imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

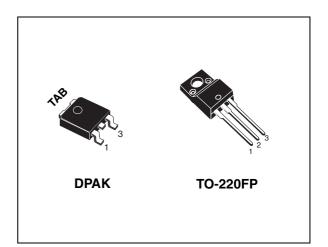
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

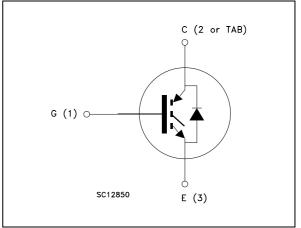
STGD10NC60SD STGF10NC60SD

10 A, 600 V fast IGBT

Features


- Optimized performance for medium operating frequencies up to 5 kHz in hard switching
- Low on-voltage drop (V_{CE(sat)})
- Very soft ultra fast antiparallel diode

Application


Motor drive

Description

This IGBT utilizes the advanced PowerMESH[™] process resulting in an excellent trade-off between switching performance and low on-state behavior.

Figure 1. Internal schematic diagram

Table 1. Device summary

Order codes	Marking	Package	Packaging
STGD10NC60SDT4	GD10NC60SD	DPAK	Tape and reel
STGF10NC60SD	GF10NC60SD	TO-220FP	Tube

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 Electrical characteristics (curves)	6
3	Test circuits	9
4	Package mechanical data 1	0
5	Packaging mechanical data 1	4
6	Revision history1	5

1 Electrical ratings

Table 2.Absolute maximum ratings	Absolute maximum ratings
----------------------------------	--------------------------

Symbol	Parameter	Va	Unit	
Symbol	Farameter	DPAK TO-220FP		
V _{CES}	Collector-emitter voltage (V _{GE} = 0)	600		V
I _C ⁽¹⁾	Continuous collector current at T _C = 25°C	18	10	А
I _C ⁽¹⁾	Continuous collector current at T _C = 100°C	10 5		А
I _{CL} ⁽²⁾	Turn-off latching current	14		А
I _{CP} ⁽³⁾	Pulsed collector current	25		А
١ _F	Diode RMS forward current at $T_C=25$ °C	10		А
I _{FSM}	Surge non repetitive forward current t _p = 10 ms sinusoidal	20		А
V _{GE}	Gate-emitter voltage	±20		V
P _{TOT}	Total dissipation at T_{C} = 25 °C	60 25		W
V _{ISO}	Isolation withstand voltage (RMS) from all three leads to external heat sink (t = 1 sec; $T_C = 25 \text{ °C}$)	2500		V
Т _ј	Operating junction temperature	-55 to 150		°C

1. Calculated according to the iterative formula:

$$I_{C}(T_{C}) = \frac{T_{j(max)} - T_{C}}{R_{thj-c} \times V_{CE(sat)(max)}(T_{j(max)}, I_{C}(T_{C}))}$$

2. $V_{clamp} = 80\%, (V_{CES}), T_j = 150 \text{ °C}, R_G = 10 \Omega, V_{GE} = 15 V.$

3. Pulse width limited by maximum junction temperature and turn-off within RBSOA.

Table 3. Thermal data

Symbol	Symbol Parameter		Value		
Symbol	Falameter	DPAK	TO-220FP	Unit	
Б	Thermal resistance junction-case IGBT	2.08 5		°C/W	
R _{thj-case} Thermal resistance junction-case diode		4	.5	°C/W	
R _{thj-amb}	Thermal resistance junction-ambient	100 62.5		°C/W	

2 Electrical characteristics

(T_J=25°C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage (V_{GE} = 0)	I _C = 1 mA	600			V
V _{CE(sat)}	Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 5 A V _{GE} = 15 V, I _C = 5 A, T _J = 125 °C		1.45 1.45	1.65	V V
V _{GE(th)}	Gate threshold voltage	V_{CE} = V_{GE} , I_C = 250 μ A	3.75		5.75	V
I _{CES}	Collector cut-off current $(V_{GE}=0)$	V _{CE} = 600 V V _{CE} =600 V, T _J =125 °C			150 1	μA mA
I _{GES}	Gate-emitter leakage (V _{CE} =0)	V _{GE} = ±20 V			±100	nA
9 _{fs}	Forward transconductance	$V_{CE} = 15 V_{, I_{C}} = 5 A$		3.5		S

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{ies} C _{oes} C _{res}	Input capacitance Output capacitance Reverse transfer capacitance	V _{CE} = 25 V, f = 1 MHz, V _{GE} = 0	-	365 44 8	-	pF pF pF
Q _g Q _{ge} Q _{gc}	Total gate charge Gate-emitter charge Gate-collector charge	V _{CE} = 480 V, I _C = 5 A, V _{GE} = 15 V <i>Figure 18</i>	-	18 8 3.5	-	nC nC nC

	officining of a official	,				
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r (di/dt) _{on}	Turn-on delay time Current rise time Turn-on current slope	$V_{CC} = 390 \text{ V}, I_{C} = 5 \text{ A}$ $R_{G} = 10 \Omega, V_{GE} = 15 \text{ V},$ <i>Figure 19</i>	-	19 4 1330	-	ns ns A/µs
t _{d(on)} t _r (di/dt) _{on}	Turn-on delay time Current rise time Turn-on current slope	$V_{CC} = 390 \text{ V}, I_C = 5 \text{ A}$ $R_G = 10 \Omega, V_{GE} = 15 \text{ V},$ $T_J = 125^{\circ}\text{C}$ <i>Figure 19</i>	-	18 4.5 1000	-	ns ns A/µs
t _r (V _{off}) t _{d(off}) t _f	Off voltage rise time Turn-off delay time Current fall time	$V_{cc} = 390 \text{ V}, \text{ I}_{C} = 5 \text{ A}, \\ \text{R}_{G} = 10 \Omega \text{ V}_{GE} = 15 \text{ V}, \\ \hline \textit{Figure 19}$	-	100 160 205	-	ns ns ns
t _r (V _{off}) t _{d(off}) t _f	Off voltage rise time Turn-off delay time Current fall time	$V_{cc} = 390 \text{ V}, I_{C} = 5 \text{ A}, \\ R_{G} = 10 \Omega, V_{GE} = 15 \text{ V}, \\ T_{J} = 125^{\circ}\text{C} \\ \hline \textit{Figure 19}$	-	165 250 310	-	ns ns ns

Table 6. Switching on/off (inductive load)

 Table 7.
 Switching energy (inductive load)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
E _{on} ⁽¹⁾ E _{off} ⁽²⁾ E _{ts}	Turn-on switching losses Turn-off switching losses Total switching losses	$V_{CC} = 480 \text{ V}, I_{C} = 5 \text{ A}$ $R_{G} = 10 \Omega, V_{GE} = 15 \text{ V},$ <i>Figure 17</i>	-	60 340 400	-	μJ μJ μJ
Eon ⁽¹⁾ E _{off} ⁽²⁾ E _{ts}	Turn-on switching losses Turn-off switching losses Total switching losses	$V_{CC} = 480 \text{ V}, I_C = 5 \text{ A}$ $R_G = 10 \Omega, V_{GE} = 15 \text{ V},$ $T_J = 125^{\circ}\text{C}$ <i>Figure 17</i>	-	90 540 630	-	μJ μJ μJ

1. Eon is the turn-on losses when a typical diode is used in the test circuit in *Figure 17*. If the IGBT is offered in a package with a co-pack diode, the co-pack diode is used as external diode. IGBTs and diode are at the same temperature.

2. Turn-off losses included also include also the tail of the collector current.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _F	Forward on-voltage	I _F =5 A I _F =5 A, T _J =125 °C	-	2 1.65	2.45	V V
t _{rr} Q _{rr} I _{rrm}	Reverse recovery time Reverse recovery charge Reverse recovery current	I _F =5 A, V _R =40 V, di/dt=100 A/μs <i>Figure 20</i>	-	22 14 1.3		ns nC A
t _{rr} Q _{rr} I _{rrm}	Reverse recovery time Reverse recovery charge Reverse recovery current	I _F =5 A, V _R =40 V, T _J =125 °C, di/dt=100 A/μs <i>Figure 20</i>	-	34 35 2.1		ns nC A

Table 8.Collector-emitter diode

2.1 Electrical characteristics (curves)

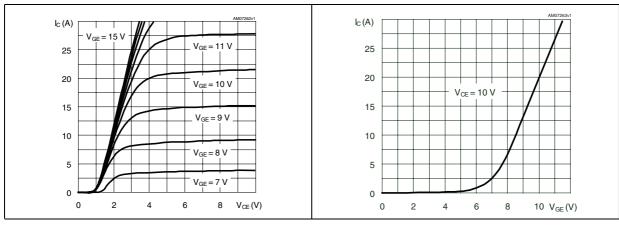
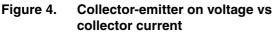
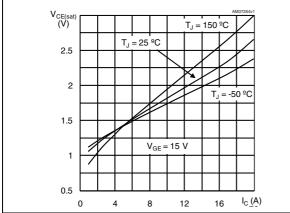




Figure 3.

Figure 2. Output characteristics

temperature

Figure 6. Normalized breakdown voltage vs Figure 7.

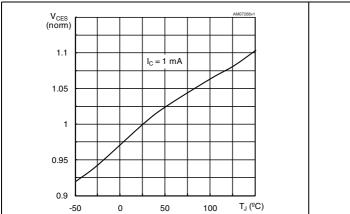
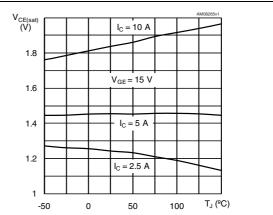
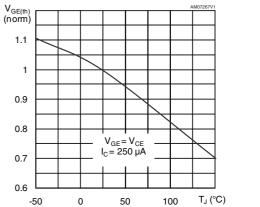
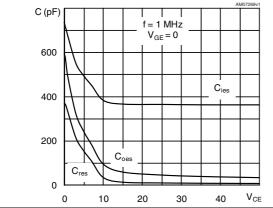
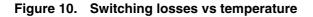




Figure 5. Collector-emitter on voltage vs temperature

Transfer characteristics

Normalized gate threshold vs temperature


Q_G (nC)


16

Gate charge vs gate-emitter voltage

V_{CC} = 480 V I_C = 5 A

Figure 8. Capacitance variations

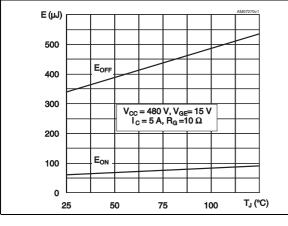
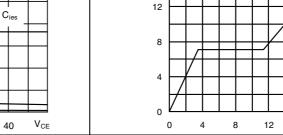



Figure 12. Switching losses vs collector current

 $V_{GE}(V)$

16

Figure 9.

Figure 11. Switching losses vs gate resistance

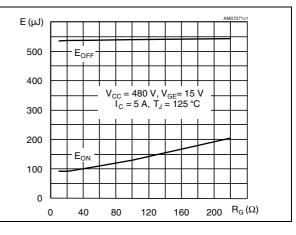
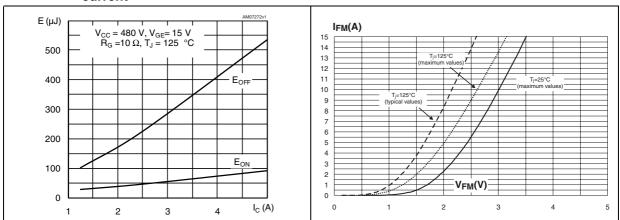



Figure 13. Diode forward on voltage

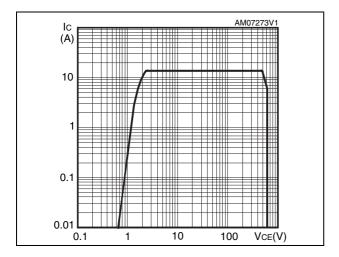
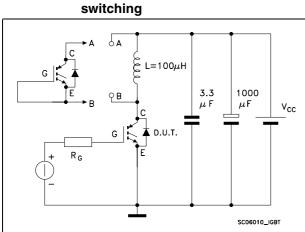
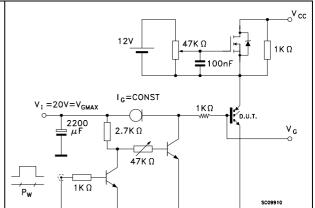


Figure 14. Thermal impedance for DPAK

Figure 15. Thermal impedance for TO-220FP


Figure 16. Turn-off SOA



3 Test circuits

Figure 17. Test circuit for inductive load

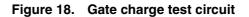
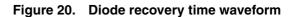
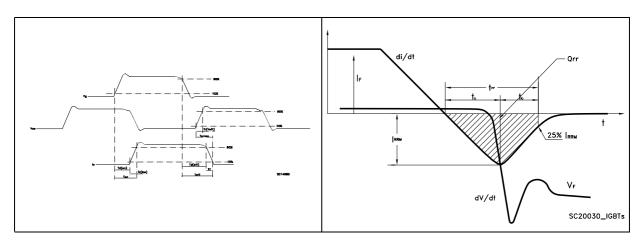
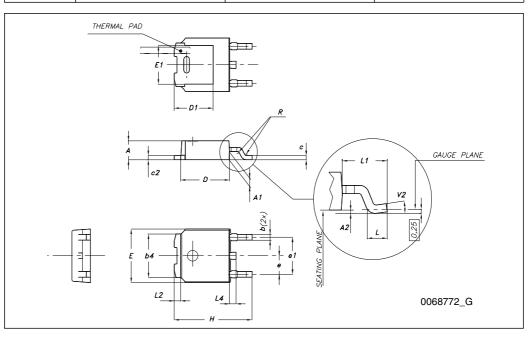




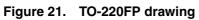
Figure 19. Switching waveforms

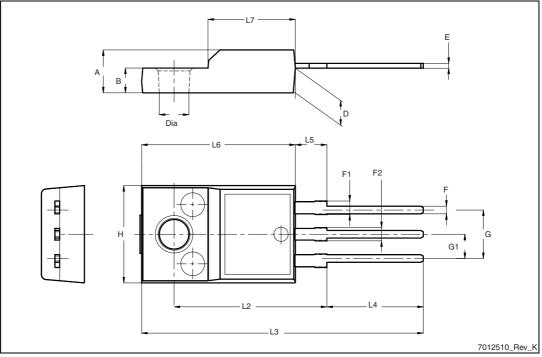

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Г

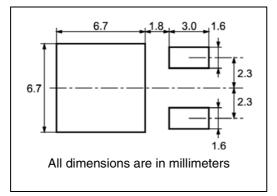
	TO-252 (DPAK) mechanical data				
DIM.	mm.				
	min.	typ	max.		
A	2.20		2.40		
A1	0.90		1.10		
A2	0.03		0.23		
b	0.64		0.90		
b4	5.20		5.40		
С	0.45		0.60		
c2	0.48		0.60		
D	6.00		6.20		
D1		5.10			
E	6.40		6.60		
E1		4.70			
е		2.28			
e1	4.40		4.60		
н	9.35		10.10		
L	1				
L1		2.80			
L2		0.80			
L4	0.60		1		
R		0.20			
V2	0 ^o		8 ^o		

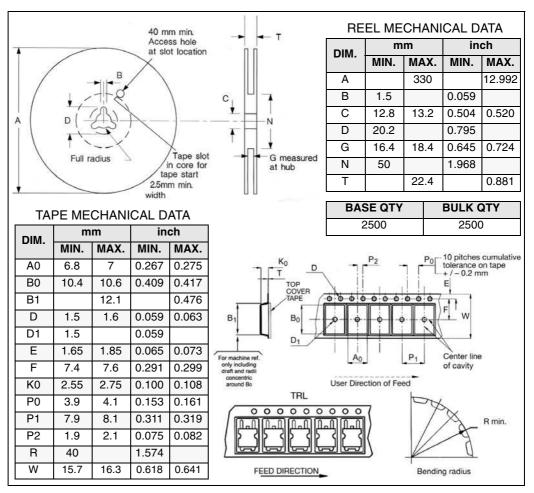




Dim.	mm		
	Min.	Тур.	Max.
А	4.4		4.6
В	2.5		2.7
D	2.5		2.75
E	0.45		0.7
F	0.75		1
F1	1.15		1.70
F2	1.15		1.70
G	4.95		5.2
G1	2.4		2.7
Н	10		10.4
L2		16	
L3	28.6		30.6
L4	9.8		10.6
L5	2.9		3.6
L6	15.9		16.4
L7	9		9.3
Dia	3		3.2

Table 9.TO-220FP mechanical data





5 Packaging mechanical data

DPAK FOOTPRINT

TAPE AND REEL SHIPMENT

6 Revision history

Table 10. Document revision history

Date	Revision	Changes	
06-Jul-2009	1	Initial release	
14-Jun-2010	2	Inserted Section 2.1: Electrical characteristics (curves).	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 15847 Rev 2

