

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

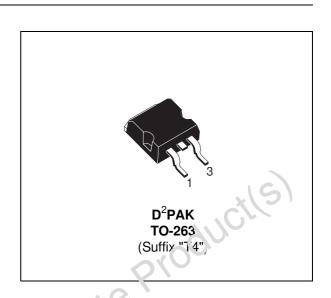
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

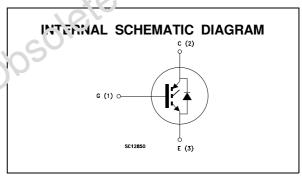
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

STGB7NB60HD

N-CHANNEL 7A - 600V DPAK PowerMESHTM IGBT

TYPE	V _{CES}	V _{CE(sat)}	Ic
STGB7NB60HD	600 V	< 2.8 V	7 A


- HIGH INPUT IMPEDANCE (VOLTAGE DRIVEN)
- LOW ON-VOLTAGE DROP (Vcesat)
- LOW GATE CHARGE
- HIGH CURRENT CAPABILITY
- VERY HIGH FREQUENCY OPERATION
- OFF LOSSES INCLUDE TAIL CURRENT
- CO-PACKAGED WITH TURBOSWITCH™ ANTIPARALLEL DIODE
- SURFACE-MOUNTING D²PAK (TO-263) POWER PACKAGE IN TAPE & REEL (SUFFIX "T4")



Using the latest high voltage technology based on a patented strip layout, STMicroelectronics has designed an advanced family of IGBTs, the PowerMESHTM IGBTs, with outstanding perfomances. The suffix "H" identifies a family optimized to achieve very low switching times for high frequency applications (<120kHz).

APPLICATIONS

- HIGH FREQUENCY MOTOR CONTROLS
- SMPS AND PFC IN BOTH HARD SWITCH AND RESONANT TOPC! OGIES

ABSOLUTE MAXIN'UM RATINGS

Symbol	Parameter	Value	Unit
V _{CE} s	:cilector-Emitter Voltage (V _{GS} = 0)	600	V
Voe	Gate-Emitter Voltage	± 20	V
Ic	Collector Current (continuous) at T _c = 25 °C	14	Α
Ic	Collector Current (continuous) at T _c = 100 °C	7	Α
I _{CM} (•)	Collector Current (pulsed)	56	Α
P _{tot}	Total Dissipation at T _c = 25 °C	80	W
	Derating Factor	0.64	W/°C
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

(•) Pulse width limited by safe operating area

June 1999 1/8

THERMAL DATA

R _{thj-case}	Thermal Resistance Junction-case	Max	1.56	°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient	Max	62.5	°C/W
R _{thc-sink}	Thermal Resistance Case-sink	Тур	0.5	°C/W

ELECTRICAL CHARACTERISTICS $(T_j = 25$ $^{\circ}C$ unless otherwise specified)

OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{BR(CES)}	Collector-Emitter Breakdown Voltage	$I_C = 250 \ \mu A$ $V_{GE} = 0$	600			V
I _{CES}	Collector cut-off (V _{GE} = 0)	$V_{CE} = Max Rating$ $T_j = 25 ^{\circ}C$ $V_{CE} = Max Rating$ $T_j = 125 ^{\circ}C$			250 2000	μ Α μ Α
I _{GES}	Gate-Emitter Leakage Current (V _{CE} = 0)	$V_{GE} = \pm 20 \text{ V}$ $V_{CE} = 0$			± 100	nA

ON (*)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
$V_{GE(th)}$	Gate Threshold Voltage	$V_{CE} = V_{GE}$ $I_C = 250 \mu A$	3		5	٧
V _{CE(SAT)}	Collector-Emitter Saturation Voltage	$V_{GE} = 15 \text{ V}$ $I_{C} = 7 \text{ A}$ $V_{GE} = 15 \text{ V}$ $I_{C} = 7 \text{ A}$ $T_{j} = 125 ^{\circ}\text{C}$		2.3 1.9	2.8	V V

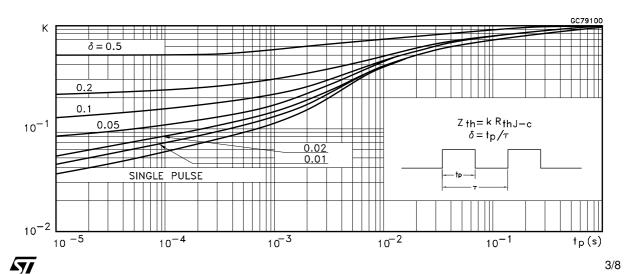
DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g fs	Forward Transconductance	V _{CE} =25 V I _C = 7 A	3.5	5		S
Cies Coes Cres	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{CE} = 25 V f = 1 MHz V _{GE} = 0	390 45 10	560 68 15	730 90 20	pF pF pF
Q _G Q _{GE} Q _{GC}	Total Gate Charge Gate-Emitter Charge Gate-Collector Charge	$V_{CE} = 480 \text{ V}$ $I_{C} = 7 \text{ A}$ $V_{GE} = 15 \text{ V}$		42 7.9 17.6	55	nC nC nC
I _{CL}	Latching Current	$V_{clamp} = 480 \text{ V}$ $R_G=10\Omega$ $T_j = 150 \text{ °C}$	28			Α

SWITCHING ON

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Delay Time Rise Time	V _{CC} = 480 V V _{GE} = 15 V	$\begin{array}{l} I_C = 7 \text{ A} \\ R_G = 10\Omega \end{array}$		15 48		ns ns
(di/dt) _{on}	Turn-on Current Slope	$V_{CC} = 480 \text{ V}$ $R_G = 10 \Omega$	$I_C = 7 A$ $V_{GE} = 15 V$		160		A/μs
E _{on} (o)	Turn-on Switching Losses	T _j = 125 °C			185		μJ

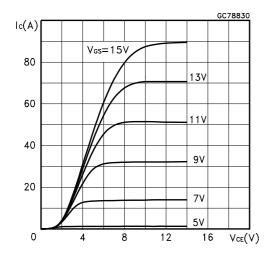
ELECTRICAL CHARACTERISTICS (continued)

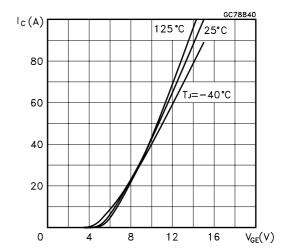

SWITCHING OFF

Symbol	Parameter	Test Con	ditions	Min.	Тур.	Max.	Unit
tc	Cross-Over Time	VCC = 480 V	$I_C = 7 A$		85		ns
$t_r(v_{off})$	Off Voltage Rise Time	$R_{GE} = 10 \Omega$	$V_{GE} = 15 V$		20		ns
t _d (off)	Delay Time				75		ns
t _f	Fall Time				70		ns
E _{off} (**)	Turn-off Switching Loss				85		μJ
E _{ts} (◌)	Total Switching Loss				235		μJ
t _c	Cross-Over Time	VCC = 480 V	I _C = 7 A		150		ns
$t_r(v_{off})$	Off Voltage Rise Time	$R_{GE} = 10 \Omega$	$V_{GE} = 15 V$		50		ns
t _d (off)	Delay Time	$T_j = 125 {}^{\circ}\text{C}$			110		ns
t _f	Fall Time				110		ns
E _{off} (**)	Turn-off Switching Loss				220		μJ
E _{ts} (o)	Total Switching Loss				405		μJ

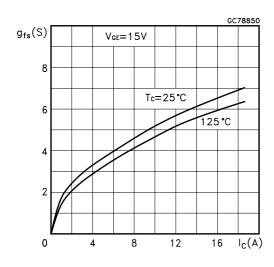
COLLECTOR-EMITTER DIODE

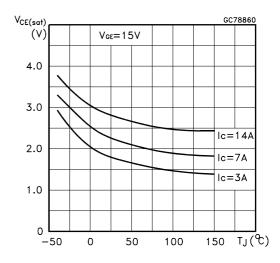
Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
I _f I _{fm}	Forward Current Forward Current pulsed					7 56	A A
V _f	Forward On-Voltage	I _f = 7 A I _f = 7 A	T _j = 125 °C		1.6 1.4	2.0	V V
t _{rr} Q _{rr} I _{rrm}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$\begin{array}{l} I_f = 7~A \\ dI/dt = 100~A/\mu S \end{array}$	V _R =200 V T _j = 125 °C		100 180 3.6		ns nC A

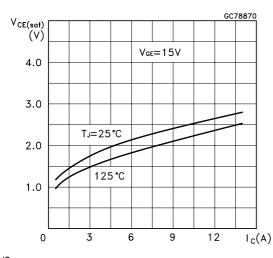

Thermal Impedance

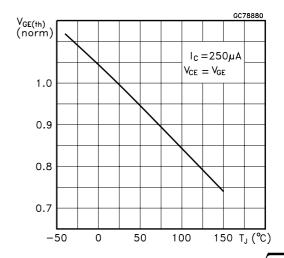

⁽e) Pulse width limited by max. junction temperature
(c) Include recovery losses on the STTA506 freewheeling diode

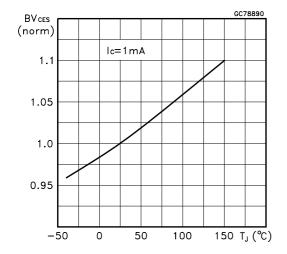
^(*) Pulsed: Pulse duration = $300~\mu s$, duty cycle 1.5 % (**)Losses Include Also The Tail (Jedec Standardization)

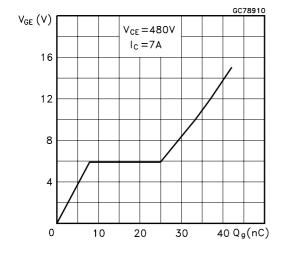

Output Characteristics

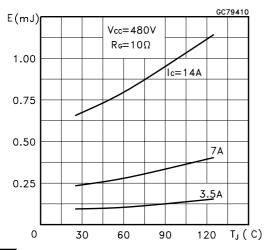

Transfer Characteristics

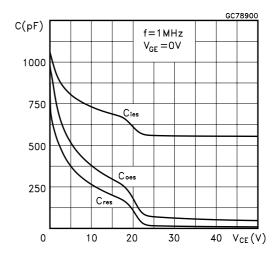

Transconductance

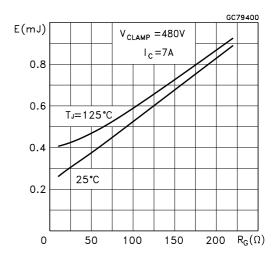

Collector-Emitter On Voltage vs Temperature

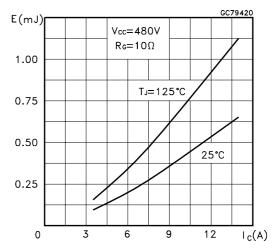

Collector-Emitter On Voltage vs Collector Current


Gate Threshold vs Temperature


Normalized Breakdown Voltage vs Temperature


Gate Charge vs Gate-Emitter Voltage


Total Switching Losses vs Temperature


Capacitance Variations

Total Switching Losses vs Gate Resistance

Total Switching Losses vs Collector Current

477

Switching Off Safe Operating Area

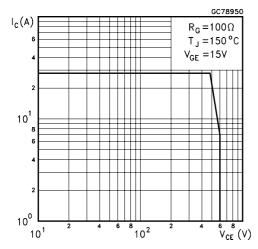


Fig. 1: Gate Charge test Circuit

Diode Forward Voltage

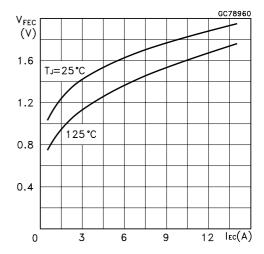
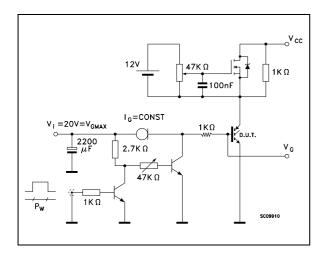



Fig. 2: Test Circuit For Inductive Load Switching

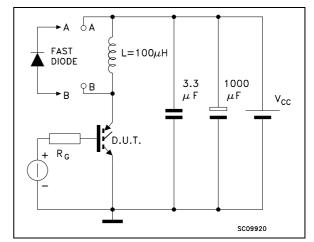
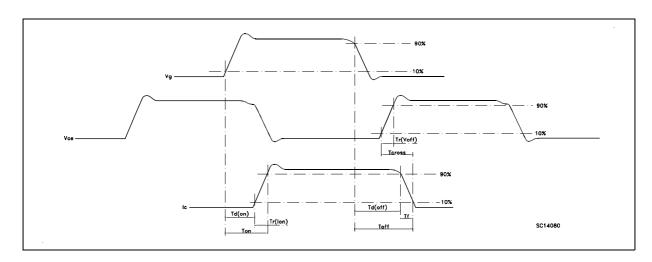
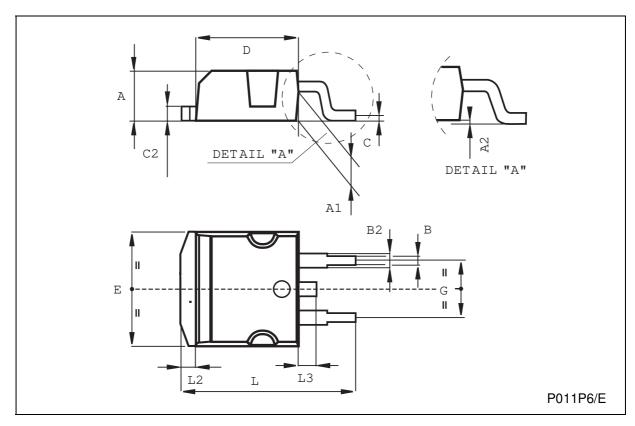




Fig. 3: Switching Waveforms

TO-263 (D²PAK) MECHANICAL DATA

DIM.		mm				
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	4.4		4.6	0.173		0.181
A1	2.49		2.69	0.098		0.106
В	0.7		0.93	0.027		0.036
B2	1.14		1.7	0.044		0.067
С	0.45		0.6	0.017		0.023
C2	1.21		1.36	0.047		0.053
D	8.95		9.35	0.352		0.368
E	10		10.4	0.393		0.409
G	4.88		5.28	0.192		0.208
L	15		15.85	0.590		0.624
L2	1.27		1.4	0.050		0.055
L3	1.4		1.75	0.055		0.068

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 1999 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

4