

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

STF28N60DM2

N-channel 600 V, 0.13 Ω typ., 21 A MDmesh™ DM2 Power MOSFET in a TO-220FP package

Datasheet - production data

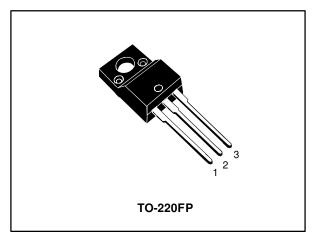
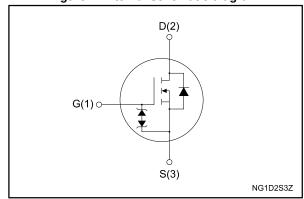



Figure 1: Internal schematic diagram

Features

Order code	V _{DS} @ T _{Jmax} .	R _{DS(on)} max.	ID	Ртот
STF28N60DM2	650 V	0.16 Ω	21 A	30 W

- Fast-recovery body diode
- Extremely low gate charge and input capacitance
- Low on-resistance
- 100% avalanche tested
- Extremely high dv/dt ruggedness
- Zener-protected

Applications

Switching applications

Description

This high voltage N-channel Power MOSFET is part of the MDmesh TM DM2 fast recovery diode series. It offers very low recovery charge (Q_{rr}) and time (t_{rr}) combined with low $R_{DS(on)}$, rendering it suitable for the most demanding high efficiency converters and ideal for bridge topologies and ZVS phase-shift converters.

Table 1: Device summary

Order code	Marking	Package	Packing
STF28N60DM2	28N60DM2	TO-220FP	Tube

Contents STF28N60DM2

Contents

1	Electric	cal ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	œuits	8
4	Packag	e information	9
	_	TO-220FP package information	
5	Revisio	on history	11

STF28N60DM2 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate-source voltage	±25	V
1_	Drain current (continuous) at T _{case} = 25 °C	21	۸
l _D	Drain current (continuous) at T _{case} = 100 °C	14	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	84	Α
P _{TOT}	Total dissipation at T _{case} = 25 °C	30	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	50	V/no
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	50	V/ns
V _{ISO} ⁽⁴⁾	Insulation withstand voltage (RMS) from all three leads to external heat sink	2.5	kV
T _{stg}	Storage temperature	EE to 1E0	°C
Tj	Operating junction temperature	-55 to 150	-0

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit	
R _{thj-case}	Thermal resistance junction-case	4.2	°C/W	
R _{thj-amb}	Thermal resistance junction-ambient	62.5	-C/VV	

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR} ⁽¹⁾	Avalanche current, repetitive or not repetitive	4	Α
E _{AS} ⁽²⁾	Single pulse avalanche energy	350	mJ

Notes:

 $^{^{\}left(1\right) }$ Pulse width is limited by safe operating area.

 $^{^{(2)}}$ $I_{SD} \leq 21$ A, di/dt=900 A/ μ s; VDS peak < V(BR)DSS,VDD = 400 V

 $^{^{(3)}}$ V_{DS} \leq 480 V.

 $^{^{(4)}}t = 1 \text{ s; Tc} = 25 \text{ °C}$

 $^{^{(1)}}$ pulse width limited by T_{jmax}

 $^{^{(2)}}$ starting T_j = 25 °C, I_D = $I_{AR},\,V_{DD}$ = 50 V.

Electrical characteristics STF28N60DM2

2 Electrical characteristics

(T_{case} = 25 °C unless otherwise specified)

Table 5: Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	600			>
	Zoro goto voltogo	$V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V}$			1	
I _{DSS}	I _{DSS} Zero gate voltage drain current	V _{GS} = 0 V, V _{DS} = 600 V, T _{case} = 125 °C			100	μΑ
Igss	Gate-body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 25 \text{ V}$			±10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	3	4	5	٧
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 10.5 A		0.13	0.16	Ω

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	1500	ı	
Coss	Output capacitance	$V_{DS} = 100 \text{ V}, f = 1 \text{ MHz},$	-	70	ı	рF
Crss	Reverse transfer capacitance	$V_{GS} = 0 V$	-	1.6	ı	בֿ ב
Coss eq. (1)	Equivalent output capacitance	$V_{DS} = 0$ to 480 V, $V_{GS} = 0$ V	-	134	ı	pF
R _G	Intrinsic gate resistance	$f = 1 \text{ MHz}, I_D = 0 \text{ A}$	-	4.6	ı	Ω
Q_g	Total gate charge	$V_{DD} = 480 \text{ V}, I_D = 21 \text{ A},$	-	34	ı	
Qgs	Gate-source charge	V _{GS} = 10 V (see Figure 15: "Test circuit for gate charge	-	8	-	nC
Q_{gd}	Gate-drain charge	behavior")	-	18.5	-	

Notes:

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$t_{d(on)}$	Turn-on delay time	$V_{DD} = 300 \text{ V}, I_D = 10.5 \text{ A}$	-	16	-	
tr	Rise time	R _G = 4.7 Ω , V _{GS} = 10 V (see Figure 14: "Test circuit for	ı	7.3	1	
$t_{\text{d(off)}}$	Turn-off delay time	resistive load switching times"	ı	53	1	ns
t _f	Fall time	and Figure 19: "Switching time waveform")	-	9.3	-	

 $^{^{(1)}}$ Coss eq. is defined as a constant equivalent capacitance giving the same charging time as Coss when VDS increases from 0 to 80% VDSS.

Table 8: Source-drain diode

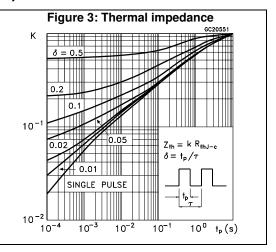
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD} ⁽¹⁾	Source-drain current		-		21	Α
I _{SDM} ⁽²⁾	Source-drain current (pulsed)		1		84	Α
V _{SD} ⁽³⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 21 A	1		1.6	V
t _{rr}	Reverse recovery time	I _{SD} = 21 A, di/dt = 100 A/μs,	1	140		ns
Qrr	Reverse recovery charge	V _{DD} = 60 V (see Figure 16: "Test circuit for inductive load switching and diode recovery times")	-	0.5		μC
IRRM	Reverse recovery current		-	7.4		Α
t _{rr}	Reverse recovery time	I _{SD} = 21 A, di/dt = 100 A/µs,	-	309		ns
Qrr	Reverse recovery charge	V _{DD} = 60 V, T _j = 150 °C (see Figure 16: "Test circuit for inductive load switching and diode recovery times")	-	2.6		μC
I _{RRM}	Reverse recovery current		-	16.8		Α

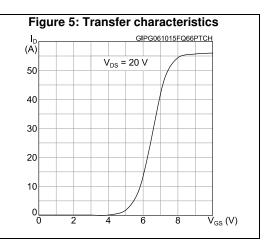
Notes:

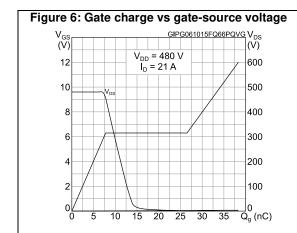
Table 9: Gate-source Zener diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)GSO}$	Gate-source breakdown voltage	$I_{GS} = \pm 250 \mu\text{A}, I_{D} = 0 \text{A}$	±30	-	-	V

The built-in back-to-back Zener diodes are specifically designed to enhance the ESD performance of the device. The Zener voltage facilitates efficient and cost-effective device integrity protection, thus eliminating the need for additional external componentry.


 $^{^{\}left(1\right) }$ Limited by maximum junction temperature.


⁽²⁾ Pulse width is limited by safe operating area.


 $^{^{(3)}}$ Pulse test: pulse duration = 300 μ s, duty cycle 1.5%.

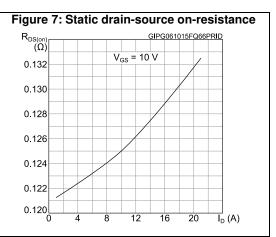

2.1 Electrical characteristics (curves)

Figure 2: Safe operating area GIPG061015FQ66FSOA Ι_D (A) 10¹ 10 µs 100 µs 100 1 ms 10 ms 10 T_j= 150 °C T_c= 25 °C single pulse 10-2 $\vec{V}_{DS}(V)$ 10² 10⁰ 10¹

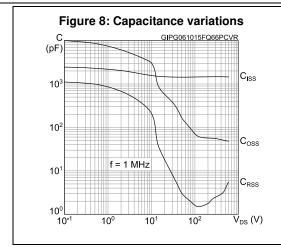
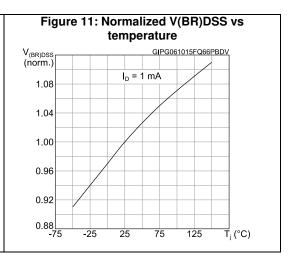


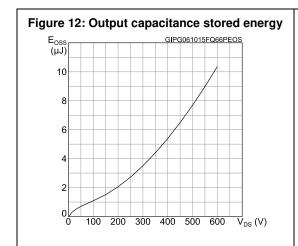
Figure 10: Normalized on-resistance vs temperature

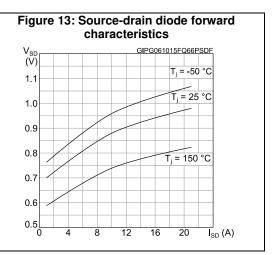
R_{DS(on)} GIPG061015FQ66PRON
(norm.)

2.2

1.8


1.4


1.0


0.6

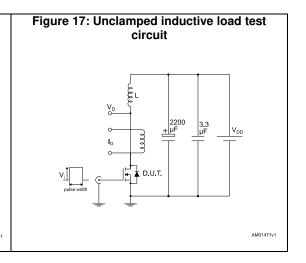
0.2

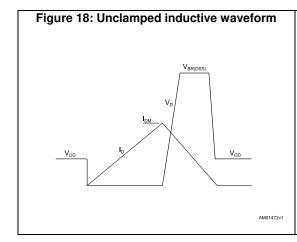
-75
-25
25
75
125
T_j (°C)

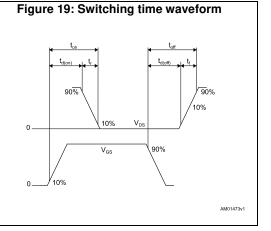
Test circuits STF28N60DM2

3 Test circuits

Figure 14: Test circuit for resistive load switching times


Figure 15: Test circuit for gate charge behavior


12 V 47 kΩ 100 nF D.U.T.


2200 PF 47 kΩ OVG

AM01466y1

Figure 16: Test circuit for inductive load switching and diode recovery times

STF28N60DM2 Package information

4 **Package information**

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

4.1 **TO-220FP package information**

Dia L6 L2 *L7* L3 L4 F2 7012510_Rev_K_B

Figure 20: TO-220FP package outline

57/

Table 10: TO-220FP package mechanical data

Dim	Dim.		
Dim.	Min.	Тур.	Max.
A	4.4		4.6
В	2.5		2.7
D	2.5		2.75
Е	0.45		0.7
F	0.75		1
F1	1.15		1.70
F2	1.15		1.70
G	4.95		5.2
G1	2.4		2.7
Н	10		10.4
L2		16	
L3	28.6		30.6
L4	9.8		10.6
L5	2.9		3.6
L6	15.9		16.4
L7	9		9.3
Dia	3		3.2

STF28N60DM2 Revision history

5 Revision history

Table 11: Document revision history

Date	Revision	Changes
04-Sep-2014	1	First release.
09-Oct-2015	2	Text and formatting changes throughout document On cover page: - upated title and Features table In section Electrical ratings: - updated all table data In section Electrical characteristics: - updated all table data - renamed table Static (was On /off states) - added table Gate-source Zener diode Added section Electrical characteristics (curves) Updated and renamed section Package mechanical data (was Package information)
		Datasheet promoted from preliminary to production data

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

