

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

STGD10NC60S STGP10NC60S

10 A, 600 V fast IGBT

Features

- Optimized performance for medium operating frequencies up to 5 kHz in hard switching
- Low on-voltage drop (V_{CE(sat)})

Application

■ Motor drive

Description

This IGBT utilizes the advanced PowerMESH™ process resulting in an excellent trade-off between switching performance and low on-state behavior.

Josoleite Producile

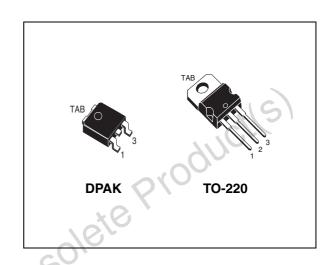


Figure 1. Internal schematic diagram

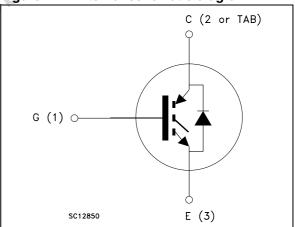


Table 1. Device summary

Order codes	Marking	Package	Packaging
STGD10NC60ST4	GD10NC60S	DPAK	Tape and reel
STGP10NC60S	GP10NC60S	TO-220	Tube

December 2010 Doc ID 15931 Rev 2 1/18

Contents

1	Electrical ratings
2	Electrical characteristics 4 2.1 Electrical characteristics (curves) 5
3	Test circuits
4	Package mechanical data
5	Packaging mechanical data14
6	Revision history
005	Revision history

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Va	Unit	
Symbol	T didineter		TO-220	
V _{CES}	Collector-emitter voltage (V _{GE} = 0)	600		
I _C ⁽¹⁾	Continuous collector current at T _C = 25°C	18	21	Α
I _C ⁽¹⁾	Continuous collector current at T _C = 100°C	10	11	Α
I _{CL} (2)	Turn-off latching current	1	4 (0	Α
I _{CP} ⁽³⁾	Pulsed collector current	sed collector current 25		Α
V_{GE}	Gate-emitter voltage	±2	20	V
P _{TOT}	Total dissipation at T _C = 25 °C	60	62.5	W
T _j	Operating junction temperature	-55 to	150	°C

1. Calculated according to the iterative formula:

$$I_{C}(T_{C}) = \frac{T_{j(max)} - T_{C}}{R_{thj-c} \times V_{CE(sat)(max)}(T_{j(max)}, I_{C}(T_{C}))}$$

- 2. V_{clamp} = 80%,(V_{CES}), T_j =150 °C, R_G = 10 Ω , V_{GE} = 15 V
- 3. Pulse width limited by maximum junction temperature and turn-off within RBSOA

Table 3. Thermal data

Symbol	Parameter	Va	Unit	
Symbol	Farameter	DPAK	TO-220	Oilit
R _{thJC}	Thermal resistance junction-case	2.08	2	°C/W
R _{thJA}	Thermal resistance junction-ambient	100	62.5	°C/W

2 Electrical characteristics

 $T_J = 25~^{\circ}C$ unless otherwise specified.

Table 4. Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage (V _{GE} = 0)	I _C = 1 mA	600			V
V _{CE(sat)}	Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 5 A V _{GE} = 15 V, I _C = 5 A, T _J = 125 °C		1.45 1.45	1.65	V V
V _{GE(th)}	Gate threshold voltage	$V_{CE} = V_{GE}, I_{C} = 250 \mu A$	3.75		5.75	٧
I _{CES}	Collector cut-off current $(V_{GE}=0)$	V _{CE} = 600 V V _{CE} =600 V, T _J =125 °C	7.	JC	150 1	μA mA
I _{GES}	Gate-emitter leakage (V _{CE} =0)	V _{GE} = ±20 V	0		±100	nA
9 _{fs}	Forward transconductance	$V_{CE} = 15 V_{,} I_{C} = 5 A$		3.5		S

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{ies} C _{oes} C _{res}	Input capacitance Output capacitance Reverse transfer capacitance	$V_{CE} = 25 \text{ V, f} = 1 \text{ MHz, V}_{GE} = 0$	-	365 44 8	1	pF pF pF
$egin{array}{c} Q_{ m g} \ Q_{ m gc} \end{array}$	Total gate charge Gate-emitter charge Gate-collector charge	$V_{CE} = 480 \text{ V, } I_{C} = 5 \text{ A,}$ $V_{GE} = 15 \text{ V}$ Figure 16	-	18 8 3.5	1	o o o

Table 6. Switching on/off (inductive load)

	Table 6.	Switching on/on (inductive load)					
	Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Opsole	t _{d(on)} t _r (di/dt) _{on}	Turn-on delay time Current rise time Turn-on current slope	V_{CC} = 390 V, I_{C} = 5 A R_{G} = 10 Ω , V_{GE} = 15 V, Figure 17	-	19 4 1330	-	ns ns A/µs
0	t _{d(on)} t _r (di/dt) _{on}	Turn-on delay time Current rise time Turn-on current slope	$V_{CC} = 390 \text{ V}, I_{C} = 5 \text{ A}$ $R_{G} = 10 \Omega, V_{GE} = 15 \text{ V},$ $T_{J} = 125^{\circ}\text{C}$ Figure 17	-	18 4.5 1000	-	ns ns A/µs
$\begin{array}{ccc} & t_r(V_{off}) & \text{Off voltage rise time} \\ & t_d(_{off}) & \text{Turn-off delay time} \\ & t_f & \text{Current fall time} \end{array}$		Turn-off delay time	$V_{cc} = 390 \text{ V}, I_{C} = 5 \text{ A},$ $R_{G} = 10 \Omega, V_{GE} = 15 \text{ V},$ Figure 17	-	100 160 205	-	ns ns ns
	$t_{r}(V_{off})$ $t_{d}(_{off})$ t_{f}	Off voltage rise time Turn-off delay time Current fall time	$V_{cc} = 390 \text{ V, } I_{C} = 5 \text{ A,}$ $R_{G} = 10 \Omega, V_{GE} = 15 \text{ V,}$ $T_{J} = 125^{\circ}\text{C}$ Figure 17	-	165 250 310	-	ns ns ns

Symbol	Parameter	Test conditions	Min	Тур.	Max	Unit
E _{on} ⁽¹⁾ E _{off} ⁽²⁾ E _{ts}	Turn-on switching losses Turn-off switching losses Total switching losses	V_{CC} = 480 V, I_{C} = 5 A R_{G} = 10 Ω , V_{GE} = 15 V, Figure 15	1	60 340 400	-	μJ μJ μJ
Eon ⁽¹⁾ E _{off} ⁽²⁾ E _{ts}	Turn-on switching losses Turn-off switching losses Total switching losses	$V_{CC} = 480 \text{ V}, I_{C} = 5 \text{ A}$ $R_{G} = 10 \Omega, V_{GE} = 15 \text{ V},$ $T_{J} = 125^{\circ}\text{C}$ Figure 15		90 540 630	-	μJ μJ μJ

Table 7. Switching energy (inductive load)

2.1 Electrical characteristics (curves)

Figure 2. Output characteristics

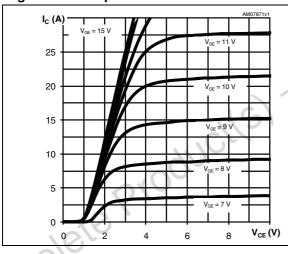


Figure 3. Transfer characteristics

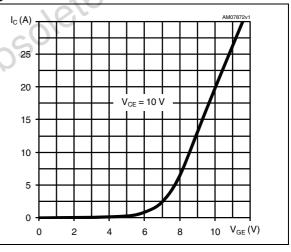
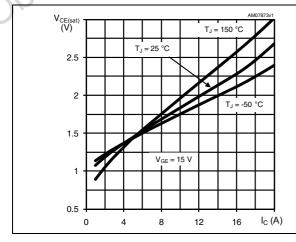
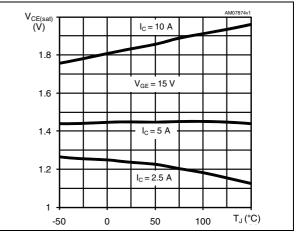
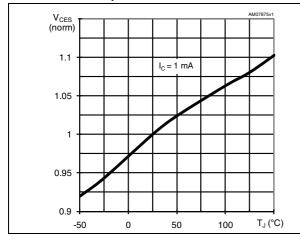




Figure 4. Collector-emitter on voltage vs. collector current

Figure 5. Collector-emitter on voltage vs. temperature



Eon is the turn-on losses when a typical diode is used in the test circuit in Figure 15. If the IGBT is offered
in a package with a co-pack diode, the co-pack diode is used as external diode. IGBTs and diode are at the
same temperature

^{2.} Turn-off losses included also include also the tail of the collector current

Figure 6. Normalized breakdown voltage vs. Figure 7. Normalized gate threshold voltage temperature vs. temperature

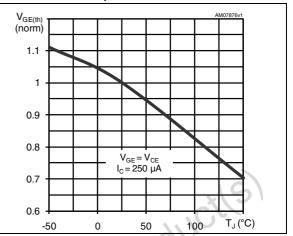
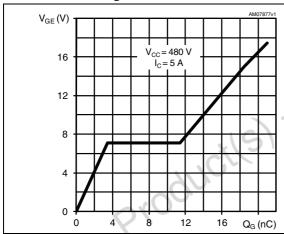



Figure 8. Gate charge vs. gate-emitter voltage

Figure 9. Capacitance variations

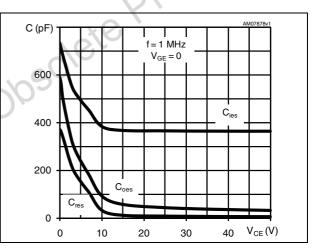
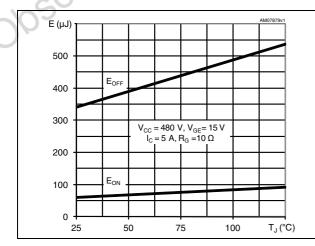
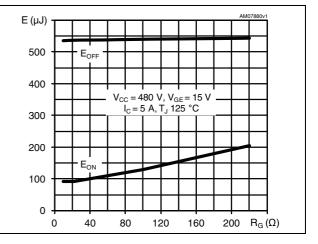
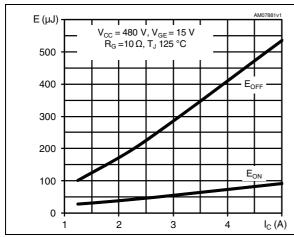




Figure 10. Switching losses vs. temperature

Figure 11. Switching losses vs. gate resistance



57

Figure 12. Switching losses vs. collector current

Figure 13. Turn-off SOA

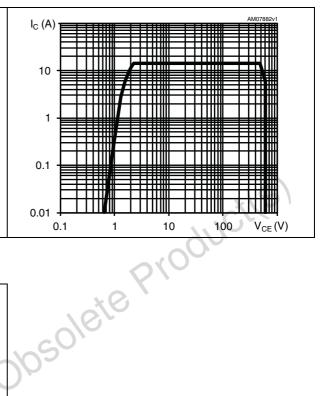
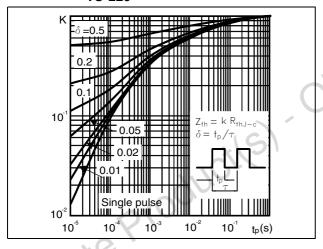



Figure 14. Thermal impedance for DPAK and TO-220

3 Test circuits

Figure 15. Test circuit for inductive load switching

Figure 16. Gate charge test circuit

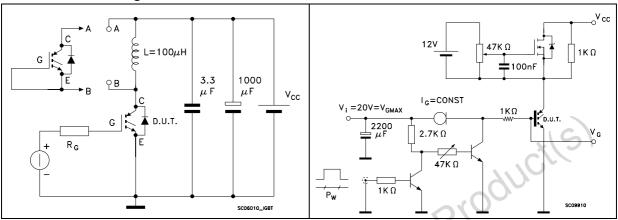
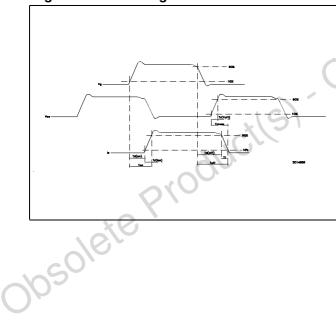



Figure 17. Switching waveforms

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Obsolete Product(s). Obsolete Product(s)

Table 8. DPAK (TO-252) mechanical data

Dim.		mm			
Dim.	Min.	Тур.	Max.		
Α	2.20		2.40		
A1	0.90		1.10		
A2	0.03		0.23		
b	0.64		0.90		
b4	5.20		5.40		
С	0.45		0.60		
c2	0.48		0.60		
D	6.00		6.20		
D1		5.10	0,0		
Е	6.40	0	6.60		
E1		4.70			
е		2.28			
e1	4.40	60,	4.60		
Н	9.35	103	10.10		
L	1				
L1	16	2.80			
L2		0.80			
L4	0.60		1		
R	,00,	0.20			
V2	0°		8°		

Obsolete Product(s)

THERMAL PAD

E1

D1

R

GAUGE PLANE

12

L4

H

0068772_G

Figure 18. DPAK (TO-252) drawing

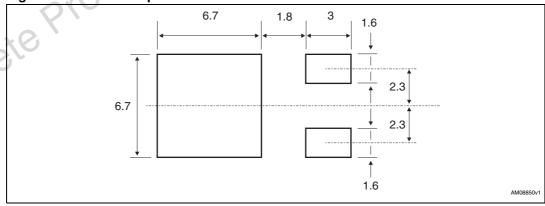
Table 9. TO-220 type A mechanical data

Dim.		mm	
	Min.	Тур.	Max.
А	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
С	0.48		0.70
D	15.25		15.75
D1		1.27	
E	10		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23	O.	1.32
H1	6.20	×0.	6.60
J1	2.40	16/	2.72
L	13	°CO,	14
L1	3.50	102	3.93
L20		16.40	
L30	16	28.90	
ØP	3.75		3.85
Q	2.65		2.95

Figure 19. TO-220 type A drawing

Obsolete Prc

-- *b* (Χ3)


0015988_typeA_Rev_S

5 Packaging mechanical data

Table 10. DPAK (TO-252) tape and reel mechanical data

Table 10. Dr Aix (10-202) tape and reel mechanical data						
	Таре			Reel		
Dim.	m	m	Dim.	m	m	
Dilli.	Min.	Max.	Dilli.	Min.	Max.	
A0	6.8	7	Α		330	
В0	10.4	10.6	В	1.5		
B1		12.1	С	12.8	13.2	
D	1.5	1.6	D	20.2	· · C/·	
D1	1.5		G	16.4	18.4	
Е	1.65	1.85	N	50		
F	7.4	7.6	Т		22.4	
K0	2.55	2.75	10	3,0		
P0	3.9	4.1	0//	Base qty.	2500	
P1	7.9	8.1	5	Bulk qty.	2500	
P2	1.9	2.1				
R	40					
Т	0.25	0.35				
W	15.7	16.3	1			

Figure 20. DPAK footprint^(a)

a. All dimension are in millimeters

10 pitches cumulative tolerance on tape +/- 0.2 mm Top cover B1 For machine ref. only A0 D1 P1 including draft and radii concentric around B0 User direction of feed Bending radius Obsolete Product User direction of feed AM08852v1

Figure 21. Tape for DPAK (TO-252)

5//

REEL DIMENSIONS 40mm min. Access hole At sl ot location В D С Tape slot in core for G measured at hub Full radius tape start 25 mm min. width Obsolete Product(s). Ob AM08851v2

Figure 22. Reel for DPAK (TO-252)

6 Revision history

Table 11. Document revision history

Date	Revision	Changes
06-Jul-2009	1	Initial release
17-Dec-2010	2	Inserted Section 2.1: Electrical characteristics (curves) on page 5

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com