

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

□ STF9N80K5, STFI9N80K5

N-channel 800 V, 0.73 Ω typ., 7 A MDmesh™ K5 Power MOSFETs in TO-220FP and I²PAKFP packages

Datasheet - production data

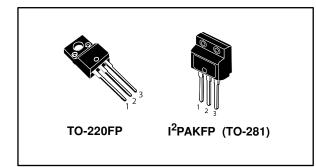
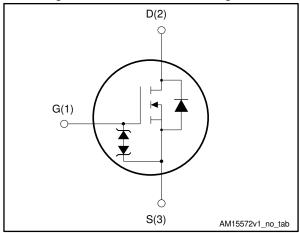



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	ID
STF9N80K5	900.1/	0.00.0	7 A
STFI9N80K5	800 V	0.90 Ω	/ A

- Industry's lowest R_{DS(on)} x area
- Industry's best figure of merit (FoM)
- Ultra-low gate charge
- 100% avalanche tested
- Zener-protected

Applications

Switching applications

Description

This very high voltage N-channel Power MOSFET is designed using MDmesh™ K5 technology based on an innovative proprietary vertical structure. The result is a dramatic reduction in on-resistance and ultra-low gate charge for applications requiring superior power density and high efficiency.

Table 1: Device summary

Order code	Marking	Package	Packing
STF9N80K5	ONIGOIZE	TO-220FP	Tube
STFI9N80K5	9N80K5	I ² PAKFP(TO-281)	rube

Contents

1	Electric	eal ratings	3
2	Electric	eal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	9
4	Packag	e information	10
	4.1	TO-220FP package information	11
	4.2	I2PAKFP (TO-281) package information	13
5	Revisio	n history	15

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{GS}	Gate-source voltage	± 30	V
$I_D^{(1)}$	Drain current (continuous) at T _C = 25 °C	7	Α
$I_D^{(1)}$	Drain current (continuous) at T _C = 100 °C	4.4	Α
$I_D^{(2)}$	Drain current (pulsed)	28	Α
P _{TOT}	Total dissipation at $T_C = 25$ °C	25	W
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t=1 s; $T_{\rm C}$ =25 °C)	2500	V
dv/dt (3)	Peak diode recovery voltage slope	4.5	\//
dv/dt (4)	MOSFET dv/dt ruggedness	50	V/ns
T _{stg}	Storage temperature	- 55 to 150	°C
T_J	Operating junction temperature	- 33 10 150	C

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	5	°C/W
R _{thj-amb}	Thermal resistance junction-ambient	62.5	°C/W

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I_{AR}	I _{AR} Avalanche current, repetitive or not repetitive (pulse width limited by T _{jmax})		
E _{AR} Single pulse avalanche energy (starting Tj = 25 °C, I _D = I _{AR} , V _{DD} = 50 V)		200	mJ

 $^{^{(1)}}$ Limited by maximum junction temperature.

⁽²⁾Pulse width limited by safe operating area

 $^{^{(3)}}I_{SD} \le 7$ A, di/dt 100 A/ μ s; V_{DS} peak < V_{(BR)DSS},V_{DD}= 640 V

 $^{^{(4)}}V_{DS} \le 640 \text{ V}$

2 Electrical characteristics

T_C = 25 °C unless otherwise specified

Table 5: On/off-state

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	800			V
		$V_{GS} = 0 \text{ V}, V_{DS} = 800 \text{ V}$			1	μΑ
I _{DSS}	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 800 \text{ V}$ $T_{C} = 125 ^{\circ}\text{C}$			50	μΑ
I _{GSS}	Gate body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			±10	μΑ
$V_{GS(th)}$	Gate threshold voltage	$V_{DS}=V_{GS},I_D=100\;\mu A$	3	4	5	٧
R _{DS(on)}	Static drain-source on-resistance	$V_{GS} = 10 \text{ V}, I_D = 3.5 \text{ A}$		0.73	0.90	Ω

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	340	-	pF
Coss	Output capacitance	$V_{DS} = 100 \text{ V}, f = 1 \text{ MHz}, $ $V_{GS} = 0 \text{ V}$	-	37	-	pF
C_{rss}	Reverse transfer capacitance	VG3 - 0 V	-	0.65	-	pF
C _{o(tr)} ⁽¹⁾	Equivalent capacitance time related	V _{DS} = 0 to 640 V,	-	61	-	pF
C _{o(er)} ⁽²⁾	Equivalent capacitance energy related	$V_{GS} = 0 V$	-	22	-	pF
R_g	Intrinsic gate resistance	$f = 1 \text{ MHz}$, $I_D = 0 \text{ A}$	-	7	-	Ω
Q_g	Total gate charge	$V_{DD} = 640 \text{ V}, I_D = 7 \text{ A}$	-	12	-	nC
Q _{gs}	Gate-source charge	V _{GS} = 10 V	-	3.8	-	nC
Q_{gd}	Gate-drain charge	See (Figure 16: "Test circuit for gate charge behavior")	-	6.7	-	nC

Notes:

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V_{DD} = 400 V, I_{D} =3.5 A,	ı	11	1	ns
t _r	Rise time	R _G = 4.7 Ω, V _{GS} = 10 V See (Figure 15: "Test circuit for resistive load switching times" and Figure 20: "Switching time waveform")	-	5.7	-	ns
t _{d(off)}	Turn-off delay time		-	65.3	-	ns
t _f	Fall time		-	13.6	-	ns

 $^{^{(1)}}$ Time related is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

 $^{^{(2)}}$ Energy related is defined as a constant equivalent capacitance giving the same stored energy as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

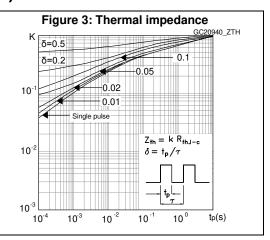
Table 8: Source-drain diode

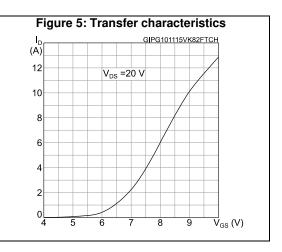
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		7	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		28	Α
V _{SD} ⁽²⁾	Forward on voltage	$I_{SD} = 7 \text{ A}, V_{GS} = 0 \text{ V}$	1		1.5	٧
T _{rr}	Reverse recovery time	$I_{SD} = 7 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	1	292		ns
Q _{rr}	Reverrse recovery charge	V _{DD} = 60 V See Figure 17: "Test circuit for inductive load switching and diode recovery times"	1	2.66		μC
I _{RRM}	Reverse recovery current		1	18.2		Α
T _{rr}	Reverse recovery time	$I_{SD} = 7 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$	-	477		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V, T _j = 150 °C See Figure 17: "Test circuit for inductive load switching and diode recovery times"	-	3.91		μC
I _{RRM}	Reverse recovery current		-	16.4		Α

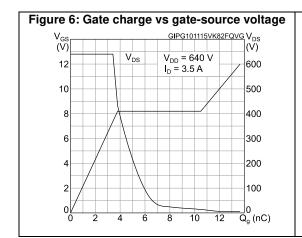
Notes:

Table 9: Gate-source Zener diode

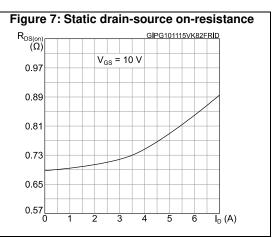
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)GSO}$	Gate-source breakdown voltage	I_{GS} = ± 1mA, I_{D} = 0 A	30	-	1	٧


The built-in back-to-back Zener diodes are specifically designed to enhance the ESD performance of the device. The Zener voltage facilitates efficient and cost-effective device integrity protection, thus eliminating the need for additional external componentry.


⁽¹⁾Pulse width limited by safe operating area


 $^{^{(2)}\}text{Pulsed:}$ pulse duration = 300 $\mu\text{s,}$ duty cycle 1.5%

2.2 Electrical characteristics (curves)


Figure 2: Safe operating area $(A) \begin{array}{c} I_D & \text{GIPG101115VK82FSOA} \\ \text{Operation in this area is} \\ \text{limited by } R_{\text{DS(on)}} \end{array}$ 10 t_o=10 μs 10⁰ t₀=100 µs t_o=1 ms t_o=10 ms 10 T≤150 °C T₀= 25°C single pulse 10-2 V_{DS} (V) 10° 10¹ 10² 10^{3}

6/16

DocID028359 Rev 2

Figure 8: Capacitance variations

C GIPG1011115VK82FCVR

103

104

105

Coss CRSS

106

107

107

107

108

109

109

1001

1001

1001

1002

VDS (V)

Figure 9: Normalized gate threshold voltage vs temperature

V_{GS((h)}
(norm.)

1.2

1.0

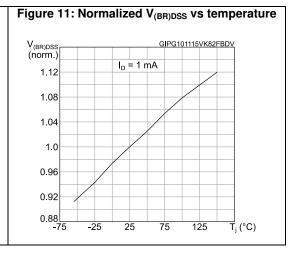
0.8

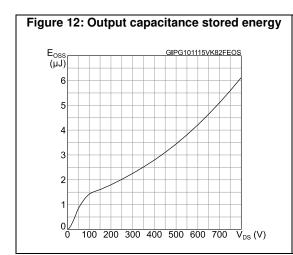
0.6

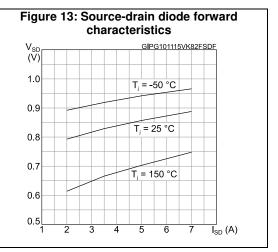
0.4

-75

-25


25


75


125

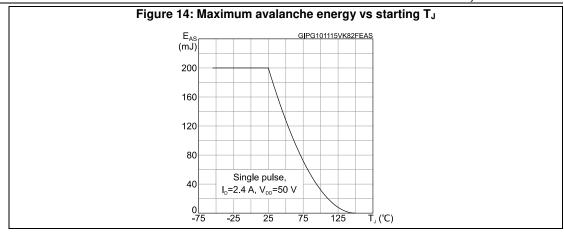
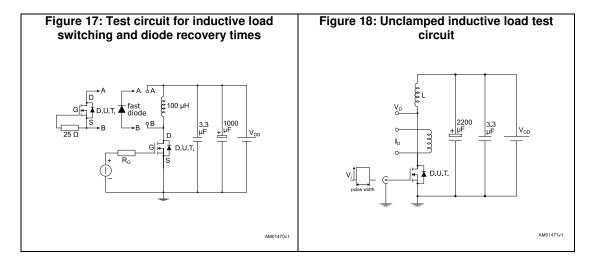

T_j (°C)

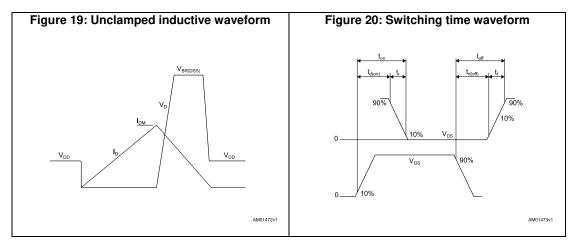
Figure 10: Normalized on-resistance vs temperature R_{DS(on)} (norm.) GIPG101115VK82FRON V_{GS} = 10 V 2.6 2.2 1.8 1.4 1.0 0.6 0.2L -75 T_j (°C) 25 75 125 -25

3 Test circuits

Figure 15: Test circuit for resistive load switching times

Figure 16: Test circuit for gate charge behavior


Figure 16: Test circuit for gate charge behavior


Vos pulse width 1 kΩ

Vos pulse width 1 kΩ

AM0148841

Figure 16: Test circuit for gate charge behavior

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 TO-220FP package information

Figure 21: TO-220FP package outline

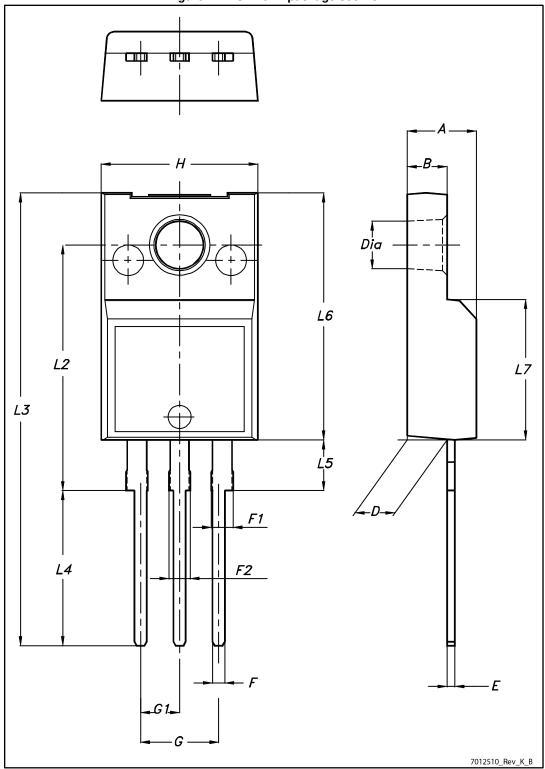


Table 10: TO-220FP package mechanical data

rabio 101 10 22011 paokago meonamoar data						
Dim.	mm					
Diffi.	Min.	Тур.	Max.			
A	4.4		4.6			
В	2.5		2.7			
D	2.5		2.75			
Е	0.45		0.7			
F	0.75		1			
F1	1.15		1.70			
F2	1.15		1.70			
G	4.95		5.2			
G1	2.4		2.7			
Н	10		10.4			
L2		16				
L3	28.6		30.6			
L4	9.8		10.6			
L5	2.9		3.6			
L6	15.9		16.4			
L7	9		9.3			
Dia	3		3.2			

4.2 I²PAKFP (TO-281) package information

Figure 22: I²PAKFP (TO-281) package outline

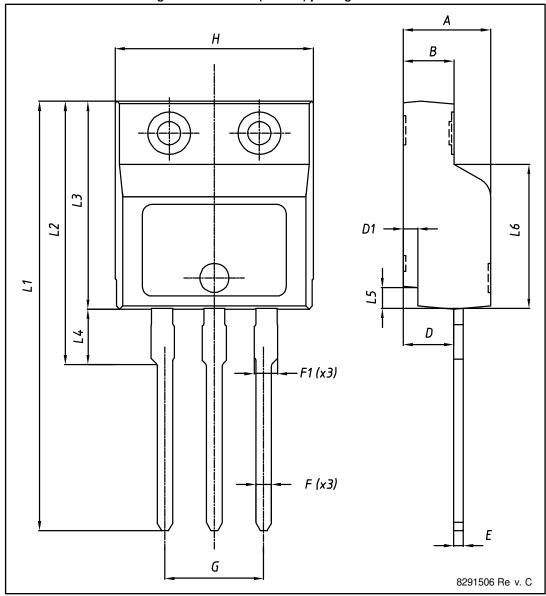


Table 11: I²PAKFP (TO-281) mechanical data

Dim.	mm		
	Min.	Тур.	Max.
Α	4.40		4.60
В	2.50		2.70
D	2.50		2.75
D1	0.65		0.85
Е	0.45		0.70
F	0.75		1.00
F1			1.20
G	4.95		5.20
Н	10.00		10.40
L1	21.00		23.00
L2	13.20		14.10
L3	10.55		10.85
L4	2.70		3.20
L5	0.85		1.25
L6	7.50	7.60	7.70

5 Revision history

Table 12: Document revision history

Date	Revision	Changes	
06-Oct-2015	1	First release.	
11-Nov-2015	2	Modified: Table 2: "Absolute maximum ratings", Table 3: "Thermal data", Table 4: "Avalanche characteristics", Table 6: "Dynamic", Table 7: "Switching times" and Table 8: "Source-drain diode". Added: Section 3.1: "Electrical characteristics (curves)" Minor text changes	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

