

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

STGB40H65FB

Trench gate field-stop IGBT, HB series 650 V, 40 A high speed

Datasheet - production data

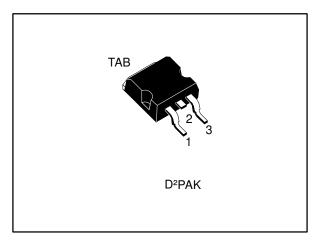
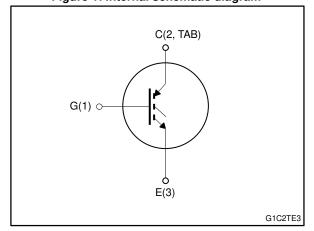



Figure 1: Internal schematic diagram

Features

- Maximum junction temperature: T_J = 175 °C
- High speed switching series
- Minimized tail current
- Low saturation voltage: V_{CE(sat)} = 1.6 V (typ.)
 @ I_C = 40 A
- Tight parameter distribution
- Safe paralleling
- Low thermal resistance

Applications

- Photovoltaic inverters
- High frequency converters

Description

This device is an IGBT developed using an advanced proprietary trench gate field-stop structure. The device is part of the new HB series of IGBTs, which represents an optimum compromise between conduction and switching loss to maximize the efficiency of any frequency converter. Furthermore, the slightly positive VCE(sat) temperature coefficient and very tight parameter distribution result in safer paralleling operation.

Table 1: Device summary

Order code	Marking	Package	Packing
STGB40H65FB	GB40H65FB	D ² PAK	Tape and reel

Contents STGB40H65FB

Contents

1	Electric	eal ratings	3
2	Electric	eal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	10
4	Packag	e information	11
	4.1	D ² PAK package information	11
	4.2	D ² PAK packing information	14
5	Revisio	n history	16

STGB40H65FB Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit	
Vces	Collector-emitter voltage (V _{GE} = 0)	650	٧	
1-	Continuous collector current at T _C = 25 °C	80	۸	
lc lc	Continuous collector current at T _C = 100 °C	40	Α	
ICP ⁽¹⁾	Pulsed collector current	160	Α	
V_{GE}	Gate-emitter voltage	±20	٧	
Ртот	Total dissipation at T _C = 25 °C	283	W	
Tstg	Storage temperature range	- 55 to 150	00	
TJ	Operating junction temperature range	- 55 to 175	°C	

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit	
R _{thJC}	Thermal resistance junction-case	0.53	°C ///	
R _{thJA}	Thermal resistance junction-ambient	62.5	°C/W	

 $^{^{(1)}}$ Pulse width limited by maximum junction temperature.

Electrical characteristics STGB40H65FB

2 Electrical characteristics

T_C = 25 °C unless otherwise specified

Table 4: Static characteristics

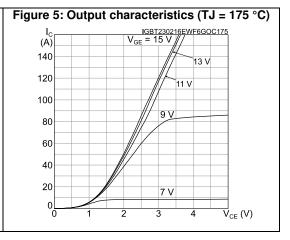
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage	$V_{GE} = 0 \text{ V}, I_C = 2 \text{ mA}$	650			>
		$V_{GE} = 15 \text{ V}, I_{C} = 40 \text{ A}$		1.6	2	
V _{CE(sat)}	V _{CE(sat)} Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 40 A, T _J = 125 °C		1.7		٧
	Voltage	V _{GE} = 15 V, I _C = 40 A, T _J = 175 °C		1.8		
V _{GE(th)}	Gate threshold voltage	V _{CE} = V _{GE} , I _C = 1 mA	5	6	7	V
I _{CES}	Collector cut-off current	$V_{GE} = 0 \text{ V}, V_{CE} = 650 \text{ V}$			25	μΑ
Iges	Gate-emitter leakage current	Vce = 0 V, Vge = ±20 V			±250	nA

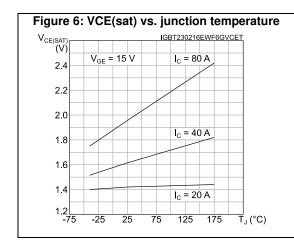
Table 5: Dynamic characteristics

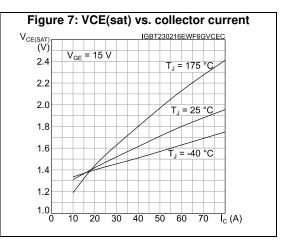
• • • • • • • • • • • • • • • • • • • •						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Cies	Input capacitance		-	5412	1	
Coes	Output capacitance	V _{CE} = 25 V, f = 1 MHz, V _{GE} = 0 V	-	198	1	pF
Cres	Reverse transfer capacitance	Val - V V	-	107	-	
Qg	Total gate charge	Vcc = 520 V, Ic = 40 A,	-	210	1	
Qge	Gate-emitter charge	V _{GE} = 15 V (see <i>Figure 23:</i>	-	39	-	nC
Q_{gc}	Gate-collector charge	"Gate charge test circuit")	-	82	-	

Table 6: Switching characteristics (inductive load)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time			40	-	
tr	Current rise time			13	-	ns
(di/dt) _{on}	Turn-on current slope	V _{CE} = 400 V, I _C = 40 A,		2413	-	A/μs
t _{d(off)}	Turn-off-delay time	$V_{GE} = 15 \text{ V}, R_G = 5 \Omega$		142	-	
t _f	Current fall time	(see Figure 22: "Test circuit for inductive load		27	-	ns
E _{on} (1)	Turn-on switching energy	switching")		498	-	
E _{off} (2)	Turn-off switching energy			363	-	μJ
Ets	Total switching energy			861	-	
t _{d(on)}	Turn-on delay time			38	-	20
tr	Current rise time			14	-	ns
(di/dt) _{on}	Turn-on current slope	V _{CE} = 400 V, I _C = 40 A,		2186	-	A/μs
t _{d(off)}	Turn-off-delay time	$V_{GE} = 15 \text{ V}, R_G = 5 \Omega$		141	-	
tf	Current fall time	T _J = 175 °C (see Figure 22: "Test circuit for		61	-	ns
Eon ⁽¹⁾	Turn-on switching energy	inductive load switching")		1417	-	
E _{off} (2)	Turn-off switching energy			764	-	μJ
E _{ts}	Total switching energy			2181	-	

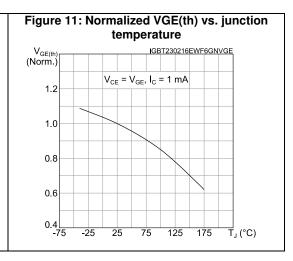

Notes:

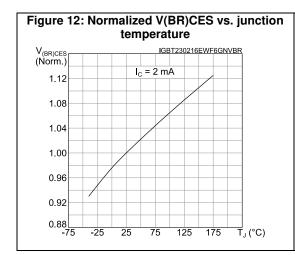

 $^{^{(1)}}$ Energy losses include reverse recovery of the external diode. The diode is the same of the co-packed STGW40H65DFB.


 $^{^{(2)}}$ Including the tail of the collector current.

2.1 Electrical characteristics (curves)

Figure 3: Collector current vs. case temperature I_{C} $I_{GBT230216EWF6GCCT}$ I_{C} $I_{GBT230216EWF6GCCT}$ I_{C} $I_{GBT230216EWF6GCCT}$ I_{C} $I_{GBT230216EWF6GCCT}$ I_{C} $I_{$




STGB40H65FB Electrical characteristics

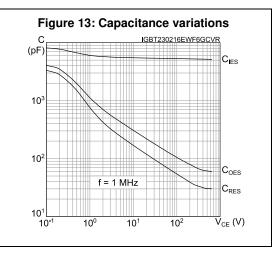
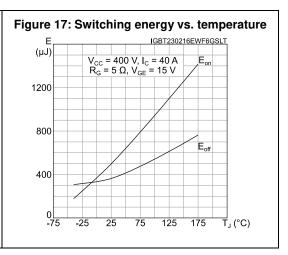

Figure 8: Collector current vs. switching frequency IGBT230216EWF6GCCS I_C (A) 100 80 $T_C = 80 \, ^{\circ}C$ 60 T_C = 100 °C 40 20 Rectangular current shape (duty cycle = 0.5, V_{CC} = 400 V R_G = 5 Ω , V_{GE} = 0/15 V , T_J = 175 °C f (kHz) 10⁰ 10¹ 10^{2}

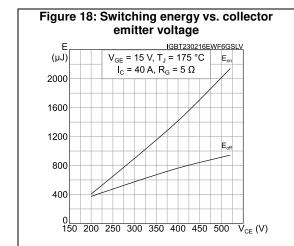
Figure 9: Forward bias safe operating area (A) 10^2 10^1 10^0 10^0 10^1 $t_p = 10 \ \mu s$ $t_p = 100 \ \mu s$ $t_p = 1 \ \mu s$

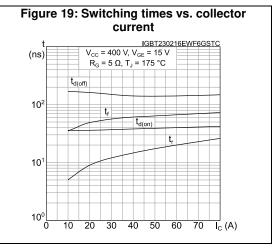
Figure 10: Transfer characteristics IGBT230216EWF6GTCH I_C V_{CE} = 5 V 140 T_J = 25 °C 120 T_J = 175 °C 100 80 T_J = 175 °C 60 40 T_J = 25 °C 20 9 10 V_{GE} (V)

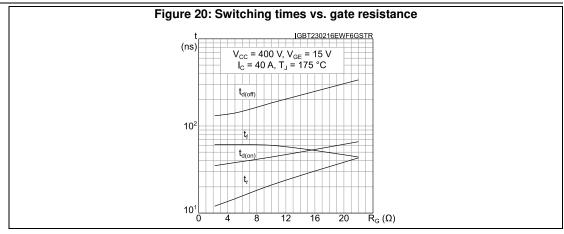
80

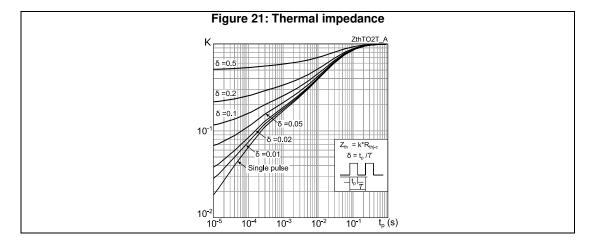
120

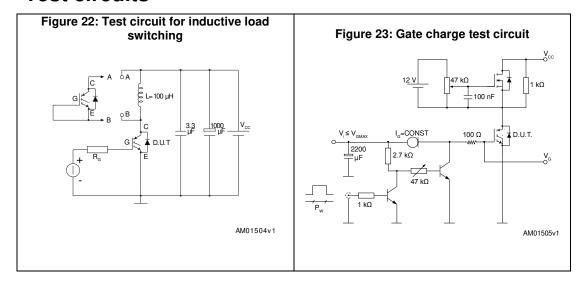

160

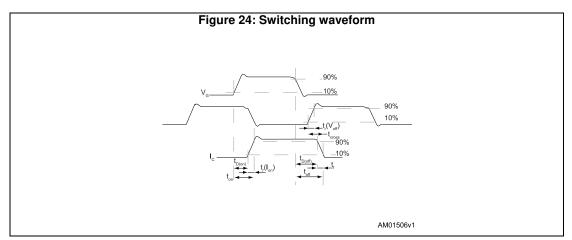

200


Q_g (nC)


STGB40H65FB


Figure 16: Switching energy vs. gate resistance IGBT230216EWF6GSLG $V_{CC} = 400 \text{ V}, I_{C} = 40 \text{ A}$ (µJ) V_{GE} = 15 V, T_J = 175 °C 2000 Eon 1600 1200 Eoff 800 400 0 12 16 20 $R_{G}(\Omega)$





Test circuits STGB40H65FB

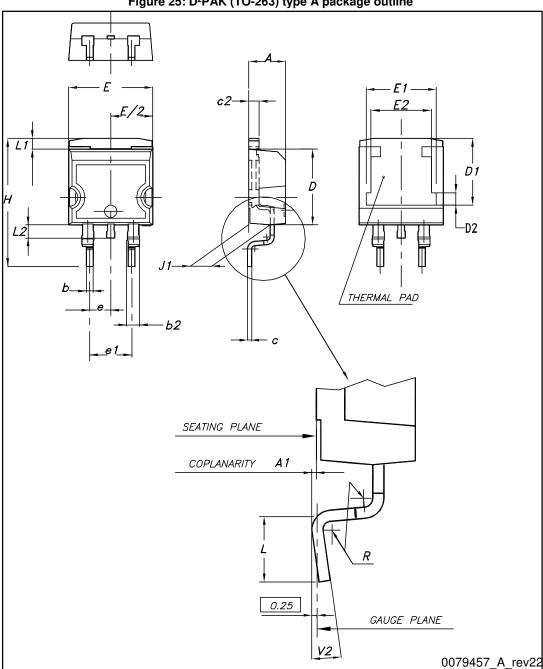
3 Test circuits

STGB40H65FB Package information

4 **Package information**

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

4.1 D²PAK package information



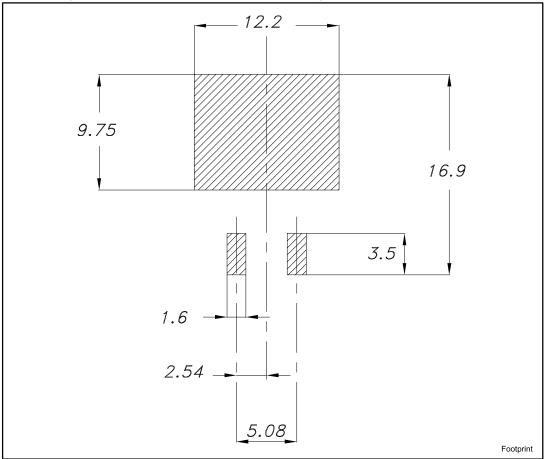

Figure 25: D²PAK (TO-263) type A package outline

Table 7: D²PAK (TO-263) type A package mechanical data

Table 7: DPAK (TO-263) type A package mechanical data					
Dim.		mm			
Dilli.	Min.	Тур.	Max.		
Α	4.40		4.60		
A1	0.03		0.23		
b	0.70		0.93		
b2	1.14		1.70		
С	0.45		0.60		
c2	1.23		1.36		
D	8.95		9.35		
D1	7.50	7.75	8.00		
D2	1.10	1.30	1.50		
Е	10		10.40		
E1	8.50	8.70	8.90		
E2	6.85	7.05	7.25		
е		2.54			
e1	4.88		5.28		
Н	15		15.85		
J1	2.49		2.69		
L	2.29		2.79		
L1	1.27		1.40		
L2	1.30		1.75		
R		0.4			
V2	0°		8°		

STGB40H65FB Package information

Figure 26: D²PAK (TO-263) recommended footprint (dimensions are in mm)

4.2 D²PAK packing information

Figure 27: Tape outline

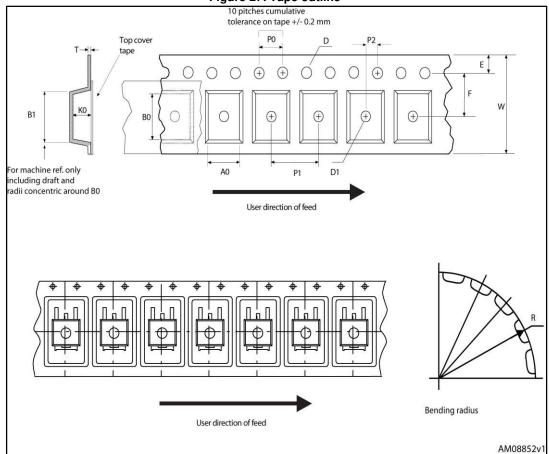


Figure 28: Reel outline

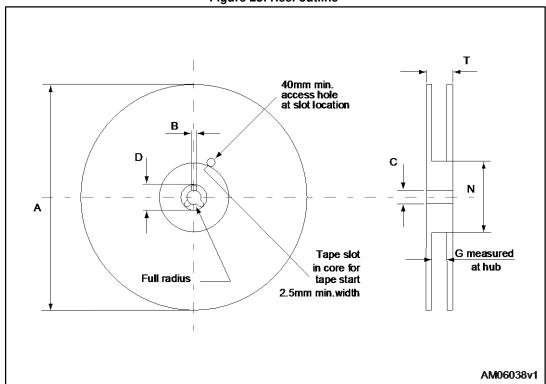


Table 8: D2PAK tape and reel mechanical data

Таре				Reel	
Dim.	mm		Dim.	mm	
Dilli.	Min.	Max.	Diiii.	Min.	Max.
A0	10.5	10.7	А		330
В0	15.7	15.9	В	1.5	
D	1.5	1.6	С	12.8	13.2
D1	1.59	1.61	D	20.2	
E	1.65	1.85	G	24.4	26.4
F	11.4	11.6	N	100	
K0	4.8	5.0	Т		30.4
P0	3.9	4.1			
P1	11.9	12.1	Base q	uantity	1000
P2	1.9	2.1	Bulk qı	uantity	1000
R	50				
Т	0.25	0.35			
W	23.7	24.3			

Revision history STGB40H65FB

5 Revision history

Table 9: Document revision history

Date	Revision	Changes
27-Jun-2016	1	Initial release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

