

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

STF7N90K5

N-channel 900 V, 0.72 Ω typ., 7 A MDmesh™ K5 Power MOSFET in a TO-220FP package

Datasheet - production data

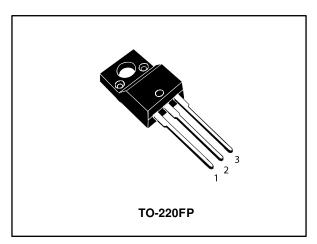
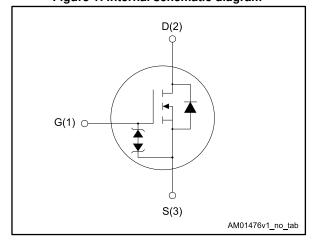



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	ΙD
STF7N90K5	900 V	0.81 Ω	7 A

- Industry's lowest R_{DS(on)} x area
- Industry's best FoM (figure of merit)
- Ultra-low gate charge
- 100% avalanche tested
- Zener-protected

Applications

• Switching applications

Description

This very high voltage N-channel Power MOSFET is designed using MDmesh™ K5 technology based on an innovative proprietary vertical structure. The result is a dramatic reduction in on-resistance and ultra-low gate charge for applications requiring superior power density and high efficiency.

Table 1: Device summary

Order code	Marking	Package	Packing
STF7N90K5	7N90K5	TO-220FP	Tube

Contents STF7N90K5

Contents

1	Electric	cal ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	œuits	8
4	Packag	e information	9
	4.1	TO-220FP package information	10
5	Revisio	n history	12

STF7N90K5 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _G s	Gate-source voltage	± 30	V
I_D	Drain current (continuous) at T _C = 25 °C	7	Α
ΙD	Drain current (continuous) at T _C = 100 °C	4.4	Α
I _D ⁽¹⁾	Drain current (pulsed)	28	Α
P _{TOT}	Total dissipation at T _C = 25 °C	25	W
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t = 1 s; $T_C = 25$ °C)	2500 V	
dv/dt (2)	Peak diode recovery voltage slope	4.5	\//
dv/dt (3)	MOSFET dv/dt ruggedness	50	V/ns
Tj	Operating junction temperature range	- 55 to 150	°C
T _{stg}	Storage temperature range	- 55 10 150	C

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	5	°C/W
R _{thj-amb}	Thermal resistance junction-ambient	62.5	°C/W

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
lar	Avalanche current, repetitive or not repetitive (pulse width limited by T_{jmax})	2.4	Α
Eas	Single pulse avalanche energy (starting T_j = 25 °C, I_D = I_{AR} , V_{DD} = 50 V)	230	mJ

⁽¹⁾Pulse width limited by safe operating area

 $^{^{(2)}}I_{SD} \leq 7$ A, di/dt \leq 100 A/ $\mu s;$ VDs peak < V(BR)DSS, VDD = 450 V

 $^{^{(3)}}V_{DS} \le 720 \ V$

Electrical characteristics STF7N90K5

2 Electrical characteristics

T_C = 25 °C unless otherwise specified

Table 5: On/off-state

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	900			٧
		$V_{GS} = 0 \text{ V}, V_{DS} = 900 \text{ V}$			1	μΑ
IDSS	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 900 \text{ V}$ $T_{C} = 125 {}^{\circ}\text{C}^{(1)}$			50	μΑ
I _{GSS}	Gate body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			±10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DD}=V_{GS},I_D=100\;\mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on-resistance	$V_{GS} = 10 \text{ V}, I_D = 3.5 \text{ A}$		0.72	0.81	Ω

Notes:

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	425	1	pF
Coss	Output capacitance	$V_{DS} = 100 \text{ V}, f = 1 \text{ MHz}, $ $V_{GS} = 0 \text{ V}$	-	41	ı	pF
Crss	Reverse transfer capacitance	• • • • • • • • • • • • • • • • • • •	-	1.2	1	pF
$C_{o(tr)}^{(1)}$	Equivalent capacitance time related	V _{GS} = 0,	-	64	ı	pF
C _{o(er)} ⁽²⁾	Equivalent capacitance energy related	V _{DS} = 0 to 720 V		24		pF
R_g	Intrinsic gate resistance	f = 1 MHz , I _D = 0 A	-	6.7	-	Ω
Qg	Total gate charge	V _{DD} = 720 V, I _D = 7 A	-	17.7	1	nC
Q_{gs}	Gate-source charge	V _{GS} = 10 V	-	3.1	-	nC
Q _{gd}	Gate-drain charge	(see Figure 15: "Test circuit for gate charge behavior")	-	13	-	nC

Notes:

⁽¹⁾Defined by design, not subject to production test.

 $^{^{(1)}}$ Co_(tr) is a constant capacitance value that gives the same charging time as Coss while Vps is rising from 0 to 80% Vpss.

 $^{^{(2)}}C_{O(er)}$ is a constant capacitance value that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V_{DD} = 450 V, I_{D} = 3.5 A, R_{G} = 4.7 Ω	-	13.2	-	ns
tr	Rise time	$V_{GS} = 10 \text{ V}$	-	14.2	-	ns
t _{d(off)}	Turn-off delay time	(see Figure 14: "Test circuit for resistive load switching times" and Figure 19: "Switching time waveform")	1	31.6	1	ns
t _f	Fall time	,	-	14.7	-	ns

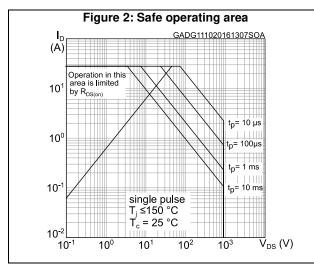
Table 8: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		7	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		28	А
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 7 A, V _{GS} = 0 V	-		1.5	V
t _{rr}	Reverse recovery time	I _{SD} = 7 A, di/dt = 100 A/μs,V _{DD} = 60 V	-	352		ns
Qrr	Reverse recovery charge	(see Figure 16: "Test circuit for inductive load switching and diode recovery times")	-	3.63		μC
I _{RRM}	Reverse recovery current		-	20.6		А
t _{rr}	Reverse recovery time	I _{SD} = 7 A, di/dt = 100 A/μs V _{DD} = 60 V, T _j = 150 °C (see Figure 16: "Test circuit for inductive load switching and diode	-	525		ns
Q _{rr}	Reverse recovery charge		-	4.94		μC
I _{RRM}	Reverse recovery current	recovery times")	-	18.8		Α

Notes:

Table 9: Gate-source Zener diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)GSO}	Gate-source breakdown voltage	$I_{GS}=\pm 1 \text{mA}, I_{D}=0 \text{ A}$	±30	-	-	V


The built-in back-to-back Zener diodes are specifically designed to enhance the ESD performance of the device. The Zener voltage facilitates efficient and cost-effective device integrity protection, thus eliminating the need for additional external componentry.

⁽¹⁾Pulse width limited by safe operating area

 $^{^{(2)}}$ Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

2.1 Electrical characteristics (curves)

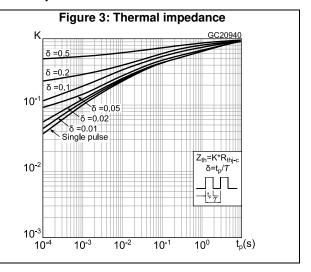


Figure 4: Output characteristics

GIPG051020161339OCH

V_{GS} = 11 V

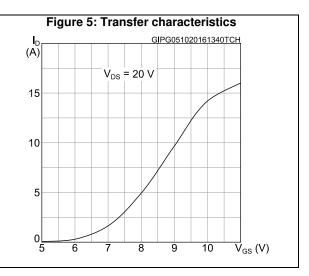
V_{GS} = 10 V

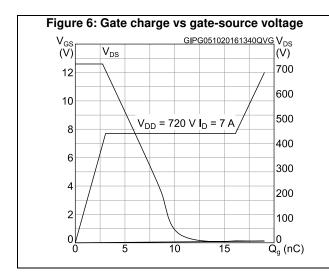
V_{GS} = 9 V

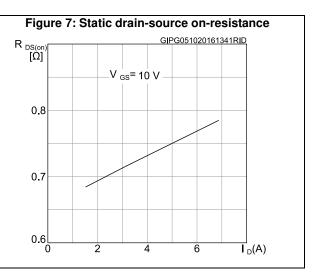
V_{GS} = 7 V

V_{GS} = 6 V

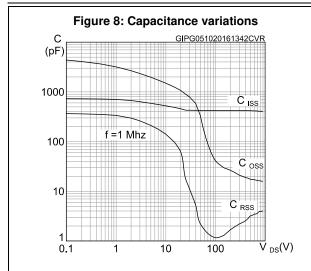
O

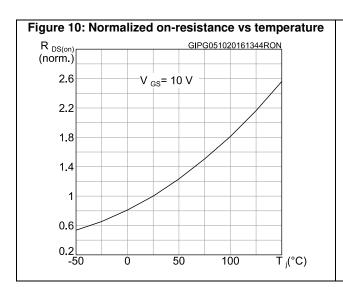

4

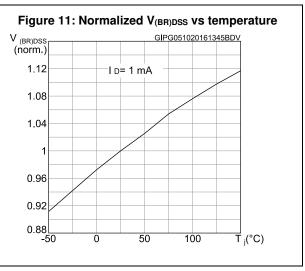

8

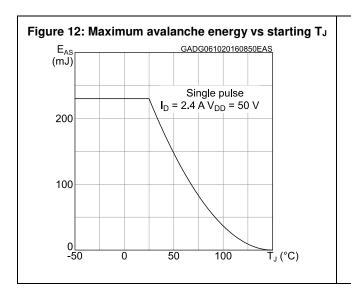

12

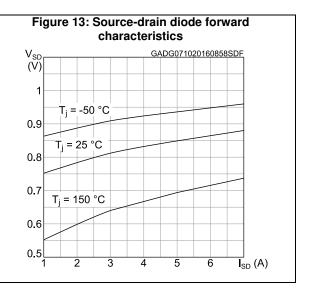
16


V_{DS} (V)








577

Test circuits STF7N90K5

3 **Test circuits**

Figure 14: Test circuit for resistive load

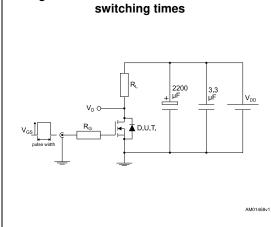


Figure 15: Test circuit for gate charge behavior RL I_G= CONST $2.7 \ k\Omega$ 47 kΩ AM01469v10

Figure 16: Test circuit for inductive load switching and diode recovery times

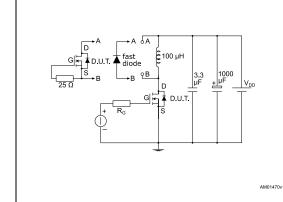


Figure 17: Unclamped inductive load test circuit

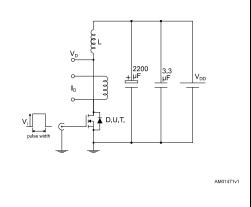


Figure 18: Unclamped inductive waveform

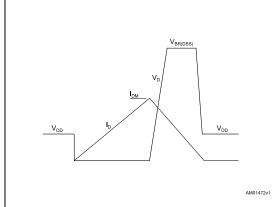
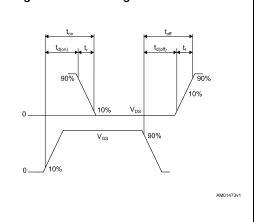



Figure 19: Switching time waveform

STF7N90K5 Package information

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 TO-220FP package information

Figure 20: TO-220FP package outline

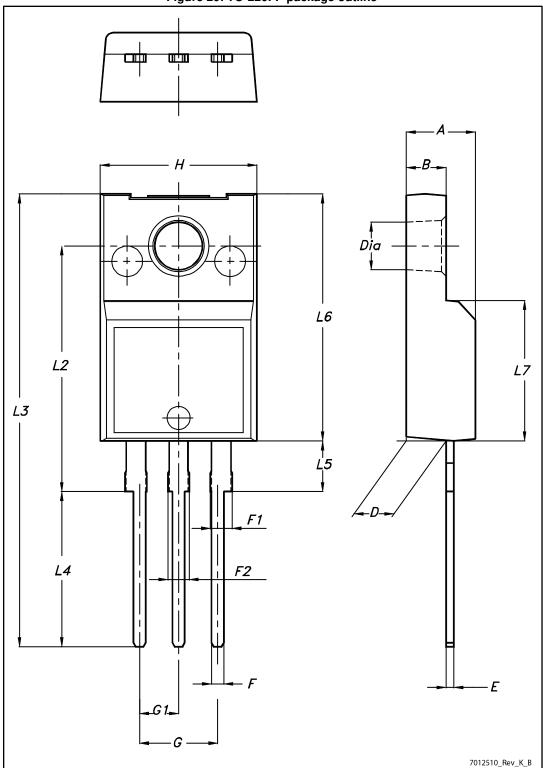


Table 10: TO-220FP package mechanical data

Di		mm	
Dim.	Min.	Тур.	Max.
А	4.4		4.6
В	2.5		2.7
D	2.5		2.75
Е	0.45		0.7
F	0.75		1
F1	1.15		1.70
F2	1.15		1.70
G	4.95		5.2
G1	2.4		2.7
Н	10		10.4
L2		16	
L3	28.6		30.6
L4	9.8		10.6
L5	2.9		3.6
L6	15.9		16.4
L7	9		9.3
Dia	3		3.2

Revision history STF7N90K5

5 Revision history

Table 11: Document revision history

Date	Revision	Changes
17-Oct-2016	1	First release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

