mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

STB9NK60ZD STF9NK60ZD - STP9NK60ZD

N-channel 600 V - 0.85 Ω - 7 A - D²PAK, TO-220FP, TO-220 SuperFREDMesh™ Power MOSFET

Features

Туре	V _{DSS}	R _{DS(on)} max	Ι _D	Pw
STB9NK60ZD	600 V	< 0.95 Ω	7 A	125 W
STF9NK60ZD	600 V	< 0.95 Ω	7 A	30 W
STP9NK60ZD	600 V	< 0.95 Ω	7 A	125 W

- Very high dv/dt capability
- 100% avalanche tested
- Gate charge minimized
- Low intrinsic capacitances
- Fast internal recovery diode

Application

Switching applications

Description

The SuperFREDMesh[™] series associates all advantages of reduced on-resistance, zener gate protection and very high dv/dt capability with a Fast body-drain recovery diode. Such series complements the "FDmesh[™]" advanced technology.

TO-220 D ² PAK

Figure 1. Internal schematic diagram

Table 1	1.	Device	summary

Order codes	Marking	Package	Packaging
STB9NK60ZD	B9NK60ZD	D ² PAK	Tape and reel
STF9NK60ZD	F9NK60ZD	TO-220FP	Tube
STP9NK60ZD	P9NK60ZD	TO-220	Tube

April	2008

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 Electrical characteristics (curves)	6
3	Test circuits	9
4	Package mechanical data 1	0
5	Packaging mechanical data 1	4
6	Revision history1	5

1 Electrical ratings

Table 2.	Absolute	maximum	ratings
----------	----------	---------	---------

Symbol	Parameter	Valu	Unit	
Symbol	Parameter	D ² PAK/TO-220	TO-220FP	- Unit
V _{DS}	Drain-source voltage ($V_{GS} = 0$)	60)	V
V _{GS}	Gate- source voltage	± 3	0	V
I _D	Drain current (continuos) at $T_C = 25 \ ^{\circ}C$	7	7 ⁽¹⁾	Α
I _D	Drain current (continuos) at T _C = 100 °C	4.3 4.3 ⁽¹⁾		Α
I _{DM} ⁽²⁾	Drain current (pulsed)	28 28 (1)		Α
P _{TOT}	Total dissipation at $T_C = 25 \ ^{\circ}C$	125 30		W
	Derating factor	1 0.24		W/°C
V _{ESD(G-S)}	Gate source ESD (HBM-C=100 pF, R=1.5 k Ω)	400	0	V
dv/dt ⁽³⁾	Peak diode recovery voltage slope	15		V/ns
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t=1 s;T _C =25 °C)	2500		v
T _j T _{stg}	Operating junction temperature Storage temperature	-55 to 150		°C

1. Limited only by maximum temperature allowed

2. Pulse width limited by safe operating area

3. $I_{SD} \leq$ 7 A, di/dt \leq 500 A/µs, V_{DD} = 80%V_{(BR)DSS}

Table 3.Thermal data

Symbol	Parameter	Valu	Unit	
Symbol Parameter		D ² PAK/TO-220	TO-220FP	Unit
Rthj-pcb	Thermal resistance junction-pcb Max (when mounted on minimum footprint)	30		°C/W
Rthj-case	Thermal resistance junction-case Max	1 4.16		°C/W
Rthj-amb	Thermal resistance junction-ambient Max	62.5		°C/W
т	Maximum lead temperature for soldering purpose	300		°C

Table 4. Avalanche characteristics

Symbol	Parameter	Max value	Unit
I _{AR}	Avalanche current, repetitive or not-repetitive (pulse width limited by T_j max)	7	A
E _{AS}	Single pulse avalanche energy (starting $T_j = 25 \text{ °C}, I_D = I_{AR}, V_{DD} = 50 \text{ V}$)	235	mJ

2 Electrical characteristics

(Tcase = 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
,				71		
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 1 mA, V _{GS} = 0	600			v
	Zero gate voltage	V _{DS} = Max rating			1	μA
IDSS	drain current ($V_{GS} = 0$)	V_{DS} = Max rating, T_{C} = 125 °C			50	μΑ
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	$V_{GS} = \pm 20 V$			±10	μA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 100 \ \mu A$	2.5	3.5	4.5	V
R _{DS(on)}	Static drain-source on resistance	V _{GS} = 10 V, I _D = 3.5 A		0.85	0.95	Ω

Table 5. On /off states

Table 6. Dynamic

	2 y name					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
9 _{fs} ⁽¹⁾	Forward transconductance	$V_{DS} = 15 V_{,} I_{D} = 3.5 A$		5.3		S
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	V _{DS} = 25 V, f = 1 MHz, V _{GS} = 0		1110 135 30		pF pF pF
C _{OSS eq} ⁽²⁾	Equivalent output capacitance	$V_{GS} = 0, V_{DS} = 0$ to 480 V		72		pF
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	$V_{DD} = 480 \text{ V}, I_D = 7 \text{ A},$ $V_{GS} = 10 \text{ V}$ (see Figure 17)		41 8.7 21	53	nC nC nC

1. Pulsed: Pulse duration = 300 μ s, duty cycle 1.5%

2. $C_{oss\ eq}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_DS increases from 0 to 80% V_{DSS}

	e miening milee					
Symbol	Parameter	Test conditions	Min.	Тур.	Max	Unit
t _{d(on)} t _r t _{d(off)} t _f	Turn-on delay time Rise time Turn-off-delay time Fall time	$V_{DD} = 300 \text{ V}, I_D = 3.5 \text{ A}$ $R_G = 4.7 \Omega, V_{GS} = 10 \text{ V}$ (see Figure 16)		11.4 13.6 23.1 15		ns ns ns ns
t _{r(Voff)} t _f t _c	Off-voltage rise time Fall time Cross-over time	$V_{DD} = 480 \text{ V}, I_D = 7 \text{ A}, R_G = 4.7 \Omega, V_{GS} = 10 \text{ V}$ (see Figure 16)		11 8 20		ns ns ns

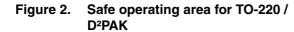
Table 7. Switching times

Table 8.Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} ⁽¹⁾	Source-drain current Source-drain current (pulsed)				7 28	A A
V _{SD} ⁽²⁾	Forward on voltage	$I_{SD} = 7 \text{ A}, V_{GS} = 0$			1.6	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I _{SD} = 7 A, di/dt = 100 A/μs V _{DD} = 30 V (<i>see Figure 21</i>)		130 550 8.4		ns nC A
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I _{SD} = 7 A, di/dt = 100 A/μs V _{DD} = 30 V, T _j = 150 °C (<i>see Figure 21</i>)		176 880 10		ns nC A

1. Pulse width limited by safe operating area

2. Pulsed: Pulse duration = 300 μ s, duty cycle 1.5%


Table 9.	Gate-source	Zener	diode
	Galc-Source	LCIICI	alouc

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
BV _{GSO} ⁽¹⁾	Gate-source breakdown voltage	lgs=± 1 mA (open drain)	30			V

 The built-in back-to-back Zener diodes have specifically been designed to enhance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components

2.1 Electrical characteristics (curves)

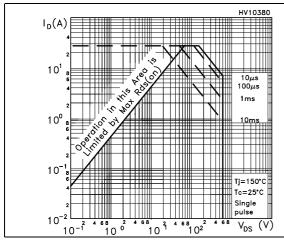
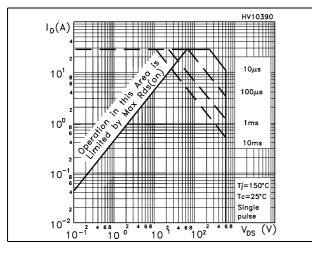



Figure 4. Safe operating area for TO-220FP

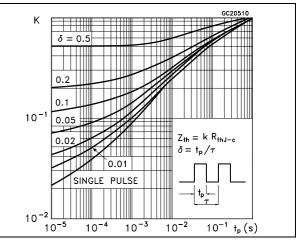
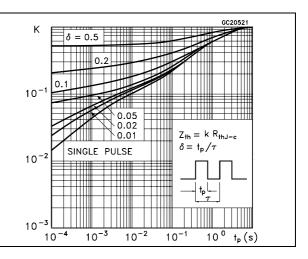
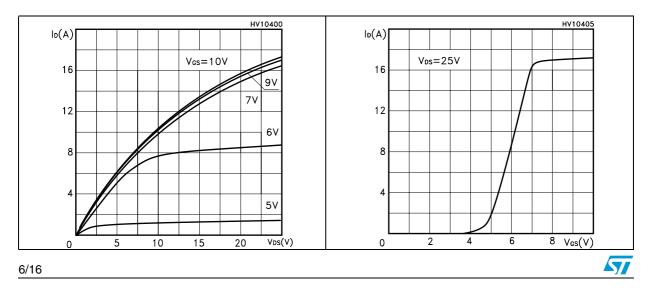




Figure 5. Thermal impedance for TO-220FP

Figure 8. Normalized B_{VDSS} vs temperature

Figure 9. Static drain-source on resistance

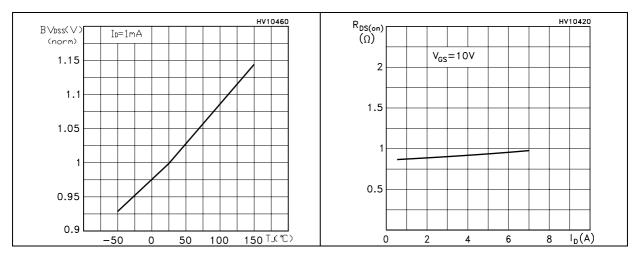


Figure 10. Gate charge vs gate-source voltage Figure 11. Capacitance variations

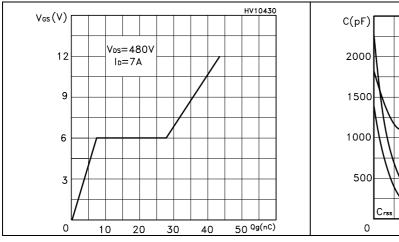
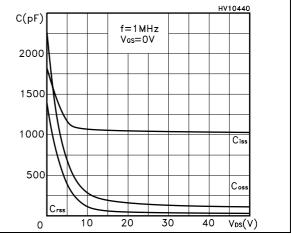
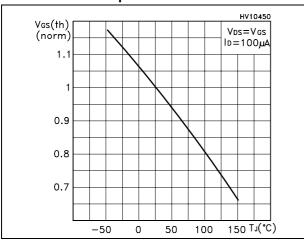
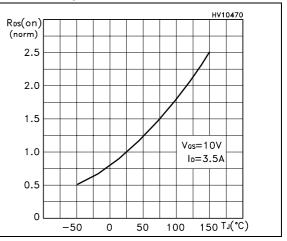
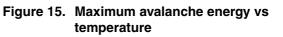
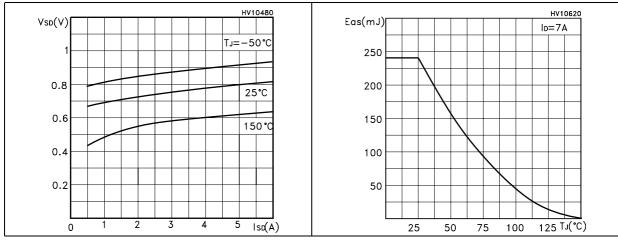


Figure 12. Normalized gate threshold voltage vs temperature


Figure 13. Normalized on resistance vs temperature



7/16

Figure 14. Source-drain diode forward characteristics

3 Test circuits

Figure 16. Switching times test circuit for resistive load

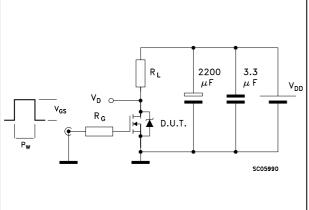
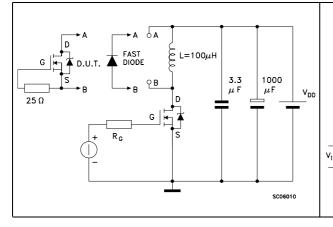



Figure 18. Test circuit for inductive load switching and diode recovery times

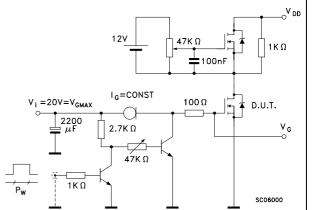
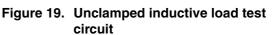



Figure 17. Gate charge test circuit

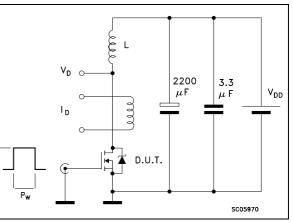
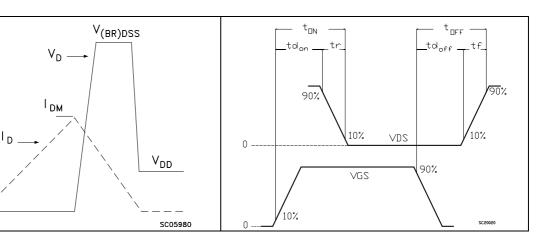



Figure 21. Switching time waveform

57

 V_{DD}

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: *www.st.com*

Max 0.181

0.034

0.066

0.027

0.62

0.409

0.106

0.202

0.051

0.256

0.107

0.551

0.154

0.151

0.050

0.645

1.137

Dim

А

b

b1 c

D

D1

Е

е

e1

F

H1

J1

L

L1

L20

L30

ØP

	mm	in		
Min	Тур	Max	Min	Тур
4.40		4.60	0.173	
0.61		0.88	0.024	
1.14		1.70	0.044	
0.48		0.70	0.019	
15.25		15.75	0.6	

10.40

2.70

5.15

1.32

6.60

2.72

14

3.93

3.85

0.393

0.094

0.194

0.048

0.244

0.094

0.511

0.137

0.147

1.27

16.40

28.90

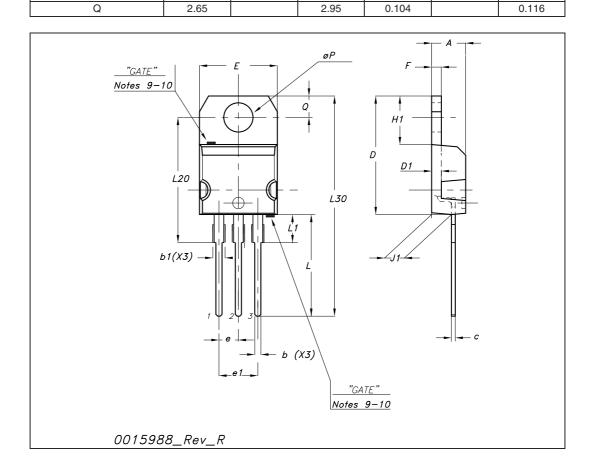
10

2.40

4.95

1.23

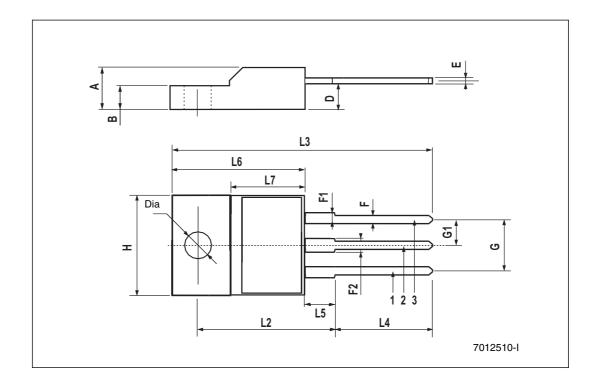
6.20

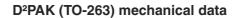

2.40

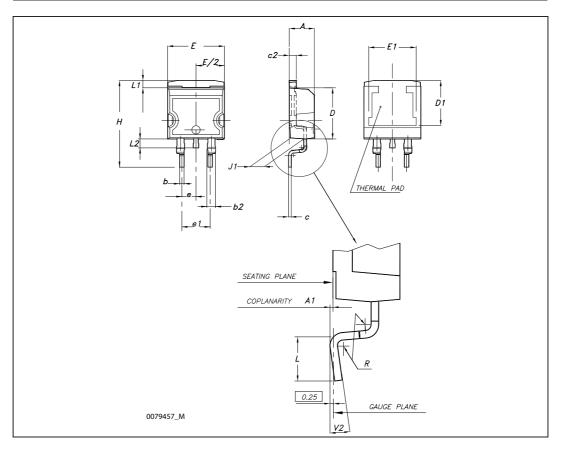
13

3.50

3.75

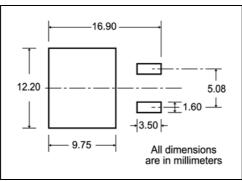

TO-220 mechanical data

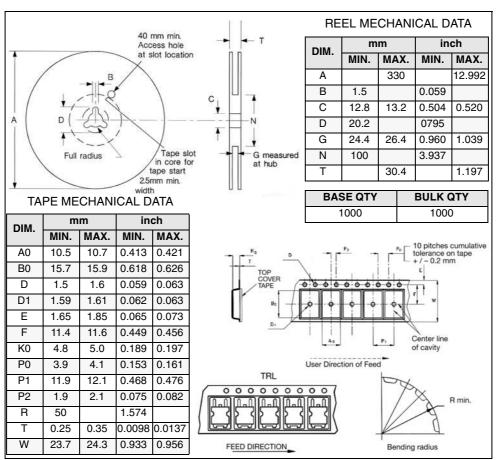

57


Dim.		mm.			inch		
	Min.	Тур	Max.	Min.	Тур.	Max.	
А	4.40		4.60	0.173		0.181	
В	2.5		2.7	0.098		0.106	
D	2.5		2.75	0.098		0.108	
Е	0.45		0.70	0.017		0.027	
F	0.75		1.00	0.030		0.039	
F1	1.15		1.50	0.045		0.067	
F2	1.15		1.50	0.045		0.067	
G	4.95		5.20	0.195		0.204	
G1	2.40		2.70	0.094		0.106	
Н	10		10.40	0.393		0.409	
L2		16			0.630		
L3	28.6		30.6	1.126		1.204	
L4	9.80		10.60	0.385		0.417	
L5	2.9		3.6	0.114		0.141	
L6	15.90		16.40	0.626		0.645	
L7	9		9.30	0.354		0.366	
Dia	3		3.2	0.118		0.126	

TO-220FP mechanical data

Dim		mm			inch		
Dim	Min	Тур	Мах	Min	Тур	Max	
A	4.40		4.60	0.173		0.181	
A1	0.03		0.23	0.001		0.009	
b	0.70		0.93	0.027		0.037	
b2	1.14		1.70	0.045		0.067	
С	0.45		0.60	0.017		0.024	
c2	1.23		1.36	0.048		0.053	
D	8.95		9.35	0.352		0.368	
D1	7.50			0.295			
E	10		10.40	0.394		0.409	
E1	8.50			0.334			
е		2.54			0.1		
e1	4.88		5.28	0.192		0.208	
Н	15		15.85	0.590		0.624	
J1	2.49		2.69	0.099		0.106	
L	2.29		2.79	0.090		0.110	
L1	1.27		1.40	0.05		0.055	
L2	1.30		1.75	0.051		0.069	
R		0.4			0.016		
V2	0°		8°	0°		8°	




57

5 Packaging mechanical data

D²PAK FOOTPRINT

TAPE AND REEL SHIPMENT

* on sales type

6 Revision history

Table 10.	Document revision	history
-----------	-------------------	---------

Date	Revision	Changes
29-Sep-2003	6	Data updated
13-Jun-2006	7	The document has been reformatted
14-Apr-2008	9	 <i>Table 8</i> has been corrected <i>Package mechanical data</i> upadted.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

