

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

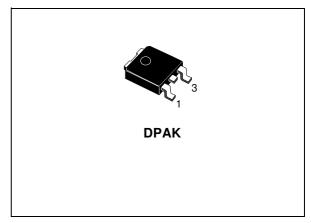
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

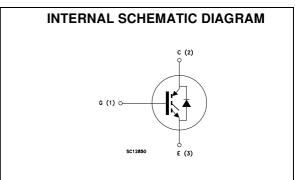


STGD3NB60SD

N-CHANNEL 3A - 600V - DPAK PowerMESH™ IGBT

TYPE	V _{CES}	V _{CE(sat)}	Ic
STGD3NB60SD	600 V	< 1.5 V	3 A

- HIGH INPUT IMPEDANCE (VOLTAGE DRIVEN)
- VERY LOW ON-VOLTAGE DROP (Vcesat)
- HIGH CURRENT CAPABILITY
- INTEGRATED WHEELING DIODE
- OFF LOSSES INCLUDE TAIL CURRENT



DESCRIPTION

Using the latest high voltage technology based on a patented strip layout, STMicroelectronics has designed an advanced family of IGBTs, the PowerMESH™ IGBTs, with outstanding performances. The suffix "S" identifies a family optimized to achieve minimum on-voltage drop for low frequency applications (<1kHz).

APPLICATIONS

- MOTOR CONTROL
- GAS DISCHARGE LAMP
- STATIC RELAYS

ORDERING INFORMATION

SALES TYPE	MARKING	PACKAGE	PACKAGING
STGD3NB60SDT4	GD3NB60SD	DPAK	TAPE & REEL

May 2004 1/9

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CES}	Collector-Emitter Voltage (V _{GS} = 0)	600	V
V _{GE}	Gate-Emitter Voltage	± 20	V
Ic	Collector Current (continuous) at T _C = 25°C	6	Α
Ic	Collector Current (continuous) at T _C = 100°C	3	Α
I _{CM} (■)	Collector Current (pulsed)	25	Α
P _{TOT}	Total Dissipation at T _C = 25°C	48	W
	Derating Factor	0.32	W/°C
T _{stg}	Storage Temperature	– 65 to 175	°C
Tj	Max. Operating Junction Temperature	175	°C

^(•) Pulse width limited by safe operating area

THERMAL DATA

Rthj-case	Thermal Resistance Junction-case Max	3.125	°C/W
Rthj-amb	Thermal Resistance Junction-ambient Max	100	°C/W

ELECTRICAL CHARACTERISTICS (TCASE = 25 °C UNLESS OTHERWISE SPECIFIED) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{BR(CES)}	Collectro-Emitter Breakdown Voltage	$I_C = 250 \ \mu A, \ V_{GE} = 0$	600			V
ICES	Collector cut-off	V _{CE} = Max Rating, T _C = 25 °C			10	μΑ
	$(V_{GE} = 0)$	V _{CE} = Max Rating, T _C = 125 °C			100	μΑ
I _{GES}	Gate-Emitter Leakage Current (V _{CE} = 0)	$V_{GE} = \pm 20V$, $V_{CE} = 0$			±100	nA

ON (1)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GE(th)}	Gate Threshold Voltage	$V_{CE} = V_{GE}$, $I_C = 250\mu A$	2.5		4.5	V
V _{CE(sat)}	Collector-Emitter Saturation Voltage	V _{GE} = 15V, I _C = 1.5 A V _{GE} = 15V, I _C = 3 A V _{GE} = 15V, I _C = 7 A, T _J =125 °C		1 1.2 1.1	1.5	V V V

DYNAMIC

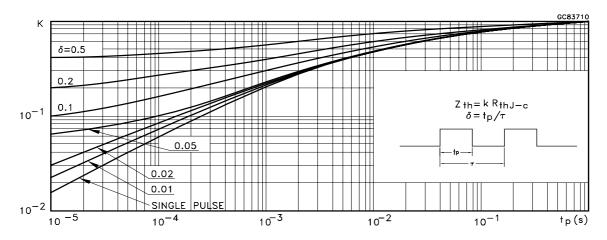
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
9fs	Forward Transconductance	$V_{CE} = 10 \text{ V}$, $I_{C} = 3 \text{ A}$	1.7	2.5		S
C _{ies}	Input Capacitance	$V_{CE} = 25V, f = 1 \text{ MHz}, V_{GE} = 0$		255		pF
C _{oes}	Output Capacitance			30		pF
C _{res}	Reverse Transfer Capacitance			5.6		pF
Q _G Q _{GE} Q _{GC}	Total Gate Charge Gate-Emitter Charge Gate-Collector Charge	$V_{CE} = 480 \text{ V}, I_{C} = 3 \text{ A}, V_{GE} = 15 \text{ V}$		18 5.4 5.5	23	nC nC nC
I _{CL}	Latching Current	$V_{clamp} = 380 \text{ V}$, $Tj = 25^{\circ}\text{C}$ $R_G = 1\text{K}\Omega$	15			Α

ELECTRICAL CHARACTERISTICS (CONTINUED) SWITCHING ON

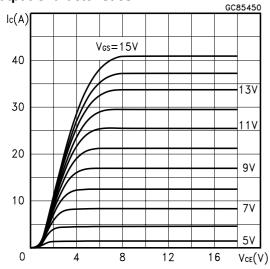
Syml	bol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(or}	n)	Turn-on Delay Time Rise Time	V_{CC} = 480 V, I_C = 3 A R_G = 1K Ω , V_{GE} = 15 V		125 150		μs μs
(di/dt Eoi		Turn-on Current Slope Turn-on Switching Losses	V_{CC} = 480 V, I_{C} = 3 A, R_{G} =1K Ω V _{GE} = 15 V, Tj = 125°C		50 1100		A/μs μJ

SWITCHING OFF

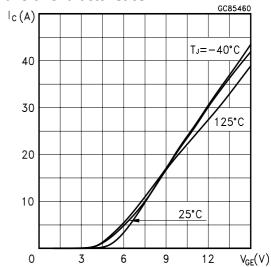
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
$\begin{array}{c} t_{\text{C}} \\ t_{\text{r}}(V_{\text{Off}}) \\ t_{\text{d}(\text{on})} \\ t_{\text{f}} \\ E_{\text{off}}(^{**}) \end{array}$	Cross-over Time Off Voltage Rise Time Delay Time Fall Time Turn-off Switching Loss	$V_{CC} = 480 \text{ V}, I_C = 3 \text{ A},$ $R_{GE} = 1K\Omega, V_{GE} = 15 \text{ V}$		1.8 1.0 3.4 0.72 1.15		μs μs μs μs mJ
$\begin{array}{c} t_{\text{C}} \\ t_{\text{r}}(V_{\text{off}}) \\ t_{\text{d}(\text{on})} \\ t_{\text{f}} \\ E_{\text{off}}(^{**}) \end{array}$	Cross-over Time Off Voltage Rise Time Delay Time Fall Time Turn-off Switching Loss	$\begin{split} &V_{cc}=480 \text{ V, } I_C=3 \text{ A,} \\ &R_{GE}=1K\Omega \text{ , } V_{GE}=15 \text{ V,} \\ &Tj=125^{\circ}C \end{split}$		2.8 1.45 3.6 1.2 1.8		μs μs μs μs mJ

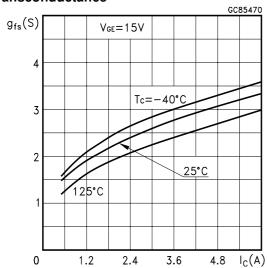

COLLECTOR-EMITTER DIODE

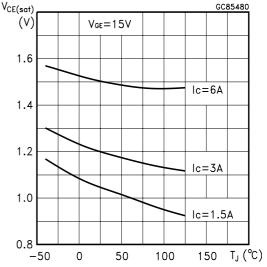
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _f	Forward Current Forward Current pulsed				3 25	A A
V _f	Forward On-Voltage	I _f = 3 A I _f = 1 A		1.55 1.15	1.9	V V
t _{rr} Q _{rr} I _{rrm}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$I_f = 3 \text{ A , V}_R = 200 \text{ V,}$ $Tj = 125 ^{\circ}\text{C, di/dt} = 100 \text{A/}\mu\text{s}$		1700 4500 9.5		ns nC A

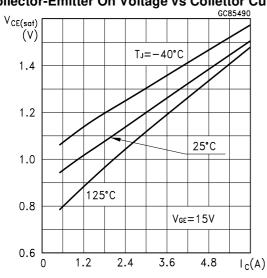

Note: 1. Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %.
2. Pulse width limited by max. junction temperature.

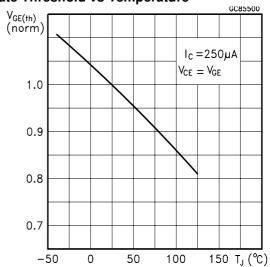
(**) Losses also include the Tail (Jedec Standardization)

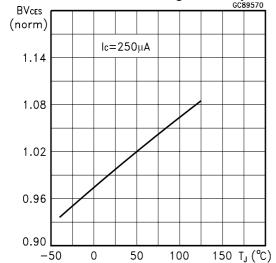

Thermal Impedance

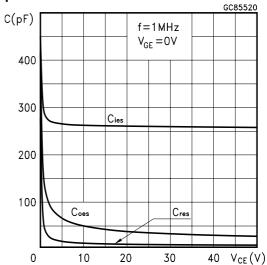

Output Characteristics

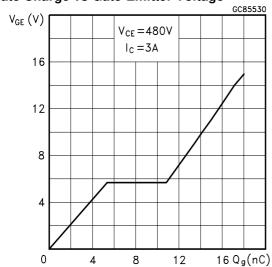

Transfer Characteristics

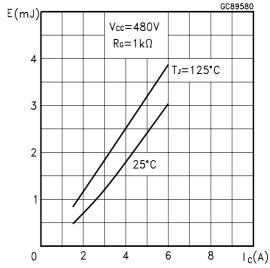

Transconductance


Collector-Emitter On Voltage vs Temperature

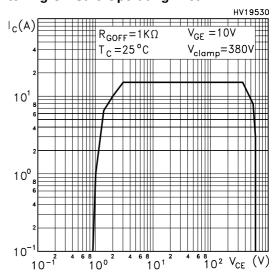

Collector-Emitter On Voltage vs Collettor Current


Gate Threshold vs Temperature

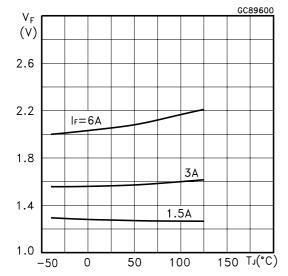

Normalized Breakdown Voltage vs Temperature


Capacitance Variations

Gate Charge vs Gate-Emitter Voltage


Off Losses vs Collector Current

Off Losses vs Temperature



Switching Off Safe Operating Area

A77.

Diode Forward Voltage vs Tj

Diode Forward Voltage

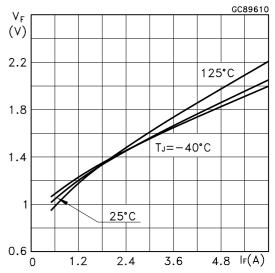
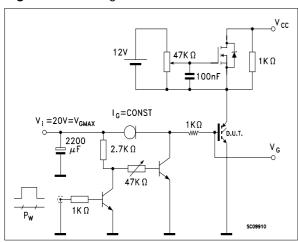
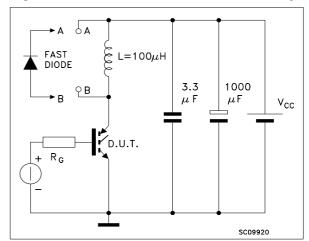
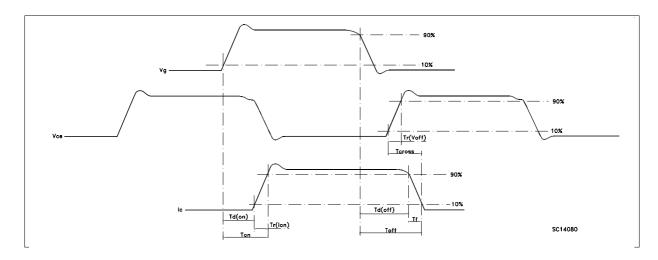
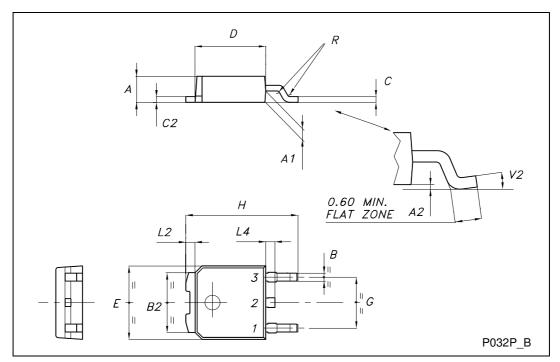


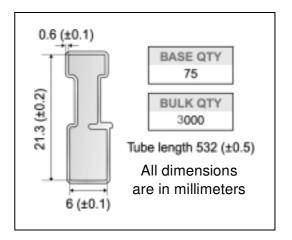
Fig. 1: Gate Charge test Circuit

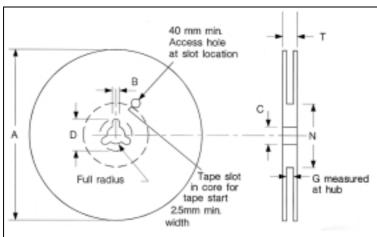





Fig. 2: Test Circuit For Inductive Load Switching

TO-252 (DPAK) MECHANICAL DATA

DIM.		mm			inch	
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	2.20		2.40	0.087		0.094
A1	0.90		1.10	0.035		0.043
A2	0.03		0.23	0.001		0.009
В	0.64		0.90	0.025		0.035
B2	5.20		5.40	0.204		0.213
С	0.45		0.60	0.018		0.024
C2	0.48		0.60	0.019		0.024
D	6.00		6.20	0.236		0.244
Е	6.40		6.60	0.252		0.260
G	4.40		4.60	0.173		0.181
Н	9.35		10.10	0.368		0.398
L2		0.8			0.031	
L4	0.60		1.00	0.024		0.039
V2	0°		8°	0°		0°

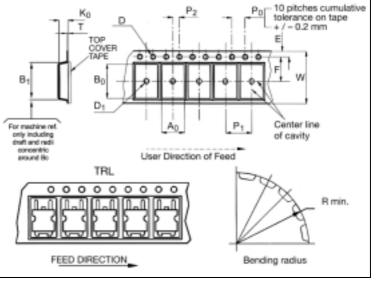



DPAK FOOTPRINT

6.7 2.3 6.7 2.3 All dimensions are in millimeters

TUBE SHIPMENT (no suffix)*

TAPE AND REEL SHIPMENT (suffix "T4")*


REEL MECHANICAL DATA

DIM.	mm		in	ch
Dilvi.	MIN.	MAX.	MIN.	MAX.
Α		330		12.992
В	1.5		0.059	
С	12.8	13.2	0.504	0.520
D	20.2		0.795	
G	16.4	18.4	0.645	0.724
N	50		1.968	
T		22.4		0.881

TAPE MECHANICAL DATA

DIM.	mm		inch	
	MIN.	MAX.	MIN.	MAX.
A0	6.8	7	0.267	0.275
В0	10.4	10.6	0.409	0.417
B1		12.1		0.476
D	1.5	1.6	0.059	0.063
D1	1.5		0.059	
E	1.65	1.85	0.065	0.073
F	7.4	7.6	0.291	0.299
K0	2.55	2.75	0.100	0.108
P0	3.9	4.1	0.153	0.161
P1	7.9	8.1	0.311	0.319
P2	1.9	2.1	0.075	0.082
R	40		1.574	
W	15.7	16.3	0.618	0.641

BASE QTY BULK QTY 2500 2500

on sales type

47/₃ 8/9

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patents or other rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com