imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Automotive-grade trench gate field-stop IGBT, HB series 600 V, 30 A high speed

Datasheet - production data

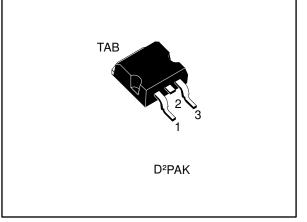
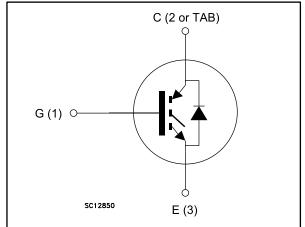



Figure 1: Internal schematic diagram

Features

- AEC-Q101 qualified
- Maximum junction temperature: T_J = 175 °C
- Logic level gate drive
- High speed switching series
- Minimized tail current
- V_{CE(sat)} = 1.7 V (typ.) @ I_C = 30 A
- Low V_F soft recovery co-packaged diode
- Tight parameters distribution
- Safer paralleling
- Low thermal resistance

Applications

Ignition

Description

This device is an IGBT developed using an advanced proprietary trench gate field-stop structure. The device is part of the new HB series of IGBTs, which represents an optimum compromise between conduction and switching loss to maximize the efficiency of any frequency converter. Furthermore, the slightly positive $V_{CE(sat)}$ temperature coefficient and very tight parameter distribution result in safer paralleling operation.

Table 1: Device summary

Order code	Marking	Package	Packaging
STGB30H60DLLFBAG	GB30H60DLLFB	D ² PAK	Tape and reel

DocID029886 Rev 1

This is information on a product in full production.

Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	5
3	Test cir	cuits	10
4	Packag	e information	11
	4.1	D ² PAK package information	11
	4.2	D ² PAK packing information	14
5	Revisio	n history	16

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
VCES	Collector-emitter voltage (V _{GE} = 0)	600	V
lc	Continuous collector current at $T_C = 25 \text{ °C}$	60	А
lc	Continuous collector current at T _c = 100 °C	30	А
ICP ⁽¹⁾	Pulsed collector current	120	А
V_{GE}	Gate-emitter voltage	±20	V
1_	Continuous forward current at $T_C = 25 \ ^{\circ}C$	60	А
IF	Continuous forward current at T _C = 100 °C	30	A
I _{FP} ⁽¹⁾	Pulsed forward current	120	А
Ртот	Total dissipation at $T_C = 25 \text{ °C}$	260	W
Tstg	Storage temperature range - 55 to 150		°C
TJ	Operating junction temperature range	- 55 to 175	°C

Notes:

 $\ensuremath{^{(1)}}\ensuremath{\mathsf{Pulse}}$ width limited by maximum junction temperature.

Table 3: Thermal data

Symbol	Parameter	Value	Unit
Du ve	Thermal resistance junction-case IGBT	0.58	°C/W
RthJC	Thermal resistance junction-case diode	2.08	°C/W
RthJA	Thermal resistance junction-ambient	62.5	°C/W

2 Electrical characteristics

 $T_C = 25 \ ^{\circ}C$ unless otherwise specified

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)CES}$	Collector-emitter breakdown voltage	$V_{GE} = 0 V, I_C = 1 mA$	600			V
		$V_{GE}=5~V,~I_C=30~A$		1.7	2.15	
V _{CE(sat)} Collector-emitter saturation voltage	$V_{GE} = 5 \text{ V}, \text{ Ic} = 30 \text{ A}, T_J = 125 \text{ °C}$		1.9		v	
	$V_{GE} = 5 \text{ V}, \text{ I}_{C} = 30 \text{ A},$ T _J = 175 °C		2			
		IF = 30 A		1.4	1.7	
VF	V _F Forward on-voltage	$I_F = 30 \text{ A}, T_J = 125 ^{\circ}\text{C}$		1.35		V
		I⊧ = 30 A, TJ = 175 °C		1.25		
$V_{\text{GE}(\text{th})}$	Gate threshold voltage	$V_{CE} = V_{GE}, I_C = 1 \text{ mA}$		1.8	2.5	V
I _{CES}	Collector cut-off current	$V_{GE} = 0 \ V, \ V_{CE} = 600 \ V$			25	μA
I _{GES}	Gate-emitter leakage current	$V_{CE}=0~V,~V_{GE}=\pm~10~V$			±250	μA

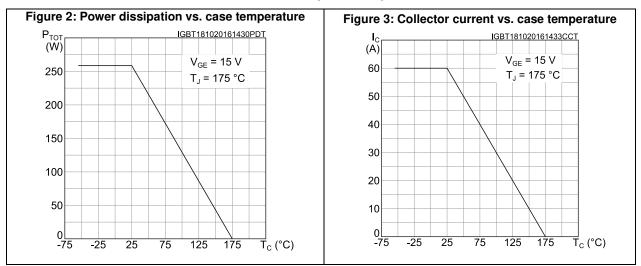
Table 4: Static characteristics

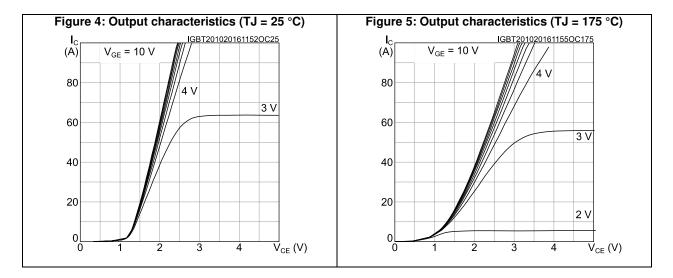
Table 5: Dynamic characteristics

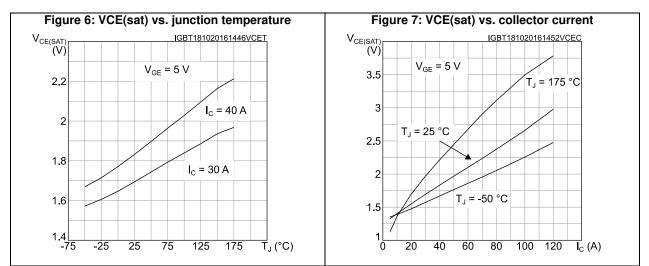
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Cies	Input capacitance		-	5000	-	
Coes	Output capacitance	V _{CE} = 25 V, f = 1 MHz, V _{GE} = 0 V	-	120	-	pF
Cres	Reverse transfer capacitance		-	75	-	
Qg	Total gate charge	Vcc = 520 V, Ic = 30 A,	-	110	-	
Q _{ge}	Gate-emitter charge	V _{GE} = 5 V (see <i>Figure 26:</i> "	-	16	-	nC
Q _{gc}	Gate-collector charge	Gate charge test circuit")	-	42	-	

Table 6: IGBT switching characteristics (inductive load)

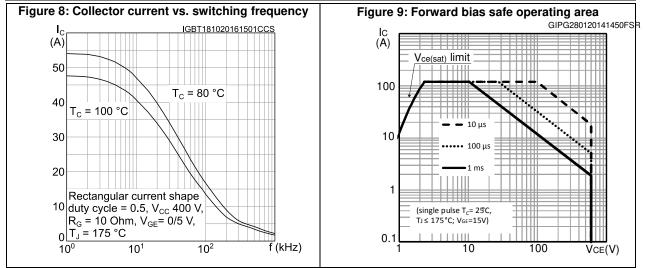
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
td(off)	Turn-off delay time	$V_{CE} = 400 \text{ V}, \text{ Ic} = 30 \text{ A},$		320	-	ns
t _f	Current fall time	$V_{GE} = 5 V, R_G = 10 \Omega$ (see <i>Figure 25: " Test</i>		20	-	ns
E _{off} ⁽¹⁾	Turn-off switching energy	circuit for inductive load switching")		600	-	μJ
td(off)	Turn-off delay time	$V_{CE} = 400 \text{ V}, \text{ Ic} = 30 \text{ A},$		330	-	ns
t _f	Current fall time	V _{GE} = 5 V, R _G = 10 Ω T _J = 175 °C (see <i>Figure 25:</i>		40	-	ns
E _{off} ⁽¹⁾	Turn-off switching energy	" Test circuit for inductive load switching")		880	-	μJ

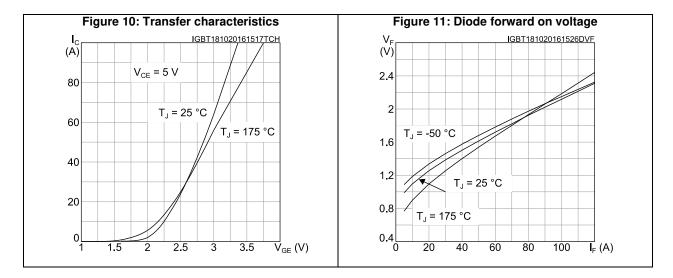

Notes:

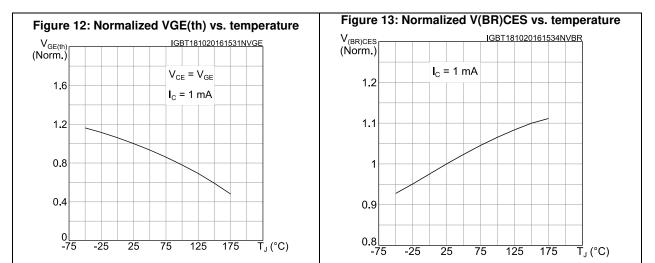

⁽¹⁾Including the tail of the collector current.

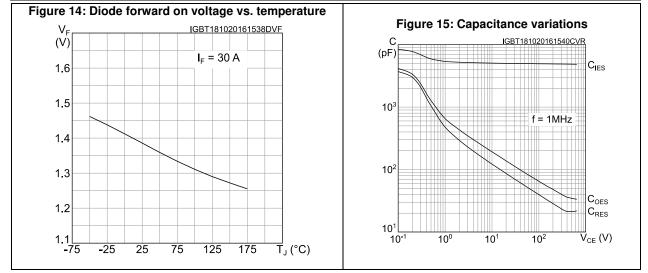


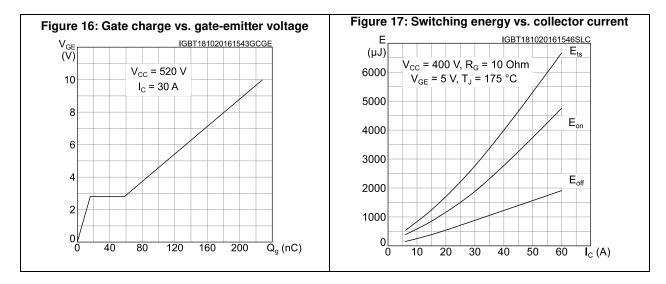
57

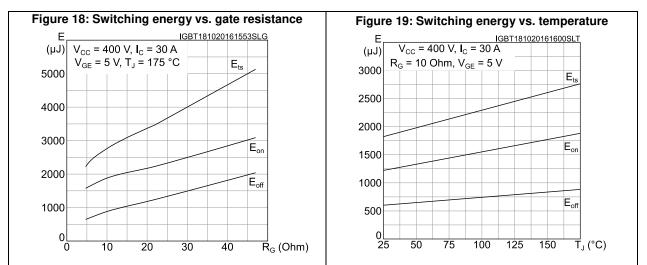

2.1 Electrical characteristics (curves)





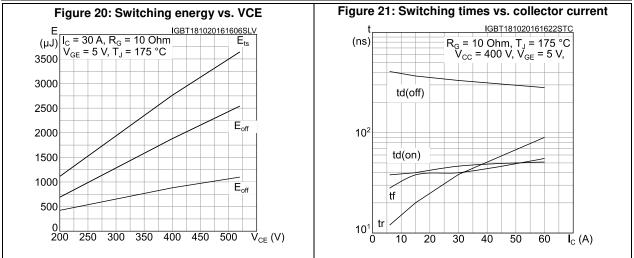


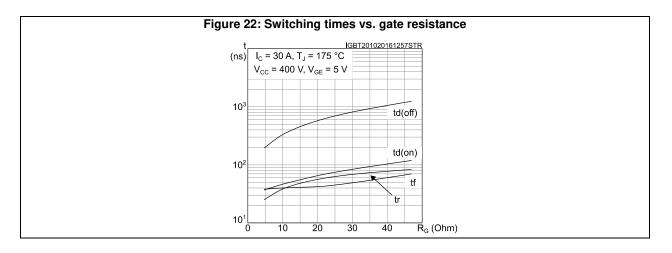




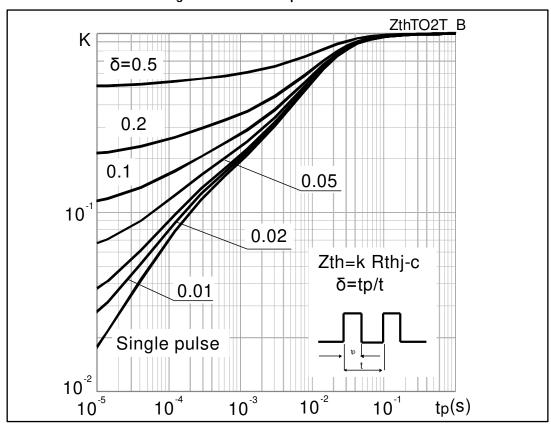
57

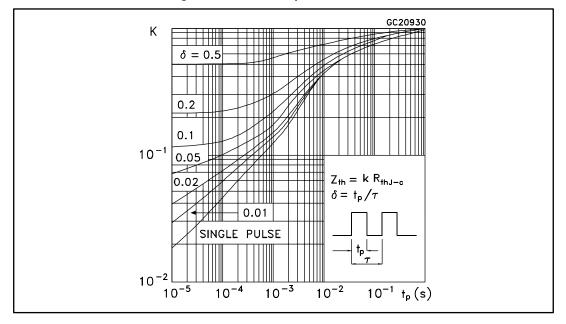
Electrical characteristics



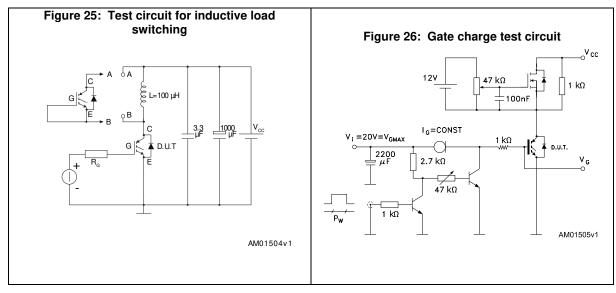


Electrical characteristics


STGB30H60DLLFBAG



57



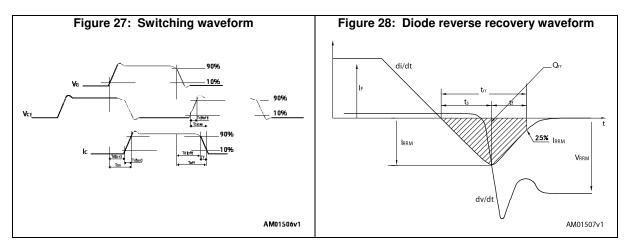
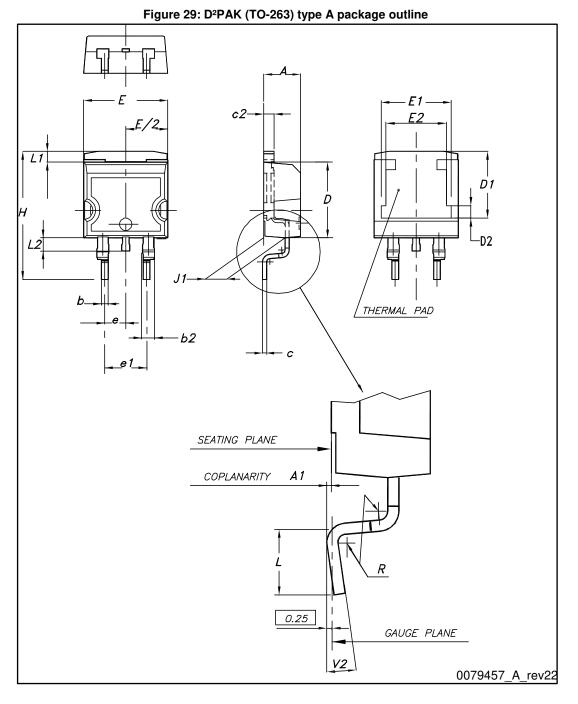

Figure 23: Thermal impedance for IGBT

Figure 24: Thermal impedance for diode

3 Test circuits



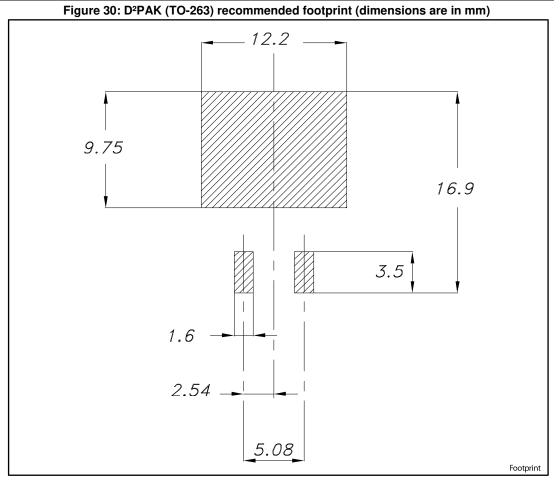
57

4 Package information

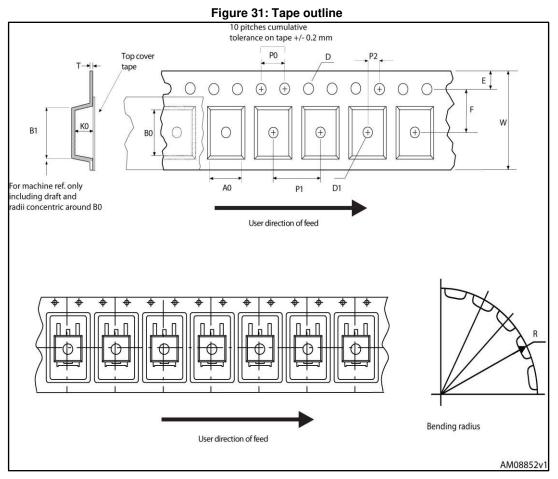
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

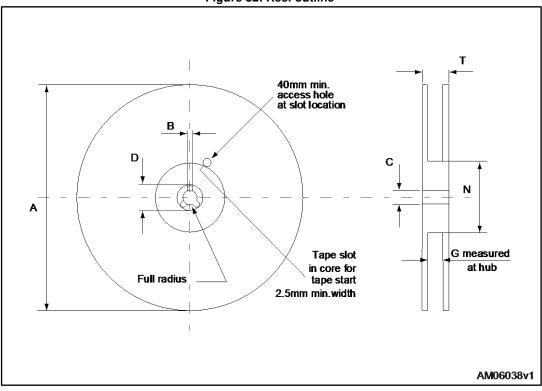
4.1 D²PAK package information

Package information


STGB30H60DLLFBAG

formation STGB30H60DLLFBAG							
Tab	Table 7: D ² PAK (TO-263) type A package mechanical data						
Dim.	mm						
Dini.	Min.	Тур.	Max.				
A	4.40		4.60				
A1	0.03		0.23				
b	0.70		0.93				
b2	1.14		1.70				
С	0.45		0.60				
c2	1.23		1.36				
D	8.95		9.35				
D1	7.50	7.75	8.00				
D2	1.10	1.30	1.50				
E	10		10.40				
E1	8.50	8.70	8.90				
E2	6.85	7.05	7.25				
е		2.54					
e1	4.88		5.28				
Н	15		15.85				
J1	2.49		2.69				
L	2.29		2.79				
L1	1.27		1.40				
L2	1.30		1.75				
R		0.4					
V2	0°		8°				




Package information

4.2 D²PAK packing information

Таре				Reel	
Dim	Dim. Dim.	mm			
Dini.	Min.	Max.	Dini.	Min.	Max.
A0	10.5	10.7	A		330
B0	15.7	15.9	В	1.5	
D	1.5	1.6	С	12.8	13.2
D1	1.59	1.61	D	20.2	
E	1.65	1.85	G	24.4	26.4
F	11.4	11.6	Ν	100	
K0	4.8	5.0	Т		30.4
P0	3.9	4.1			
P1	11.9	12.1	Base o	quantity	1000
P2	1.9	2.1	Bulk q	juantity	1000
R	50				
Т	0.25	0.35]		
W	23.7	24.3			

Revision history 5

Table 9: Document revision history

Date	Revision	Changes
18-Oct-2016	1	First release.

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

