L5                                  | 4.30  |      | 4.70  |  |
| L6                                  | 24.30 |      | 24.70 |  |
| L7                                  | 14.60 |      | 15    |  |
| N                                   | 1.80  |      | 2.20  |  |
| R                                   | 3.80  |      | 4.20  |  |
| Dia                                 | 3.40  |      | 3.80  |  |

# 5 Revision history

**Table 12: Document revision history** 

| Date        | Revision | Changes                                                                                                                                                                                                                                                                                                                                                                                             |  |
|-------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 01-Feb-2013 | 1        | First release. Part numbers previously included in datasheet DM00049308                                                                                                                                                                                                                                                                                                                             |  |
| 21-Jul-2016 | 2        | Added device in TO-3PF.  Modified: Table 2: "Absolute maximum ratings", Table 5: "On /off states".  Modified: Figure 2: "Safe operating area for TO-220FP and I²PAKFP", Figure 4: "Safe operating area for TO-3PF", Figure 5: "Thermal impedance for TO-3PF".                                                                                                                                       |  |
|             |          | Minor text changes                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 22-Mar-2017 | 3        | Modified Table 2: "Absolute maximum ratings", Table 8: "Source drain diode".  Modified Figure 2: "Safe operating area for TO-220FP and I²PAKFP", Figure 4: "Safe operating area for TO-3PF", Figure 12: "Normalized gate threshold voltage vs temperature ", Figure 13: "Normalized onresistance vs temperature" and Figure 14: "Source-drain diode forward characteristics ".  Minor text changes. |  |

#### **IMPORTANT NOTICE - PLEASE READ CAREFULLY**

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

