

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

STFU16N65M2

N-channel 650 V, 0.32 Ω typ., 11 A MDmesh™ M2 Power MOSFET in a TO-220FP ultra narrow leads package

Datasheet - production data

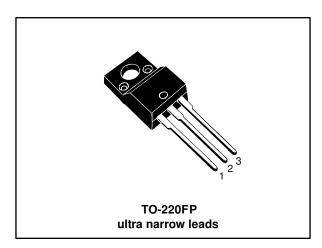
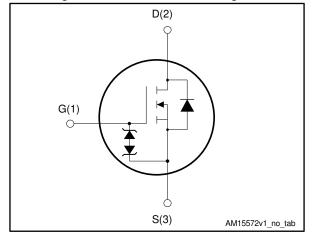



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max	ID
STFU16N65M2	650 V	0.36 Ω	11 A

- Extremely low gate charge
- Excellent output capacitance (Coss) profile
- 100% avalanche tested
- Zener-protected

Applications

• Switching applications

Description

This device is an N-channel Power MOSFET developed using MDmesh™ M2 technology. Thanks to its strip layout and an improved vertical structure, the device exhibits low on-resistance and optimized switching characteristics, rendering it suitable for the most demanding high efficiency converters.

Table 1: Device summary

Order code	Marking	Package	Packaging
STFU16N65M2	16N65M2	TO-220FP ultra narrow leads	Tube

Contents STFU16N65M2

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e mechanical data	9
	4.1	TO-220FP ultra narrow leads package information	9
5	Revisio	n history	11

STFU16N65M2 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate-source voltage	± 25	V
I _D	Drain current (continuous) at T _C = 25 °C	11 ⁽¹⁾	Α
ΙD	Drain current (continuous) at T _C = 100 °C	6.9 ⁽¹⁾	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	44 ⁽¹⁾	Α
P _{TOT}	Total dissipation at $T_C = 25$ °C	25	W
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t = 1 s; T_C = 25 °C)	2500	>
dv/dt (3)	Peak diode recovery voltage slope	15	\//no
dv/dt (4)	MOSFET dv/dt ruggedness	50	V/ns
T _{stg}	Storage temperature range	EE to 150	°C
Tj	Operating junction temperature range	-55 to 150	10

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	5	°C/W
R _{thj-amb}	Thermal resistance junction-ambient	62.5	°C/W

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by T _{jmax})	1.9	Α
Eas	Single pulse avalanche energy (starting $T_j = 25^{\circ}C$, $I_D = I_{AR}$; $V_{DD} = 50 \text{ V}$)	360	mJ

⁽¹⁾Limited by maximum junction temperature..

⁽²⁾Pulse width limited by safe operating area.

 $^{^{(3)}}I_{SD} \leq$ 11 A, di/dt \leq 400 A/ μ s; VDSpeak < V(BR)DSS, VDD=400 V

 $^{^{(4)}}V_{DS} \le 520 \text{ V}$

Electrical characteristics STFU16N65M2

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 5: On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$I_D = 1 \text{ mA}, V_{GS} = 0 \text{ V}$	650			٧
	Zero gate voltage	$V_{GS} = 0 \text{ V}, V_{DS} = 650 \text{ V}$			1	μΑ
IDSS	drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 650 \text{ V},$ $T_{C} = 125 \text{ °C}^{(1)}$			100	μΑ
Igss	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = ±25 V			±10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 5.5 A		0.32	0.36	Ω

Notes:

Table 6: Dynamic

Symbol	Parameter	Test conditions		Тур.	Max.	Unit
Ciss	Input capacitance		ı	718	-	pF
Coss	Output capacitance	$V_{DS} = 100 \text{ V}, f = 1 \text{ MHz},$	1	32	-	pF
Crss	Reverse transfer capacitance	V _{GS} = 0 V		1.1	-	pF
Coss eq. (1)	Equivalent output capacitance	$V_{DS} = 0$ to 520 V, $V_{GS} = 0$ V	ı	189	-	pF
Rg	Intrinsic gate resistance	f = 1 MHz open drain	1	5.2	-	Ω
Q_g	Total gate charge	$V_{DD} = 520 \text{ V}, I_D = 11 \text{ A},$	1	19.5	-	nC
Q _{gs}	Gate-source charge	$V_{GS} = 0$ to 10 V	-	4	-	nC
Q_{gd}	Gate-drain charge	(see Figure 15: "Test circuit for gate charge behavior"	-	8.3	-	nC

Notes:

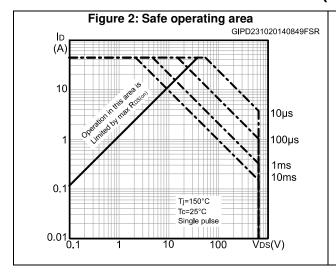
Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 325 \text{ V}, I_D = 5.5 \text{ A},$	-	11.3	-	ns
t _r	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$	-	8.2	-	ns
t _{d(off)}	Turn-off delay time	(see Figure 14: "Test circuit for resistive load switching times"	ı	36	1	ns
tf	Fall time	and Figure 19: "Switching time waveform")	-	11.3	-	ns

 $[\]ensuremath{^{(1)}}\mbox{Defined}$ by design, not subject to production test.

 $^{^{(1)}}$ Coss eq. is defined as a constant equivalent capacitance giving the same charging time as Coss when VDS increases from 0 to 80% VDSS

Table 8: Source drain diode


Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		1		11	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		44	Α
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 11 A, V _{GS} = 0 V	1		1.6	V
t _{rr}	Reverse recovery time	$I_{SD} = 11 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	1	342		ns
Qrr	Reverse recovery charge	$V_{DD} = 60 \text{ V}$	-	3.5		μC
I _{RRM}	Reverse recovery current	(see Figure 16: "Test circuit for inductive load switching and diode recovery times")	1	20.4		А
t _{rr}	Reverse recovery time	$I_{SD} = 11 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	-	458		ns
Qrr	Reverse recovery charge	$V_{DD} = 60 \text{ V}, T_j = 150 \text{ °C}$	-	4.6		μC
I _{RRM}	Reverse recovery current	(see Figure 16: "Test circuit for inductive load switching and diode recovery times")	-	20.5		Α

Notes:

⁽¹⁾Pulse width limited by safe operating area.

 $^{^{(2)}\}text{Pulsed:}$ pulse duration = 300 $\mu\text{s},$ duty cycle 1.5%

2.1 Electrical characteristics (curves)

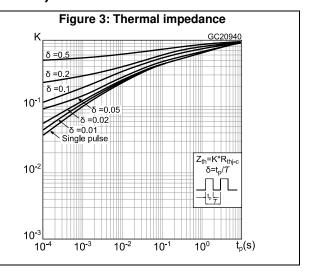


Figure 4: Output characteristics

GIPD221020141412FSR

VGS= 7, 8, 9, 10 V

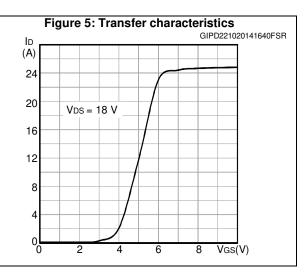
24

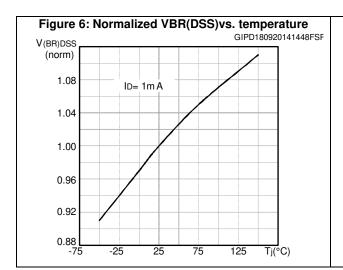
20

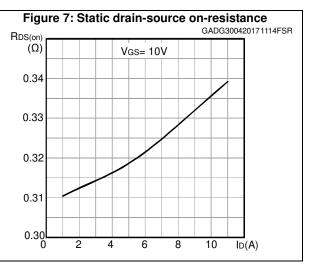
16

12

5V


8


4


4V

0

5 10 15 VDS(V)

STFU16N65M2 Electrical characteristics

Figure 8: Gate charge vs. gate-source voltage GIPD221020141708FSR VDS (V) VDS VDD = 520 V 500 10 ID = 11 A8 400 300 6 200 100 2 0 12 16 20 Qg(nC)

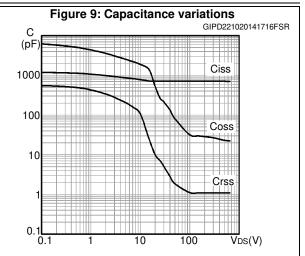
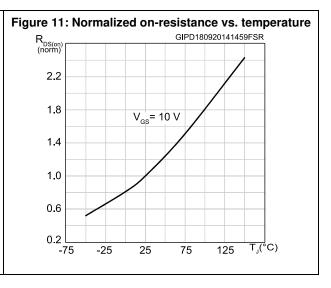
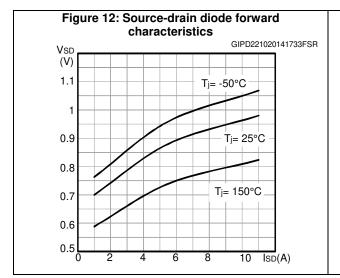
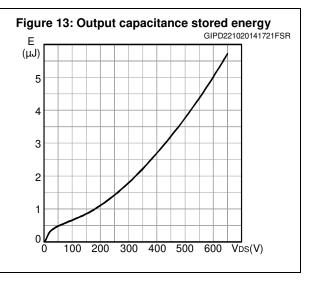





Figure 10: Normalized gate threshold voltage vs. temperature GIPD180920141442FSF VGS(th) (norm) $ID = 250 \mu A$ 1.1 1.0 0.9 8.0 0.7 0.6 **L** -75 -25 25 75 Tj(°C)

Test circuits STFU16N65M2

3 Test circuits

Figure 14: Test circuit for resistive load switching times

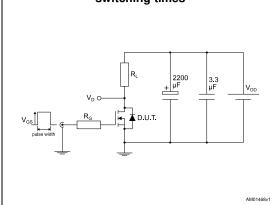


Figure 15: Test circuit for gate charge behavior

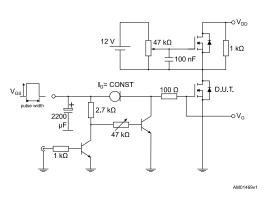


Figure 16: Test circuit for inductive load switching and diode recovery times

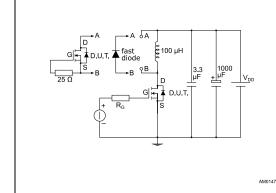


Figure 17: Unclamped inductive load test circuit

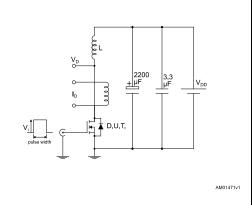


Figure 18: Unclamped inductive waveform

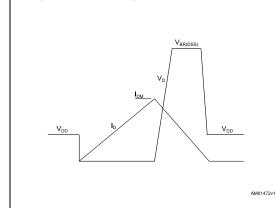
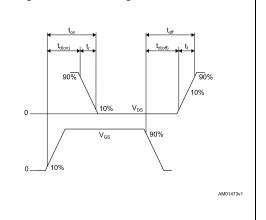



Figure 19: Switching time waveform

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 TO-220FP ultra narrow leads package information

В F1(x3) D G1 Ε 8576148_1

Figure 20: TO-220FP ultra narrow leads package outline

Table 9: TO-220FP ultra narrow leads mechanical data

Di		mm	
Dim.	Min.	Тур.	Max.
A	4.40		4.60
В	2.50		2.70
D	2.50		2.75
Е	0.45		0.60
F	0.65		0.75
F1	-		0.90
G	4.95		5.20
G1	2.40	2.54	2.70
Н	10.00		10.40
L2	15.10		15.90
L3	28.50		30.50
L4	10.20		11.00
L5	2.50		3.10
L6	15.60		16.40
L7	9.00		9.30
L8	3.20		3.60
L9	-		1.30
Dia.	3.00		3.20

STFU16N65M2 Revision history

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
03-Apr-2017	1	Initial release

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

